1
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
2
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Lee K, Park J, Tanno H, Georgiou G, Diamond B, Kim SJ. Peripheral T cell activation, not thymic selection, expands the T follicular helper repertoire in a lupus-prone murine model. Proc Natl Acad Sci U S A 2023; 120:e2309780120. [PMID: 37983487 PMCID: PMC10691248 DOI: 10.1073/pnas.2309780120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Many autoimmune diseases are characterized by the activation of autoreactive T cells. The T cell repertoire is established in the thymus; it remains uncertain whether the presence of disease-associated autoreactive T cells reflects abnormal T cell selection in the thymus or aberrant T cell activation in the periphery. Here, we describe T cell selection, activation, and T cell repertoire diversity in female mice deficient for B lymphocyte-induced maturation protein (BLIMP)-1 in dendritic cells (DCs) (Prdm1 CKO). These mice exhibit a lupus-like phenotype with an expanded population of T follicular helper (Tfh) cells having a more diverse T cell receptor (TCR) repertoire than wild-type mice and, in turn, develop a lupus-like pathology. To understand the origin of the aberrant Tfh population, we analyzed the TCR repertoire of thymocytes and naive CD4 T cells from Prdm1 CKO mice. We show that early development and selection of T cells in the thymus are not affected. Importantly, however, we observed increased TCR signal strength and increased proliferation of naive T cells cultured in vitro with antigen and BLIMP1-deficient DCs compared to control DCs. Moreover, there was increased diversity in the TCR repertoire in naive CD4+ T cells stimulated in vitro with BLIMP1-deficient DCs. Collectively, our data indicate that lowering the threshold for peripheral T cell activation without altering thymic selection and naive T cell TCR repertoire leads to an expanded repertoire of antigen-activated T cells and impairs peripheral T cell tolerance.
Collapse
Affiliation(s)
- Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Biology, Hofstra University, Hempstead, NY11549
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
| | - Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
- Cancer Immunology Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Molecular Medicine, Northwell Health-Hofstra School of Medicine, Hofstra University, Hempstead, NY11549
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Molecular Medicine, Northwell Health-Hofstra School of Medicine, Hofstra University, Hempstead, NY11549
| |
Collapse
|
4
|
Robinson MJ, Ding Z, Dowling MR, Hill DL, Webster RH, McKenzie C, Pitt C, O'Donnell K, Mulder J, Brodie E, Hodgkin PD, Wong NC, Quast I, Tarlinton DM. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 2023:S1074-7613(23)00183-8. [PMID: 37164016 DOI: 10.1016/j.immuni.2023.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days. ASC longevity past 60 days was independent of isotype but correlated with a phenotype that developed progressively and ultimately associated with an underlying "long-lived" ASC (LL ASC)-enriched transcriptional program. While some of the differences between LL ASCs and other ASCs appeared to be acquired with age, other features were shared with some younger ASCs, such as high CD138 and CD93. Turnover was unaffected by altered ASC production, arguing against competition for niches as a major driver of turnover. Thus, ASC turnover is set by intrinsic lifespan limits, with steady-state population dynamics governed by niche vacancy rather than displacement.
Collapse
Affiliation(s)
- Marcus James Robinson
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| | - Zhoujie Ding
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Mark R Dowling
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC 3000, Australia; Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Danika L Hill
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Rosela H Webster
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Craig McKenzie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Jesse Mulder
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Erica Brodie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia; Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nick C Wong
- Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
5
|
Diamond B. Not Dead Yet. Annu Rev Immunol 2023; 41:1-15. [PMID: 37126416 DOI: 10.1146/annurev-immunol-101721-065214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
I have been a scientific grasshopper throughout my career, moving from question to question within the domain of lupus. This has proven to be immensely gratifying. Scientific exploration is endlessly fascinating, and succeeding in studies you care about with colleagues and trainees leads to strong and lasting bonds. Science isn't easy; being a woman in science presents challenges, but the drive to understand a disease remains strong.
Collapse
Affiliation(s)
- Betty Diamond
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA;
| |
Collapse
|
6
|
Qin Q, Li R, Li L, Zhang Y, Deng S, Zhu L. Multi-target regulation of pro-inflammatory cytokine production by transcription factor Blimp-1. Inflamm Res 2023; 72:217-220. [PMID: 36403167 PMCID: PMC9925500 DOI: 10.1007/s00011-022-01671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Cytokine storm syndrome is a fatal condition related to infectious and autoimmune diseases. Here, we aim to investigate the regulatory mechanisms of Blimp-1 on multiple cytokine production. METHODS The Blimp1 shRNA was transfected into RAW264.7 macrophages, followed by Toll-like receptor (TLR) ligand stimulation. The mRNA and protein levels of cytokines were detected by real-time PCR and flow cytometric bead array. The nuclear translocation of AP-1 and NF-κB p65 was measured by immunofluorescence staining. The transcriptional activity was detected by luciferase reporter assay with 5 × NF-κB reporter or with IL6 promoter reporter. RESULTS Blimp-1 significantly inhibited the expression and secretion of IL-1β, IL-6, and IL-18 in macrophages during stimulation with a variety of TLR ligands. The immunofluorescence staining results showed that Blimp-1 strictly controlled the nuclear translocation of NF-κB p65 in LPS-challenged macrophages. Furthermore, Blimp-1 directly inhibited the transcriptional activity of NF-κB and the transcription of IL6 gene. CONCLUSION Blimp-1 represses the production of multiple pro-inflammatory cytokines by directly binding the genomic region and restricting the nuclear translocation and transcriptional activity of NF-κB. This finding may provide potential therapeutic strategies for the cytokine storm-related diseases.
