1
|
Zhu Z, Su A, Wang B, Yu Y, Wang X, Li X, Guo Y, Zhou Y, Tian Y, Sun G, Kang X, Yan F. Effects of immunosuppression-associated gga-miR-146a-5p on immune regulation in chicken macrophages by targeting the IRKA2 gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105159. [PMID: 38492902 DOI: 10.1016/j.dci.2024.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.
Collapse
Affiliation(s)
- Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Aru Su
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaoran Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaoxiao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yancheng Zhou
- People's Government of Jielong Town, Banan District, Chongqing, 401344, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
3
|
Shao S, Tsoi LC, Swindell WR, Chen J, Uppala R, Billi AC, Xing X, Zeng C, Sarkar MK, Wasikowski R, Jiang Y, Kirma J, Sun J, Plazyo O, Wang G, Harms PW, Voorhees JJ, Ward NL, Ma F, Pellegrini M, Merleev A, Perez White BE, Modlin RL, Andersen B, Maverakis E, Weidinger S, Kahlenberg JM, Gudjonsson JE. IRAK2 Has a Critical Role in Promoting Feed-Forward Amplification of Epidermal Inflammatory Responses. J Invest Dermatol 2021; 141:2436-2448. [PMID: 33864770 DOI: 10.1016/j.jid.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Many inflammatory skin diseases are characterized by altered epidermal differentiation. Whether this altered differentiation promotes inflammatory responses has been unknown. Here, we show that IRAK2, a member of the signaling complex downstream of IL-1 and IL-36, correlates positively with disease severity in both atopic dermatitis and psoriasis. Inhibition of epidermal IRAK2 normalizes differentiation and inflammation in two mouse models of psoriasis- and atopic dermatitis-like inflammation. Specifically, we demonstrate that IRAK2 ties together proinflammatory and differentiation-dependent responses and show that this function of IRAK2 is specific to keratinocytes and acts through the differentiation-associated transcription factor ZNF750. Taken together, our findings suggest that IRAK2 has a critical role in promoting feed-forward amplification of inflammatory responses in skin through modulation of differentiation pathways and inflammatory responses.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - William R Swindell
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph Kirma
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jingru Sun
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Departments of Nutrition and Dermatology, School of Medicine, Case Western University, Cleveland, Ohio, USA
| | - Feiyang Ma
- Department of UCLA Dermatology, UCLA Medical School, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of UCLA Dermatology, UCLA Medical School, Los Angeles, California, USA
| | - Alexander Merleev
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Bethany E Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Poltorak A, Apalko S, Sherbak S. Wild-derived mice: from genetic diversity to variation in immune responses. Mamm Genome 2018; 29:577-584. [PMID: 30056578 DOI: 10.1007/s00335-018-9766-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Classical inbred mouse strains have historically been instrumental in mapping immunological traits. However, most of the classical strains originate from a relatively limited number of founder animals, largely within the Mus musculus domesticus subspecies. Therefore, their genetic diversity is ultimately limited. For this reason, it is not feasible to use these mice for exhaustive interrogation of immune signaling pathways. In order to investigate networks through forward genetic analysis, larger genetic diversity is required than is introduced under laboratory conditions. Recently, inbred strains from other mouse subspecies were established such as Mus musculus castaneus and Mus musculus musculus, which diverged from a shared common ancestor with Mus musculus domesticus more than one million years ago. A direct genomic comparison clearly demonstrates the evolutionary divergence that has occurred between wild-derived mice and the classical inbred strains. When compared to classical inbred strains, wild-derived mice exhibit polymorphisms every 100-200 base pairs. Studying the molecular basis of these traits provides us with insight into how the immune system can evolve regulatory features to accommodate environment-specific constraints. Because most wild-derived strains are able to breed with classical inbred mice, they represent a rich source of evolutionarily significant diversity for forward genetic studies. These organisms are an emerging, though still largely unexplored, model for the identification and study of novel immunological genes.