Collapse
Affiliation(s)
- Qiushi Qin
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, 100015 China ,Beijing Institute of Infectious Diseases, Beijing, 100015 China
| | - Rui Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,Beijing Institute of Infectious Diseases, Beijing, 100015 China ,National Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Lan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,Beijing Institute of Infectious Diseases, Beijing, 100015 China ,National Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,Beijing Institute of Infectious Diseases, Beijing, 100015 China ,National Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Shuwei Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,Beijing Institute of Infectious Diseases, Beijing, 100015 China ,National Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, 100015, China. .,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China. .,Beijing Institute of Infectious Diseases, Beijing, 100015, China. .,National Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
7
|
Robinson MJ, Dowling MR, Pitt C, O’Donnell K, Webster RH, Hill DL, Ding Z, Dvorscek AR, Brodie EJ, Hodgkin PD, Quast I, Tarlinton DM. Long-lived plasma cells accumulate in the bone marrow at a constant rate from early in an immune response. Sci Immunol 2022; 7:eabm8389. [DOI: 10.1126/sciimmunol.abm8389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vaccines work largely by generating long-lived plasma cells (LLPCs), but knowledge of how such cells are recruited is sparse. Although it is clear that LLPCs preferentially originate in germinal centers (GCs) and relocate to survival niches in bone marrow where they can persist for decades, the issues of the timing of LLPC recruitment and the basis of their retention remain uncertain. Here, using a genetic timestamping system in mice, we show that persistent PCs accrue in bone marrow at an approximately constant rate of one cell per hour over a period spanning several weeks after a single immunization with a model antigen. Affinity-based selection was evident in persisting PCs, reflecting a relative and dynamic rather than absolute affinity threshold as evidenced by the changing pattern of V
H
gene somatic mutations conveying increased affinity for antigen. We conclude that the life span of persistent, antigen-specific PCs is in part intrinsic, preprogrammed, and varied and that their final number is related to the duration of the response in a predictable way. This implies that modulating vaccines to extend the duration of the GC reaction will enhance antibody-mediated protective immunity.
Collapse
Affiliation(s)
- Marcus James Robinson
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Mark R. Dowling
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, VIC 3000, Australia
- Immunology Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Kristy O’Donnell
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Rosela H. Webster
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Danika L. Hill
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Alexandra R. Dvorscek
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Philip D. Hodgkin
- Immunology Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - David Mathew Tarlinton
- Department of Immunology and Pathology, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
8
|
Scheib N, Tiemann J, Becker C, Probst HC, Raker VK, Steinbrink K. The Dendritic Cell Dilemma in the Skin: Between Tolerance and Immunity. Front Immunol 2022; 13:929000. [PMID: 35837386 PMCID: PMC9275407 DOI: 10.3389/fimmu.2022.929000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DC) are uniquely capable of initiating and directing immune responses. The range of their activities grounds in the heterogeneity of DC subsets and their functional plasticity. Numerical and functional DC changes influence the development and progression of disease, and correction of such dysregulations has the potential to treat disease causally. In this review, we discuss the major advances in our understanding of the regulation of DC lineage formation, differentiation, and function in the skin. We describe the alteration of DC in disease as well as possibilities for therapeutic reprogramming with a focus on tolerogenic DC. Because regulatory T cells (Treg) are indispensable partners of DC in the induction and control of tolerance, we pay special attention to the interactions with these cells. Above all, we would like to arouse fascination for this cell type and its therapeutic potential in skin diseases.
Collapse
Affiliation(s)
- Nils Scheib
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Jessica Tiemann
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian Becker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Hans Christian Probst
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Katharina Raker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
- *Correspondence: Verena Katharina Raker,
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| |
Collapse
|
9
|
Kim V, Lee K, Tian H, Jang SH, Diamond B, Kim SJ. IL-17–producing follicular Th cells enhance plasma cell differentiation in lupus-prone mice. JCI Insight 2022; 7:157332. [PMID: 35674135 PMCID: PMC9220957 DOI: 10.1172/jci.insight.157332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Vera Kim
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hong Tian
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Su Hwa Jang
- Department of Biomedical Science, Graduate School of Biomedical Sciences and Engineering, Hanyang University, Seoul, South Korea
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine, Hofstra University, Hempstead, New York, USA
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine, Hofstra University, Hempstead, New York, USA
| |
Collapse
|
10
|
Dendritic cells in systemic lupus erythematosus: From pathogenesis to therapeutic applications. J Autoimmun 2022; 132:102856. [DOI: 10.1016/j.jaut.2022.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
|
11
|
Blimp-1 is a prognostic indicator for progression of cervical intraepithelial neoplasia grade 2. J Cancer Res Clin Oncol 2022; 148:1991-2002. [PMID: 35386001 PMCID: PMC9294030 DOI: 10.1007/s00432-022-03993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
Background Progression of cervical intraepithelial neoplasia (CIN) to higher grade disease is associated with persistent human papillomavirus (HPV) infection and an absence of immune-mediated regression. However, the immune microenvironment that distinguishes progression from persistent or regressing lesions has not been well defined. Methods A total of 69 patients under the age of 25 with high-risk HPV-positive cytology and biopsy-confirmed p16-positive CIN2 were included in the study. Biopsies were stained using 20 antibodies to a range of immune markers. Based on a 2-year follow-up, samples were analysed in “progressor” (CIN3 +) or “persister/regressor” (CIN1, 2 or normal) groups. Results Progression was most strongly associated with Blimp-1 positive cell staining in the lesion (P = 0.0019) and with low numbers of infiltrating CD4 cells in the dermal region beneath the lesion (P = 0.0022). The presence of CD4, CD8 and T bet-positive cells in the dermal region most strongly correlated with CD11c cells in the persister/regressor but not the progressor group. Conclusion High numbers of Blimp-1 + cells in CIN2 lesions may predict progression to more severe disease. Measurement of Blimp-1 may have diagnostic utility for the determination of the need to treat women with cervical pre-cancer. Highlights CIN2 progression is associated with high numbers of Blimp-1 positive cells in the lesion. Detection of Blimp-1 in the lesion may have utility as a prognostic test to inform the need to treat CIN2. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-03993-4.