Collapse
Affiliation(s)
- Alexander Poltorak
- Department of Immunology, Tufts University, Boston, MA, 02111, USA. .,Petrozavodsk State University, Karelia, Russian Federation.
| | | | - Sergei Sherbak
- City Hospital, 40, St. Petersburg, Russian Federation.,St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
5
|
Swindell WR, Michaels KA, Sutter AJ, Diaconu D, Fritz Y, Xing X, Sarkar MK, Liang Y, Tsoi A, Gudjonsson JE, Ward NL. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Med 2017; 9:24. [PMID: 28279190 PMCID: PMC5345243 DOI: 10.1186/s13073-017-0415-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. METHODS RNA-seq was used to evaluate the psoriasiform phenotype elicited by 6 days of Aldara (5% IMQ) treatment in both sexes of seven mouse strains (C57BL/6 J (B6), BALB/cJ, CD1, DBA/1 J, FVB/NJ, 129X1/SvJ, and MOLF/EiJ). RESULTS In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and B6). Compared with BALB/c, the B6 phenotype showed increased expression of genes associated with DNA replication, IL-17A stimulation, and activated CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells. Although IMQ-induced expression shifts mirrored psoriasis, responses in BALB/c, 129/SvJ, DBA, and MOLF mice were more consistent with other human skin conditions (e.g., wounds or infections). IMQ responses in B6 mice were most consistent with human psoriasis and best replicated expression patterns specific to psoriasis lesions. CONCLUSIONS These findings demonstrate strain-dependent aspects of IMQ dermatitis in mice. We have shown that IMQ does not uniquely model psoriasis but in fact triggers a core set of pathways active in diverse skin diseases. Nonetheless, our findings suggest that B6 mice provide a better background than other strains for modeling psoriasis disease mechanisms.
Collapse
Affiliation(s)
- William R. Swindell
- Ohio University, Heritage College of Osteopathic Medicine, Athens, OH 45701-2979 USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Kellie A. Michaels
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Andrew J. Sutter
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Doina Diaconu
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Yi Fritz
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Alex Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | | | - Nicole L. Ward
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
- The Murdough Family Center for Psoriasis, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
6
|
Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc Natl Acad Sci U S A 2017; 114:E514-E523. [PMID: 28069966 DOI: 10.1073/pnas.1620139114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM2CSK4, LTA, FSL-1), TLR1/2 (PAM3CSK4), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1β. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1β. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.
Collapse
|
7
|
Toll-like receptors signaling: A complex network for NF-κB activation in B-cell lymphoid malignancies. Semin Cancer Biol 2016; 39:15-25. [DOI: 10.1016/j.semcancer.2016.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
|
8
|
Poltorak A, Kurmyshkina O, Volkova T. Stimulator of interferon genes (STING): A “new chapter” in virus-associated cancer research. Lessons from wild-derived mouse models of innate immunity. Cytokine Growth Factor Rev 2016; 29:83-91. [DOI: 10.1016/j.cytogfr.2016.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/27/2016] [Indexed: 12/19/2022]
|
9
|
Kurmyshkina OV, Bogdanova AA, Volkova TO, Poltorak AN. Septic shock: innate molecular genetic mechanisms of the development of generalized inflammation. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang H, Flannery SM, Dickhöfer S, Huhn S, George J, Kubarenko AV, Lascorz J, Bevier M, Willemsen J, Pichulik T, Schafmayer C, Binder M, Manoury B, Paludan SR, Alarcon-Riquelme M, Bowie AG, Försti A, Weber ANR. A coding IRAK2 protein variant compromises Toll-like receptor (TLR) signaling and is associated with colorectal cancer survival. J Biol Chem 2014; 289:23123-23131. [PMID: 24973222 DOI: 10.1074/jbc.m113.492934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within innate immune signaling pathways, interleukin-1 receptor-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors and the interleukin-1 receptor. Although human IRAK4 deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and Toll-like receptor-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3-9% of individuals in different ethnic groups, and our studies suggested a genetic association of rs35060588 with colorectal cancer survival. This for the first time implicates human IRAK2 in a human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point.