Collapse
|
12
|
Nadeau S, Martins GA. Conserved and Unique Functions of Blimp1 in Immune Cells. Front Immunol 2022; 12:805260. [PMID: 35154079 PMCID: PMC8829541 DOI: 10.3389/fimmu.2021.805260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
B-lymphocyte-induced maturation protein-1 (Blimp1), is an evolutionarily conserved transcriptional regulator originally described as a repressor of gene transcription. Blimp1 crucially regulates embryonic development and terminal differentiation in numerous cell lineages, including immune cells. Initial investigations of Blimp1’s role in immunity established its non-redundant role in lymphocytic terminal effector differentiation and function. In B cells, Blimp1 drives plasmablast formation and antibody secretion, whereas in T cells, Blimp1 regulates functional differentiation, including cytokine gene expression. These studies established Blimp1 as an essential transcriptional regulator that promotes efficient and controlled adaptive immunity. Recent studies have also demonstrated important roles for Blimp1 in innate immune cells, specifically myeloid cells, and Blimp1 has been established as an intrinsic regulator of dendritic cell maturation and T cell priming. Emerging studies have determined both conserved and unique functions of Blimp1 in different immune cell subsets, including the unique direct activation of the igh gene transcription in B cells and a conserved antagonism with BCL6 in B cells, T cells, and myeloid cells. Moreover, polymorphisms associated with the gene encoding Blimp1 (PRDM1) have been linked to numerous chronic inflammatory conditions in humans. Blimp1 has been shown to regulate target gene expression by either competing with other transcription factors for binding to the target loci, and/or by recruiting various chromatin-modifying co-factors that promote suppressive chromatin structure, such as histone de-acetylases and methyl-transferases. Further, Blimp1 function has been shown to be essentially dose and context-dependent, which adds to Blimp1’s versatility as a regulator of gene expression. Here, we review Blimp1’s complex roles in immunity and highlight specific gaps in the understanding of the biology of this transcriptional regulator, with a major focus on aspects that could foster the description and understanding of novel pathways regulated by Blimp1 in the immune system.
Collapse
Affiliation(s)
- Samantha Nadeau
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| | - Gislâine A Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Medicine, Gastroenterology Division, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| |
Collapse
|
13
|
Regulation of B Cell Responses in SLE by Three Classes of Interferons. Int J Mol Sci 2021; 22:ijms221910464. [PMID: 34638804 PMCID: PMC8508684 DOI: 10.3390/ijms221910464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
There are three classes of interferons (type 1, 2, and 3) that can contribute to the development and maintenance of various autoimmune diseases, including systemic lupus erythematosus (SLE). Each class of interferons promotes the generation of autoreactive B cells and SLE-associated autoantibodies by distinct signaling mechanisms. SLE patients treated with various type 1 interferon-blocking biologics have diverse outcomes, suggesting that additional environmental and genetic factors may dictate how these cytokines contribute to the development of autoreactive B cells and SLE. Understanding how each class of interferons controls B cell responses in SLE is necessary for developing optimized B cell- and interferon-targeted therapeutics. In this review, we will discuss how each class of interferons differentially promotes the loss of peripheral B cell tolerance and leads to the development of autoreactive B cells, autoantibodies, and SLE.
Collapse
|
14
|
Chi M, Ma K, Li Y, Quan M, Han Z, Ding Z, Liang X, Zhang Q, Song L, Liu C. Immunological Involvement of MicroRNAs in the Key Events of Systemic Lupus Erythematosus. Front Immunol 2021; 12:699684. [PMID: 34408748 PMCID: PMC8365877 DOI: 10.3389/fimmu.2021.699684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an archetype autoimmune disease characterized by a myriad of immunoregulatory abnormalities that drives injury to multiple tissues and organs. Due to the involvement of various immune cells, inflammatory cytokines, and related signaling pathways, researchers have spent a great deal of effort to clarify the complex etiology and pathogenesis of SLE. Nevertheless, current understanding of the pathogenesis of SLE is still in the early stages, and available nonspecific treatment options for SLE patients remain unsatisfactory. First discovered in 1993, microRNAs (miRNAs) are small RNA molecules that control the expression of 1/3 of human genes at the post-transcriptional level and play various roles in gene regulation. The aberrant expression of miRNAs in SLE patients has been intensively studied, and further studies have suggested that these miRNAs may be potentially relevant to abnormal immune responses and disease progression in SLE. The aim of this review was to summarize the specific miRNAs that have been observed aberrantly expressed in several important pathogenetic processes in SLE, such as DCs abnormalities, overactivation and autoantibody production of B cells, aberrant activation of CD4+ T cells, breakdown of immune tolerance, and abnormally increased production of inflammatory cytokines. Our summary highlights a novel perspective on the intricate regulatory network of SLE, which helps to enrich our understanding of this disorder and ignite future interest in evaluating the molecular regulation of miRNAs in autoimmunity SLE.
Collapse
Affiliation(s)
- Mingxuan Chi
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University, Suita, Japan
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Quan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
15
|
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells that serve as a link between the innate and adaptive immune systems. These cells are broadly involved in cellular and humoral immune responses by presenting antigens to initiate T cell reactions, cytokine and chemokine secretion, T cell differentiation and expansion, B cell activation and regulation, and the mediation of immune tolerance. The functions of DCs depend on their activation status, which is defined by the stages of maturation, phenotype differentiation, and migration ability, among other factors. IL-6 is a soluble mediator mainly produced by a variety of immune cells, including DCs, that exerts pleiotropic effects on immune and inflammatory responses through interaction with specific receptors expressed on the surface of target cells. Here, we review the role of IL-6, when generated in an inflammatory context or as derived from DCs, in modulating the biologic function and activation status of DCs and emphasize the importance of searching for novel strategies to target the IL-6/IL-6 signaling pathway as a means to diminish the inflammatory activity of DCs in immune response or to prime the immunogenic activity of DCs in immunosuppressive conditions.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Chakhtoura M, Fang M, Cubas R, O’Connor MH, Nichols CN, Richardson B, Talla A, Moir S, Cameron MJ, Tardif V, Haddad EK. Germinal Center T follicular helper (GC-Tfh) cell impairment in chronic HIV infection involves c-Maf signaling. PLoS Pathog 2021; 17:e1009732. [PMID: 34280251 PMCID: PMC8289045 DOI: 10.1371/journal.ppat.1009732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that the function of T follicular helper (Tfh) cells from lymph nodes (LN) of HIV-infected individuals is impaired. We found that these cells were unable to provide proper help to germinal center (GC)-B cells, as observed by altered and inefficient anti-HIV antibody response and premature death of memory B cells. The underlying molecular mechanisms of this dysfunction remain poorly defined. Herein, we have used a unique transcriptional approach to identify these molecular defects. We consequently determined the transcriptional profiles of LN GC-Tfh cells following their interactions with LN GC-B cells from HIV-infected and HIV-uninfected individuals, rather than analyzing resting ex-vivo GC-Tfh cells. We observed that proliferating GC-Tfh cells from HIV-infected subjects were transcriptionally different than their HIV-uninfected counterparts, and displayed a significant downregulation of immune- and GC-Tfh-associated pathways and genes. Our results strongly demonstrated that MAF (coding for the transcription factor c-Maf) and its upstream signaling pathway mediators (IL6R and STAT3) were significantly downregulated in HIV-infected subjects, which could contribute to the impaired GC-Tfh and GC-B cell functions reported during infection. We further showed that c-Maf function was associated with the adenosine pathway and that the signaling upstream c-Maf could be partially restored by adenosine deaminase -1 (ADA-1) supplementation. Overall, we identified a novel mechanism that contributes to GC-Tfh cell impairment during HIV infection. Understanding how GC-Tfh cell function is altered in HIV is crucial and could provide critical information about the mechanisms leading to the development and maintenance of effective anti-HIV antibodies. Human immunodeficiency virus (HIV) remains a worldwide burden despite available treatments. The virus induces dysregulations in major immune cells and organs including lymph nodes. Germinal center T follicular helper (GC-Tfh) cells are immune cells which induce specific anti-HIV antibodies by helping GC-B cells. In chronic HIV, the interaction between these two cell types is defective, leading to modified and inefficient anti-HIV antibody responses. In this study, we examined the underlying mechanisms of this dysfunction. We observed that proliferating GC-Tfh cells from HIV-infected individuals, displayed distinctive gene expression than those from -uninfected subjects, following GC-B cell interaction. Furthermore, GC-Tfh cells from HIV patients showed a reduction in important immune-related pathway and gene expression. A number of essential GC-Tfh cell genes, such as MAF and its associated genes (IL6R and STAT3), were particularly attenuated in HIV, contributing to the impaired cells function. Moreover, we found an association between MAF function and the key enzyme adenosine deaminase-1 (ADA-1), where supplementation with ADA-1 partially restored the dysfunctional signaling in GC-Tfh cells during chronic infection. Understanding how GC-Tfh cells are altered in HIV is critical to elucidate the mechanisms leading to effective anti-HIV antibodies.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mike Fang
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rafael Cubas
- Iovance Biotherapeutics, San Carlos, California, United States of America
| | - Margaret H. O’Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen N. Nichols
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aarthi Talla
- Allen Institute for Immunology, Seattle, Washington, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sorbonne University, INSERM, Center of Reasearch in Myology (Association Institut de Myologie) UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, Paris, France
- * E-mail: (VT); (EKH)
| | - Elias K. Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (VT); (EKH)
| |
Collapse
|
17
|
Cao Y, Dong L, He Y, Hu X, Hou Y, Dong Y, Yang Q, Bi Y, Liu G. The direct and indirect regulation of follicular T helper cell differentiation in inflammation and cancer. J Cell Physiol 2021; 236:5466-5480. [PMID: 33421124 DOI: 10.1002/jcp.30263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Follicular T helper (Tfh) cells play important roles in facilitating B-cell differentiation and inducing the antibody response in humoral immunity and immune-associated inflammatory diseases, including infections, autoimmune diseases, and cancers. However, Tfh cell differentiation is mainly achieved through self-directed differentiation regulation and the indirect regulation mechanism of antigen-presenting cells (APCs). During the direct intrinsic differentiation of naïve CD4+ T cells into Tfh cells, Bcl-6, as the characteristic transcription factor, plays the core role of transcriptional regulation. APCs indirectly drive Tfh cell differentiation mainly by changing cytokine secretion mechanisms. Altered metabolic signaling is also critically involved in Tfh cell differentiation. This review summarizes the recent progress in understanding the direct and indirect regulatory signals and metabolic mechanisms of Tfh cell differentiation and function in immune-associated diseases.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Xuelian Hu
- Immunochina Pharmaceuticals Co., Ltd., No. 80, Xingshikou Road, Haidian District, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, East Street, Fengtai District, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| |
Collapse
|
18
|
Lycium barbarum Polysaccharides Promote Maturity of Murine Dendritic Cells through Toll-Like Receptor 4-Erk1/2-Blimp1 Signaling Pathway. J Immunol Res 2020; 2020:1751793. [PMID: 33344654 PMCID: PMC7725586 DOI: 10.1155/2020/1751793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 12/04/2022] Open
Abstract
In previous studies, Lycium barbarum polysaccharides (LBP), a traditional Chinese medicine, can promote immature dendritic cells (DCs) to mature. However, the molecular mechanisms by which LBP works are not yet elucidated. Here, we found that LBP can induce DCs maturation, which is mainly characterized by the upregulation of MHCII and costimulatory molecules (CD80, CD86), and increase the production of IL-6 and IL-4. Furthermore, we found that LBP could increase the mRNA and protein expression of TLR4, p38, Erk1/2, JNK, and Blimp1 signal molecules. More interestingly, after blocking by Toll-like receptor 4 inhibitor, Resatorvid (TAK 242), the mRNA and protein expression of TLR4, Erk1/2, and Blimp1 was significantly decreased while the expression of p38 and JNK has not changed. Then, we found that after blocking by p38 inhibitor (SB203580), Erk inhibitor (PD98059), and JNK inhibitor (SP603580) separately, Blimp1 protein expression was significantly reduced; after downregulating Blimp1 by Blimp1-siRNA, the production of IL-6 was reduced. In conclusion, our results indicate that LBP can induce maturation of DCs through the TLR4-Erk1/2-Blimp1 signal pathway instead of the JNK/p38-Blimp1 pathway. Our findings may provide a novel evidence for understanding the molecular mechanisms of LBP on activating murine DCs.