Collapse
Affiliation(s)
- Hui Wang
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Sinead M Flannery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sabine Dickhöfer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefanie Huhn
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Julie George
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Andriy V Kubarenko
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Jesus Lascorz
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Melanie Bevier
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Joschka Willemsen
- Department of Infectious Diseases/Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Tica Pichulik
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany,; POPGEN Biobank Project, Christian-Albrechts University, 24105 Kiel, Germany
| | - Marco Binder
- Department of Infectious Diseases/Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Bénédicte Manoury
- INSERM, Unité 1013 and Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75015 Paris, France
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Bartholin Building, 8000 Aarhus, Denmark
| | - Marta Alarcon-Riquelme
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain,; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104,; BIOLUPUS Network, European Science Foundation, F-67080 Strasbourg Cedex, France, and
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany,; Center for Primary Health Care Research, Clinical Research Center, Lund University, 20502 Malmö, Sweden
| | - Alexander N R Weber
- Junior Research Group Toll-like Receptors and Cancer and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany,.
| |
Collapse
|
11
|
Schworer SA, Smirnova II, Kurbatova I, Bagina U, Churova M, Fowler T, Roy AL, Degterev A, Poltorak A. Toll-like receptor-mediated down-regulation of the deubiquitinase cylindromatosis (CYLD) protects macrophages from necroptosis in wild-derived mice. J Biol Chem 2014; 289:14422-33. [PMID: 24706750 DOI: 10.1074/jbc.m114.547547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pathogen recognition by the innate immune system initiates the production of proinflammatory cytokines but can also lead to programmed host cell death. Necroptosis, a caspase-independent cell death pathway, can contribute to the host defense against pathogens or cause damage to host tissues. Receptor-interacting protein (RIP1) is a serine/threonine kinase that integrates inflammatory and necroptotic responses. To investigate the mechanisms of RIP1-mediated activation of immune cells, we established a genetic screen on the basis of RIP1-mediated necroptosis in wild-derived MOLF/EiJ mice, which diverged from classical laboratory mice over a million years ago. When compared with C57BL/6, MOLF/EiJ macrophages were resistant to RIP1-mediated necroptosis induced by Toll-like receptors. Using a forward genetic approach in a backcross panel of mice, we identified cylindromatosis (CYLD), a deubiquitinase known to act directly on RIP1 and promote necroptosis in TNF receptor signaling, as the gene conferring the trait. We demonstrate that CYLD is required for Toll-like receptor-induced necroptosis and describe a novel mechanism by which CYLD is down-regulated at the transcriptional level in MOLF/EiJ macrophages to confer protection from necroptosis.
Collapse
Affiliation(s)
- Stephen A Schworer
- From the Graduate Program in Immunology, Medical Scientist Training Program
| | | | - Irina Kurbatova
- the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and
| | - Uliana Bagina
- the Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia
| | - Maria Churova
- the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and
| | - Trent Fowler
- Department of Developmental, Molecular, and Chemical Biology, and
| | - Ananda L Roy
- From the Graduate Program in Immunology, Department of Developmental, Molecular, and Chemical Biology, and Graduate Program in Genetics, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Alexei Degterev
- Department of Developmental, Molecular, and Chemical Biology, and
| | - Alexander Poltorak
- From the Graduate Program in Immunology, the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and Graduate Program in Genetics, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111,
| |
Collapse
|
12
|
Moseman AP, Moseman EA, Schworer S, Smirnova I, Volkova T, von Andrian U, Poltorak A. Mannose receptor 1 mediates cellular uptake and endosomal delivery of CpG-motif containing oligodeoxynucleotides. THE JOURNAL OF IMMUNOLOGY 2013; 191:5615-24. [PMID: 24184555 DOI: 10.4049/jimmunol.1301438] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recognition of microbial components is critical for activation of TLRs, subsequent innate immune signaling, and directing adaptive immune responses. The DNA sensor TLR9 traffics from the endoplasmic reticulum to endolysosomal compartments where it is cleaved by resident proteases to generate a competent receptor. Activation of TLR9 by CpG-motif containing oligodeoxynucleotides (CpG ODNs) is preceded by agonist endocytosis and delivery into the endolysosomes. The events that dictate this process remain largely unknown; furthermore, it is unclear whether the receptors involved in mediating uptake of exogenous DNA are conserved for both naturally derived pathogenic DNA and synthetic ODNs. In this study, we report that peritoneal macrophages from a wild-derived inbred mouse strain, MOLF/Ei, are hyporesponsive to CpG ODN but are fully responsive to bacterial DNA, thus implying that microbial recognition is not fully recapitulated by a synthetic analog. To identify the gene responsible for the CpG ODN defect, we have performed genome-wide linkage analysis. Using N2 backcross mice, we mapped the trait with high resolution to a single locus containing Mrc1 as the gene conferring the trait. We show that mannose receptor 1 (MRC1; CD206) is involved in CpG ODN uptake and trafficking in wild-derived MOLF/Ei peritoneal macrophages. Furthermore, we show that other strains of wild-derived mice also require MRC1 for CpG-induced cytokine responses. These findings reveal novel functions for MRC1 and demonstrate that wild-derived mice are important and indispensable model for understanding naturally occurring regulators of inflammatory responses in innate immune pathways.