Collapse
|
19
|
Zhang H, Madi A, Yosef N, Chihara N, Awasthi A, Pot C, Lambden C, Srivastava A, Burkett PR, Nyman J, Christian E, Etminan Y, Lee A, Stroh H, Xia J, Karwacz K, Thakore PI, Acharya N, Schnell A, Wang C, Apetoh L, Rozenblatt-Rosen O, Anderson AC, Regev A, Kuchroo VK. An IL-27-Driven Transcriptional Network Identifies Regulators of IL-10 Expression across T Helper Cell Subsets. Cell Rep 2020; 33:108433. [PMID: 33238123 PMCID: PMC7771052 DOI: 10.1016/j.celrep.2020.108433] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its diverse functions remains unclear. Combining temporal RNA profiling with computational algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 regulators, generating an experimentally refined regulatory network for Il10. We report two central regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine the regulatory phenotype of colonic Foxp3+ regulatory T cells. Prdm1/Maf double-knockout mice develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate immunoregulatory programs across T helper cell subsets. Zhang et al. construct a transcriptional network for IL-27-mediated Il10 production in CD4 T cells, characterize the function of 16 Il10 regulators, and uncover the role of two transcription factors, Prdm1 and Maf, in driving Il10 production in all T helper cells and in maintaining immune homeostasis in the colon.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Asaf Madi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nir Yosef
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Norio Chihara
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Amit Awasthi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Center for Human Microbial Ecology, Translational Health Science and Technology Institute(an autonomous institute of the Department of Biotechnology, Government of India), NCR Biotech Science Cluster, Faridabad, India
| | - Caroline Pot
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Conner Lambden
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Biogen, 300 Binney St., Cambridge, MA, USA
| | - Jackson Nyman
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elena Christian
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasaman Etminan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Annika Lee
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Helene Stroh
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Junrong Xia
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Katarzyna Karwacz
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nandini Acharya
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lionel Apetoh
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; INSERM, U1231, Dijon, France
| | | | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Department of Biology, Koch Institute and Ludwig Center, Massachusetts Institute of Technology, Cambridge, MA, USA; Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
20
|
Perdiguero P, Goméz-Esparza MC, Martín D, Bird S, Soleto I, Morel E, Díaz-Rosales P, Tafalla C. Insights Into the Evolution of the prdm1/Blimp1 Gene Family in Teleost Fish. Front Immunol 2020; 11:596975. [PMID: 33193451 PMCID: PMC7662092 DOI: 10.3389/fimmu.2020.596975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, Blimp1 (B lymphocyte-induced maturation protein 1) encoded by the prdm1 gene and its homolog Hobit (homolog of Blimp1 in T cells) encoded by znf683, represent key transcriptional factors that control the development and differentiation of both B and T cells. Despite their essential role in the regulation of acquired immunity, this gene family has been largely unexplored in teleosts to date. Until now, one prdm1 gene has been identified in most teleost species, whereas a znf683 homolog has not yet been reported in any of these species. Focusing our analysis on rainbow trout (Oncorhynchus mykiss), an in silico identification and characterization of prdm1-like genes has been undertaken, confirming that prdm1 and znf683 evolved from a common ancestor gene, acquiring three gene copies after the teleost-specific whole genome duplication event (WGD) and six genes after the salmonid-specific WGD. Additional transcriptional studies to study how each of these genes are regulated in homeostasis, in response to a viral infection or in B cells in different differentiation stages, provide novel insights as to how this gene family evolved and how their encoded products might be implicated in the lymphocyte differentiation process in teleosts.
Collapse
Affiliation(s)
| | | | - Diana Martín
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | |
Collapse
|
21
|
Ulmert I, Henriques-Oliveira L, Pereira CF, Lahl K. Mononuclear phagocyte regulation by the transcription factor Blimp-1 in health and disease. Immunology 2020; 161:303-313. [PMID: 32799350 PMCID: PMC7692253 DOI: 10.1111/imm.13249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/04/2023] Open
Abstract
B lymphocyte‐induced maturation protein‐1 (Blimp‐1), the transcription factor encoded by the gene Prdm1, plays a number of crucial roles in the adaptive immune system, which result in the maintenance of key effector functions of B‐ and T‐cells. Emerging clinical data, as well as mechanistic evidence from mouse studies, have additionally identified critical functions of Blimp‐1 in the maintenance of immune homeostasis by the mononuclear phagocyte (MNP) system. Blimp‐1 regulation of gene expression affects various aspects of MNP biology, including developmental programmes such as fate decisions of monocytes entering peripheral tissue, and functional programmes such as activation, antigen presentation and secretion of soluble inflammatory mediators. The highly tissue‐, subset‐ and state‐specific regulation of Blimp‐1 expression in MNPs suggests that Blimp‐1 is a dynamic regulator of immune activation, integrating environmental cues to fine‐tune the function of innate cells. In this review, we will discuss the current knowledge regarding Blimp‐1 regulation and function in macrophages and dendritic cells.
Collapse
Affiliation(s)
- Isabel Ulmert
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | | | - Carlos-Filipe Pereira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Katharina Lahl
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.,Immunology Section, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Lee K, Jang SH, Tian H, Kim SJ. NonO Is a Novel Co-factor of PRDM1 and Regulates Inflammatory Response in Monocyte Derived-Dendritic Cells. Front Immunol 2020; 11:1436. [PMID: 32765503 PMCID: PMC7378894 DOI: 10.3389/fimmu.2020.01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Proper expression of the transcription factor, Positive regulatory domain 1 (PRDM1), is required for maintaining homeostasis of human monocyte derived-dendritic cells (MO-DCs). The molecular mechanisms and gene targets of PRDM1 in B and T lymphocytes have been identified. However, the function of PRDM1 in dendritic cells (DCs) remains unclear. We investigate co-regulators of PRDM1 in MO-DCs identified by mass spectrometry (MS) and co-immunoprecipitation (Co-IP). Notably, non-POU domain-containing octamer-binding protein (NonO) was found to be a PRDM1 binding protein in the nucleus of MO-DCs. NonO is recruited to the PRDM1 binding site in the promoter region of IL-6. Knockdown of NonO expression by siRNA lessened suppression of IL-6 promoter activity by PRMD1 following LPS stimulation. While NonO binding to PRDM1 was observed in human myeloma cell lines, an effect of NonO on IL-6 expression was not observed. Thus, loss of NonO interrupted the inhibitory effect of PRDM1 on IL-6 expression in MO-DCs, but not plasma cells. Moreover, MO-DCs with low expression of PRDM1 or NonO induce an increased number of IL-21-producing TFH-like cells in vitro. These data suggest that low level of PRDM1 and NonO lead to enhanced activation of MO-DCs and the regulation of MO-DC function by PRDM1 is mediated through cell lineage-specific mechanisms.
Collapse
Affiliation(s)
- Kyungwoo Lee
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Su Hwa Jang
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
- Department of Biomedical Science, Graduate School of Biomedical Sciences and Engineering, Hanyang University, Seoul, South Korea
| | - Hong Tian
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sun Jung Kim
- Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
23
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Xiu W, Chen Y, Chen Q, Deng B, Su J, Guo Z. Sauchinone attenuates inflammatory responses in dendritic cells via Blimp-1 and ameliorates dextran sulfate sodium (DSS)-induced colitis. Biochem Biophys Res Commun 2020; 527:902-908. [PMID: 32430179 DOI: 10.1016/j.bbrc.2020.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex inflammatory disorder of the digestive tract with dysregulated innate and adaptive immune responses. Dendritic cells (DC), the most important antigen presenting cells, act as bridges connecting the adaptive and innate immune systems, and play a crucial role in the regulation of local homeostasis in the gut and are also essential mediators in the initiation and development of intestinal inflammation. Our recent study found that sauchinone (SAU) was able to ameliorate experimental colitis in mice by restraining Th17 cell differentiation and their pathogenicity. Here, we found that SAU significantly inhibited LPS-induced DC activation. Moreover, SAU suppressed the ability of LPS-primed DC to induce Th1/Th17 cell differentiation, but SAU-treated DC up-regulated their ability to initiate Foxp3+ Treg cell generation. Of note, we found that genetical ablation of Blimp-1 in DC markedly abrogated the SAU suppression of pro-inflammatory cytokine or promote immunomodulatory molecule production by DC. Blimp-1 deficiency boosted the ability of DC to polarize naïve CD4+ T cells into Th1/Th17 cell lineages. SAU failed to alleviated DSS-induced colitis in mice with Blimp-1-deficient DC. Our results shed new lights on the mechanisms of how SAU regulates DC biology and intestinal inflammation.
Collapse
Affiliation(s)
- Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanxi Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Su
- Department of Rheumatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenzhen Guo
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
25
|
Kurata I, Matsumoto I, Sumida T. T follicular helper cell subsets: a potential key player in autoimmunity. Immunol Med 2020; 44:1-9. [PMID: 32546108 DOI: 10.1080/25785826.2020.1776079] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Follicular helper T (Tfh) cells are one of CD4+ helper T subsets which promote B cell maturation, activation and antigen-specific antibody production. Autoantibodies are hallmarks of autoimmune diseases, and crucial contributions of Tfh cells in development of these diseases are now evident. Deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. These days multiple researchers reported three subpopulations which has distinct effector functions in Tfh cells: Tfh1, Tfh2 and Tfh17 cells. In this review, we summarize the observed alterations in whole Tfh cells and subset distribution during autoimmune diseases.
Collapse
Affiliation(s)
- Izumi Kurata
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Cook SL, Franke MC, Sievert EP, Sciammas R. A Synchronous IRF4-Dependent Gene Regulatory Network in B and Helper T Cells Orchestrating the Antibody Response. Trends Immunol 2020; 41:614-628. [PMID: 32467029 DOI: 10.1016/j.it.2020.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.
Collapse
Affiliation(s)
- Sarah L Cook
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA.
| | - Marissa C Franke
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Evelyn P Sievert
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Cordeiro B, Jeon P, Boukhaled GM, Corrado M, Lapohos O, Roy DG, Williams K, Jones RG, Gruenheid S, Sagan SM, Krawczyk CM. MicroRNA-9 Fine-Tunes Dendritic Cell Function by Suppressing Negative Regulators in a Cell-Type-Specific Manner. Cell Rep 2020; 31:107585. [PMID: 32375032 DOI: 10.1016/j.celrep.2020.107585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Peter Jeon
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Giselle M Boukhaled
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Mario Corrado
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Orsolya Lapohos
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dominic G Roy
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kelsey Williams
- Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Russell G Jones
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Connie M Krawczyk
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The aim of this review is to discuss recent developments in our understanding of how systemic lupus erythematosus (SLE)-associated genes contribute to autoimmunity. RECENT FINDINGS Gene-function studies have revealed mechanisms through which SLE-associated alleles of IFIH1, TNFAIP3, IRF5, and PRDM1 likely contribute to the development of autoimmunity. Novel research has identified Mac-1 (encoded by ITGAM), CaMK4, and iRhom2 as plausible therapeutic targets in lupus nephritis. SUMMARY The work discussed in this review has broad implications for our understanding of the pathogenesis of SLE and for the development of novel therapeutic strategies.
Collapse
|
29
|
Zhao C, Zhou J, Meng Y, Shi N, Wang X, Zhou M, Li G, Yang Y. DHA Sensor GPR120 in Host Defense Exhibits the Dual Characteristics of Regulating Dendritic Cell Function and Skewing the Balance of Th17/Tregs. Int J Biol Sci 2020; 16:374-387. [PMID: 32015675 PMCID: PMC6990895 DOI: 10.7150/ijbs.39551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
In addition to functioning as an antioxidant, anti-inflammatory and age-defying cellular component, DHA impacts the immune system by facilitating the pathogen invasion. The mechanism through which DHA regulates immune suppression remains obscure. In our study, we postulated that DHA might interact with GPR120 to shape the dendritic cell (DC) differentiation and subsequently drive T cell proliferation during the virus infection. In vitro, the proportion of costimulatory molecules and HLA-DR on DC that generated from exogenous and endogenous (fad3b expression) DHA supplemented mice were significantly lower than wild-type mice. Given the importance of FAs, DHA is not only a critical cellular constituent but also a cell signaling molecule and FA deficiency reduces DC generation; we used GPR120-/- mice to determine whether DHA receptor deficiency disorders DC maturation processing. Novelty, the expression of GPR120 on DC from wild-type (WT) mice was inversely related to DC activation and DC from the GPR120-/- mice maintained a spontaneous maturation status. In vivo, both the excessive activation of GPR120 by DHA and the deletion of GPR120 effectively skewed the balance of Th17/Tregs and reduced the production of VNA and protection of vaccination. Overall, our results revealed a mechanism that the GPR120 self-regulation plays a crucial role in sensing DHA variation, which provides a new prospect for therapeutic manipulation in autoimmune diseases and the design of a vaccine adjuvant.