Collapse
Affiliation(s)
- Annie Park Moseman
- Graduate Program in Immunology, Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | | | | | | | | | | | | |
Collapse
|
13
|
Pauls E, Nanda SK, Smith H, Toth R, Arthur JSC, Cohen P. Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2717-30. [PMID: 23918981 DOI: 10.4049/jimmunol.1203268] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The roles of IL-1R-associated kinase (IRAK)2 and IRAK1 in cytokine production were investigated using immune cells from knock-in mice expressing the TNFR-associated factor 6 (TRAF6) binding-defective mutant IRAK2[E525A] or the catalytically inactive IRAK1[D359A] mutant. In bone marrow-derived macrophages (BMDMs), the IRAK2-TRAF6 interaction was required for the late (2-8 h) but not the early phase (0-2 h) of il6 and tnfa mRNA production, and hence for IL-6 and TNF-α secretion by TLR agonists that signal via MyD88. Loss of the IRAK2-TRAF6 interaction had little effect on the MyD88-dependent production of anti-inflammatory molecules produced during the early phase, such as Dual Specificity Phosphatase 1, and a modest effect on IL-10 secretion. The LPS/TLR4-stimulated production of il6 and tnfa mRNA and IL-6 and TNF-α secretion was hardly affected, because the Toll/IL-1R domain-containing adapter-inducing IFN-β (TRIF) signaling pathway was used instead of the IRAK2-TRAF6 interaction to sustain late-phase mRNA production. IRAK1 catalytic activity was not rate limiting for il6, tnfa, or il10 mRNA production or the secretion of these cytokines by BMDMs, but IFN-β mRNA induction by TLR7 and TLR9 agonists was greatly delayed in plasmacytoid dendritic cells (pDCs) from IRAK1[D359A] mice. In contrast, IFN-β mRNA production was little affected in pDCs from IRAK2[E525A] mice, but subsequent IFN-α mRNA production and IFN-α secretion were reduced. IFN-β and IFN-α production were abolished in pDCs from IRAK1[D359A] × IRAK2[E525A] double knock-in mice. Our results establish that the IRAK2-TRAF6 interaction is rate limiting for the late, but not the early phase of cytokine production in BMDM and pDCs, and that the IRAK2-TRAF6 interaction is needed to sustain IκB-inducing kinase β activity during prolonged activation of the MyD88 signaling network. [corrected]
Collapse
Affiliation(s)
- Eduardo Pauls
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom.,IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona 08916, Spain
| | - Sambit K Nanda
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hilary Smith
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Rachel Toth
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J Simon C Arthur
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom.,Division of Cell Signaling and Immunology Unit, Sir James Black Centre, University of Dundee, DD1 5EH, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
14
|
Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, Saftig P, Li Y, Ozato K, Blobel CP, Ivashkiv LB, Hu X. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 2012; 13:642-50. [PMID: 22610140 PMCID: PMC3513378 DOI: 10.1038/ni.2304] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022]
Abstract
Emerging concepts suggest that the functional phenotype of macrophages is regulated by transcription factors that define alternative activation states. We found that RBP-J, the main nuclear transducer of signaling via Notch receptors, augmented Toll-like receptor 4 (TLR4)-induced expression of key mediators of classically activated M1 macrophages and thus of innate immune responses to Listeria monocytogenes. Notch-RBP-J signaling controlled expression of the transcription factor IRF8 that induced downstream M1 macrophage-associated genes. RBP-J promoted the synthesis of IRF8 protein by selectively augmenting kinase IRAK2-dependent signaling via TLR4 to the kinase MNK1 and downstream translation-initiation control through eIF4E. Our results define a signaling network in which signaling via Notch-RBP-J and TLRs is integrated at the level of synthesis of IRF8 protein and identify a mechanism by which heterologous signaling pathways can regulate the TLR-induced inflammatory polarization of macrophages.
Collapse
Affiliation(s)
- Haixia Xu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
IRAK-2 regulates IL-1-mediated pathogenic Th17 cell development in helminthic infection. PLoS Pathog 2011; 7:e1002272. [PMID: 21998578 PMCID: PMC3188523 DOI: 10.1371/journal.ppat.1002272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 08/01/2011] [Indexed: 01/10/2023] Open
Abstract
Infection with the trematode parasite Schistosoma mansoni results in distinct heterogeneity of disease severity both in humans and in mice. In the experimental mouse model, severe disease is characterized by pronounced hepatic egg-induced granulomatous inflammation mediated by CD4 Th17 cells, whereas mild disease is associated with reduced hepatic inflammation in a Th2-skewed cytokine environment. Even though the host’s genetic background significantly impacts the clinical outcome of schistosomiasis, specific gene(s) that contribute to disease severity remain elusive. We investigated the schistosome infection in wild-derived mice, which possess a more diverse gene pool than classically inbred mouse strains and thus makes them more likely to reveal novel mechanisms of immune regulation. We now show that inbred wild-derived MOLF mice develop severe hepatic inflammation with high levels of IL-17. Congenic mice with a MOLF locus in chromosome 6, designated Why1, revealed high pathology and enabled the identification of Irak2 as the pathogenic gene. Although IRAK-2 is classically associated with TLR signaling, adoptive transfer of CD4 T cells revealed that IRAK-2 mediates pathology in a CD4 T cell specific manner by promoting Th17 cell development through enhancement of IL-1β-induced activation of transcription factors RORγt and BATF. The use of wild-derived mice unravels IRAK-2 as a novel regulator of IL-1-induced pathogenic Th17 cells in schistosomiasis, which likely has wide-ranging implications for other chronic inflammatory and autoimmune diseases. Schistosomes are trematode helminths that cause widespread disease in vertebrates and are responsible for over 200 million human infections worldwide. The species Schistosoma mansoni causes a hepatic granulomatous inflammatory and fibrosing reaction against tissue trapped parasite eggs that varies greatly in humans and among mouse strains, implying that the host’s genetic background plays a critical role in determining disease severity. Although exacerbated hepatic inflammation is known to be associated with an increase in CD4 Th17 cells, specific genes conducive to high pathology are unknown. In this study we used genetically diverse inbred wild-derived mice and found that their natural severe immunopathology and high IL-17 levels are regulated by the interleukin-1 (IL-1) receptor-associated kinase-like 2 (IRAK-2). We demonstrate that T cell intrinsic IRAK-2 affects disease severity by enhancing the development of Th17 cells, which results from an increased sensitivity to IL-1β induced activation of the lineage-specific transcription factors RORγt and BATF. Our findings thus identify IRAK-2 as a single regulator of pathogenic Th17 cell development in murine schistosomiasis and reveal a novel mechanism that is likely to operate in other chronic inflammatory and autoimmune diseases.
Collapse
|
16
|
Flannery SM, Keating SE, Szymak J, Bowie AG. Human interleukin-1 receptor-associated kinase-2 is essential for Toll-like receptor-mediated transcriptional and post-transcriptional regulation of tumor necrosis factor alpha. J Biol Chem 2011; 286:23688-97. [PMID: 21606490 DOI: 10.1074/jbc.m111.248351] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial ligands and subsequently trigger intracellular signaling pathways involving transcription factors such as NFκB and MAPKs such as p38. TLR signaling can regulate both transcriptional and post-transcriptional events leading to altered gene expression and thus appropriate immune responses. The interleukin-1 receptor-associated kinase (IRAK) family comprises four kinases that regulate TLR signaling. However, the role of IRAK-2 has remained unclear, especially in human cells. Recent studies using cells from in-bred Irak2(-/-) mice showed that murine IRAK-2 was not required for early TLR signaling events but had a role in delayed NFκB activation and in cytokine production. IRAK-2 in mice has four splice variants, two of which are inhibitory, whereas human IRAK-2 has no splice variants. Thus IRAK-2 in mice and humans may function differently, and therefore we analyzed the role of IRAK-2 in TLR responses in primary human cells. siRNA knockdown of IRAK-2 expression in human peripheral blood mononuclear cells showed a role for human IRAK-2 in both TLR4- and TLR8-mediated early NFκB and p38 MAPK activation and in induction of TNF mRNA. These data conflict with findings from the in-bred Irak2(-/-) mice but concur with what has been seen in wild-derived mice for TLR2. Moreover, human IRAK-2 was required for regulating MyD88-dependent TNFα mRNA stability via the TNF 3'UTR. Collectively, these data demonstrate for the first time an essential role for IRAK-2 in primary human cells for both transcriptional and post-transcriptional TLR responses.