Collapse
Affiliation(s)
- Caiquan Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jinxiu Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanqing Meng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Niu Shi
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, CN 010017
| | - Xiao Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Zhou
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangpeng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
30
|
Saferding V, Blüml S. Innate immunity as the trigger of systemic autoimmune diseases. J Autoimmun 2019; 110:102382. [PMID: 31883831 DOI: 10.1016/j.jaut.2019.102382] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
The innate immune system consists of a variety of elements controlling and participating in virtually all aspects of inflammation and immunity. It is crucial for host defense, but on the other hand its improper activation is also thought to be responsible for the generation of autoimmunity and therefore diseases such as autoimmune arthritides like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS) or inflammatory bowel disease. The innate immune system stands both at the beginning as well as the end of autoimmunity. On one hand, it regulates the activation of the adaptive immune system and the breach of self-tolerance, as antigen presenting cells (APCs), especially dendritic cells, are essential for the activation of naïve antigen specific T cells, a crucial step in the development of autoimmunity. Various factors controlling the function of dendritic cells have been identified that directly regulate lymphocyte homeostasis and in some instances the generation of organ specific autoimmunity. Moreover, microbial cues have been identified that are prerequisites for the generation of several specific autoimmune diseases. On the other hand, the innate immune system is also responsible for mediating the resulting organ damage underlying the clinical symptoms of a given autoimmune disease via production of proinflammatory cytokines that amplify local inflammation and further activate other immune or parenchymal cells in the vicinity, the generation of matrix degrading and proteolytic enzymes or reactive oxygen species directly causing tissue damage. In the last decades, molecular characterization of cell types and their subsets as well as both positive and negative regulators of immunity has led to the generation of various scenarios of how autoimmunity develops, which eventually might lead to the development of targeted interventions for autoimmune diseases. In this review, we try to summarize the elements that are contributing to the initiation and perpetuation of autoimmune responses.
Collapse
Affiliation(s)
| | - Stephan Blüml
- Department of Rheumatology, Medical University Vienna, Austria.
| |
Collapse
|
31
|
Tirosh I, Spielman S, Barel O, Ram R, Stauber T, Paret G, Rubinsthein M, Pessach IM, Gerstein M, Anikster Y, Shukrun R, Dagan A, Adler K, Pode-Shakked B, Volkov A, Perelman M, Greenberger S, Somech R, Lahav E, Majmundar AJ, Padeh S, Hildebrandt F, Vivante A. Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatr Rheumatol Online J 2019; 17:52. [PMID: 31362757 PMCID: PMC6668194 DOI: 10.1186/s12969-019-0349-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) comprise a diverse range of clinical manifestations. To date, more than 30 single gene causes of lupus/lupus like syndromes in humans have been identified. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to phenotypic and genetic heterogeneity. METHODS We employed whole exome sequencing (WES) in patients presenting with childhood-onset lupus with severe and/or atypical presentations to identify cases that are explained by a single-gene (monogenic) cause. RESULTS From January 2015 to June 2018 15 new cases of childhood-onset SLE were diagnosed in Edmond and Lily Safra Children's Hospital. By WES we identified causative mutations in four subjects in five different genes: C1QC, SLC7A7, MAN2B1, PTEN and STAT1. No molecular diagnoses were established on clinical grounds prior to genetic testing. CONCLUSIONS We identified a significant fraction of monogenic SLE etiologies using WES and confirm the genetic locus heterogeneity in childhood-onset lupus. These results highlight the importance of establishing a genetic diagnosis for children with severe or atypical lupus by providing accurate and early etiology-based diagnoses and improving subsequent clinical management.
Collapse
Affiliation(s)
- Irit Tirosh
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0001 2107 2845grid.413795.dRheumatology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shiri Spielman
- 0000 0001 2107 2845grid.413795.dRheumatology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- 0000 0001 2107 2845grid.413795.dThe Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Reut Ram
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel
| | - Tali Stauber
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Paret
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Rubinsthein
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Itai M. Pessach
- 0000 0001 2107 2845grid.413795.dIntensive care unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Gerstein
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yair Anikster
- 0000 0001 2107 2845grid.413795.dMetabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Shukrun
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Dagan
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katerina Adler
- 0000 0001 2107 2845grid.413795.dThe Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ben Pode-Shakked
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0001 2107 2845grid.413795.dMetabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alexander Volkov
- 0000 0001 2107 2845grid.413795.dPathology Department, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Perelman
- 0000 0001 2107 2845grid.413795.dPathology Department, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Greenberger
- 0000 0001 2107 2845grid.413795.dDepartment of Dermatology, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raz Somech
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einat Lahav
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics A Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel ,0000 0001 2107 2845grid.413795.dNephrology Unit, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601 Ramat Gan, Israel
| | - Amar J. Majmundar
- 000000041936754Xgrid.38142.3cDivision of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Shai Padeh
- 0000 0001 2107 2845grid.413795.dDepartment of Pediatrics B, Edmond and Lily Safra Children’s Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601 Ramat Gan, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Friedhelm Hildebrandt
- 000000041936754Xgrid.38142.3cDivision of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Asaf Vivante
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Identification of function and potential pathogenic mechanisms of SLE risk genes in dendritic cells. RECENT FINDINGS Functional studies of individual SLE risk factors in dendritic cells were performed, and functional alterations of some risk genes in dendritic cells were observed. Recent studies confirmed the pathogenic function of known risk genes. These findings postulate novel pathogenic mechanisms made by dendritic cells. SLE is a complex disease and its etiology is not clearly understood. Dendritic cells are innate immune cells and critical for determining immune activation and immune tolerance. Genetic studies identified several new candidate genes which predispose to development of autoimmune diseases, but the mechanism of those genes has not been identified. This report updates functional implications or pathways in dendritic cells which are putatively important for the development or propagation of SLE based on genetic and functional studies performed in both human and animal models.