Collapse
Affiliation(s)
- Sinead M Flannery
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
17
|
George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AVS, Gay NJ, Weber ANR. Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem 2010; 286:1341-53. [PMID: 20966070 PMCID: PMC3020742 DOI: 10.1074/jbc.m110.159996] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Innate immune receptors detect microbial pathogens and subsequently activate adaptive immune responses to combat pathogen invasion. MyD88 is a key adaptor molecule in both Toll-like receptor (TLR) and IL-1 receptor superfamily signaling pathways. This is illustrated by the fact that human individuals carrying rare, naturally occurring MYD88 point mutations suffer from reoccurring life-threatening infections. Here we analyzed the functional properties of six reported non-synonymous single nucleotide polymorphisms of MYD88 in an in vitro cellular system. Two variants found in the MyD88 death domain, S34Y and R98C, showed severely reduced NF-κB activation due to reduced homo-oligomerization and IRAK4 interaction. Structural modeling highlights Ser-34 and Arg-98 as residues important for the assembly of the Myddosome, a death domain (DD) post-receptor complex involving the DD of MyD88, IRAK4, and IRAK2 or IRAK1. Using S34Y and R98C as functional probes, our data show that MyD88 homo-oligomerization and IRAK4 interaction is modulated by the MyD88 TIR and IRAK4 kinase domain, demonstrating the functional importance of non-DD regions not observed in a recent Myddosome crystal structure. The differential interference of S34Y and R98C with some (IL-1 receptor, TLR2, TLR4, TLR5, and TLR7) but not all (TLR9) MyD88-dependent signaling pathways also suggests that receptor specificities exist at the level of the Myddosome. Given their detrimental effect on signaling, it is not surprising that our epidemiological analysis in several case-control studies confirms that S34Y and R98C are rare variants that may drastically contribute to susceptibility to infection in only few individuals.
Collapse
Affiliation(s)
- Julie George
- Division Toll-like receptors and Cancer, German Cancer Research Centre DKFZ, Heidelberg, 69120 Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem Pharmacol 2010; 80:1981-91. [PMID: 20599782 DOI: 10.1016/j.bcp.2010.06.020] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/31/2023]
Abstract
The interleukin receptor-associated kinase (IRAK) family are involved in regulating Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways. TLRs are pattern recognition receptors of the innate immune response that are responsible for sensing pathogens and initiating immunity, while IL-1 is one of the key cytokines that mediates inflammation. As such, IL-1/TLR signalling pathways and the IRAK family are critical in anti-pathogen responses, inflammation and autoimmunity. The family comprises of four members, IRAK-1, IRAK-2, IRAK-M (IRAK-3) and IRAK-4, and has a role in both positive and negative regulation of signal transduction. While it was once thought that the family displayed some redundancy, each member of the family is emerging as a distinct and vital contributor to IL-1/TLR signalling mechanisms. Knockout mouse studies have explored the relative contribution of each of the IRAKs in IL-1/TLR signalling, while the recent generation of kinase-inactive knock-in IRAK-4 mice have revealed which of IRAK-4 functions require its kinase activity. IRAK-2, previously thought of as a pseudokinase, has recently been proposed to have kinase activity that is essential for TLR signalling. Not surprisingly given their critical role in IL-1/TLR signalling, the IRAK family members have been implicated in certain disease models including human immunodeficiencies. Thus the potential targeting of these essential protein kinases therapeutically is also discussed.
Collapse
|
19
|
Conner JR, Smirnova II, Poltorak A. A mutation in Irak2cidentifies IRAK-2 as a central component of the TLR regulatory network of wild-derived mice. J Biophys Biochem Cytol 2009. [DOI: 10.1083/jcb1861oia3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|