Collapse
Affiliation(s)
- Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Disease, Department of Molecular Medicine, The Feinstein Institute for Medical Research, School of Medicine at Northwell-Hofstra University, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
33
|
Fike AJ, Elcheva I, Rahman ZSM. The Post-GWAS Era: How to Validate the Contribution of Gene Variants in Lupus. Curr Rheumatol Rep 2019; 21:3. [DOI: 10.1007/s11926-019-0801-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Xiao J, Zhang J, Li X, Dai X, Wang J, He Y, Wei L, Shi J, Gong N. Downregulation of Blimp1 inhibits the maturation of bone marrow-derived dendritic cells. Int J Mol Med 2018; 43:1094-1104. [PMID: 30483767 DOI: 10.3892/ijmm.2018.4000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/21/2018] [Indexed: 11/06/2022] Open
Abstract
Modulation of differentiation of dendritic cells (DCs), which are derived from bone marrow cells, may influence their maturation and consequently regulate their ability to present antigens to alloreactive T lymphocytes. B lymphocyte‑induced maturation protein‑1 (Blimp1) is a master regulator of immunocyte differentiation, which has been investigated for its effect on DCs. In the present study, a lentivirus was used as a vector to transduce Blimp1‑short hairpin (sh)RNA into primary bone marrow cells during their differentiation to DCs. Lentiviral‑mediated Blimp1‑shRNA (lenti‑shRNA‑Blimp1) had a transduction efficiency of >60% in DC precursors. Lenti‑shRNA‑Blimp1 significantly downregulated the expression levels of Blimp1 and modulated the expression of its target proteins, including class II major histocompatibility complex (MHC) transactivator, c‑myc and interleukin‑6. Although lenti‑shRNA‑Blimp1 did not interfere with the differentiation of bone marrow cells to DCs, it inhibited DC maturation by decreasing the expression of surface MHC‑II molecules, but not the expression of MHC‑I molecules and co‑stimulatory molecules [cluster of differentiation (CD)80/CD86]. Subsequently, alloreactive T cell proliferation was alleviated and regulatory T cells were expanded in response to lenti‑shRNA‑Blimp1. A toxicity assay indicated that the morphology and proliferation of cultured DCs were mildly influenced by the lentiviral vector, indicating that the use of alternative vectors with minimal or no toxicity could be investigated in future studies. In conclusion, transduction with lenti‑shRNA‑Blimp1 modulated the maturation of DCs via MHC‑II molecule suppression and inhibited alloreactive T cell activation. The present findings supported the application of Blimp1‑based intervention as a novel approach to induce immature DCs for further immunological research.
Collapse
Affiliation(s)
- Jiansheng Xiao
- Department of Hepatobiliary and Organ Transplantation Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaomin Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying He
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jun Shi
- Department of Hepatobiliary and Organ Transplantation Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
35
|
Bouras M, Asehnoune K, Roquilly A. Contribution of Dendritic Cell Responses to Sepsis-Induced Immunosuppression and to Susceptibility to Secondary Pneumonia. Front Immunol 2018; 9:2590. [PMID: 30483258 PMCID: PMC6243084 DOI: 10.3389/fimmu.2018.02590] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are bone marrow derived cells which continuously seed in peripheral tissue. During infection, DCs play an essential interface between innate and adaptive immunity. Pneumonia is a lung inflammation triggered by pathogens and is characterized by excessive release of inflammatory cytokines that activate innate and acquired immunity. Pneumonia induces a rapid and protracted state of susceptibility to secondary infection, a state so-called sepsis-induced immunosuppression. In this review, we focus on the role of DCs in the development of this state of immunosuppression. Early during inflammation, activated DCs are characterized by decreased capacity of antigen (cross)- presentation of newly encountered antigens and decreased production of immunogenic cytokines, and sepsis-induced immunosuppression is mainly explained by a depletion of immature DCs which had all become mature. At a later stage, newly formed respiratory immature DCs are locally programmed by an immunological scare left-over by inflammation to induce tolerance. Tolerogenic Blimp1+ DCs produce suppressive cytokines such as tumor growth factor-B and participate to the maintenance of a local tolerogenic environment notably characterized by accumulation of Treg cells. In mice, the restoration of the immunogenic functions of DCs restores the mucosal immune response to pathogens. In humans, the modulation of inflammation by glucocorticoid during sepsis or trauma preserves DC immunogenic functions and is associated with resistance to secondary pneumonia. Finally, we propose that the alterations of DCs during and after inflammation can be used as biomarkers of susceptibility to secondary pneumonia and are promising therapeutic targets to enhance outcomes of patients with secondary pneumonia.
Collapse
Affiliation(s)
- Marwan Bouras
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| | - Karim Asehnoune
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| | - Antoine Roquilly
- Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, Nantes, France.,EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, Nantes, France
| |
Collapse
|
36
|
Krishnaswamy JK, Alsén S, Yrlid U, Eisenbarth SC, Williams A. Determination of T Follicular Helper Cell Fate by Dendritic Cells. Front Immunol 2018; 9:2169. [PMID: 30319629 PMCID: PMC6170619 DOI: 10.3389/fimmu.2018.02169] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/03/2018] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of CD4+ T cells that collaborate with B cells to promote and regulate humoral responses. Unlike other CD4+ effector lineages, Tfh cells require interactions with both dendritic cells (DCs) and B cells to complete their differentiation. While numerous studies have assessed the potential of different DC subsets to support Tfh priming, the conclusions of these studies depend heavily on the model and method of immunization used. We propose that the location of different DC subsets within the lymph node (LN) and their access to antigen determine their potency in Tfh priming. Finally, we provide a three-step model that accounts for the ability of multiple DC subsets and related lineages to support the Tfh differentiation program.
Collapse
Affiliation(s)
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
37
|
Ko YA, Chan YH, Liu CH, Liang JJ, Chuang TH, Hsueh YP, Lin YL, Lin KI. Blimp-1-Mediated Pathway Promotes Type I IFN Production in Plasmacytoid Dendritic Cells by Targeting to Interleukin-1 Receptor-Associated Kinase M. Front Immunol 2018; 9:1828. [PMID: 30131810 PMCID: PMC6091234 DOI: 10.3389/fimmu.2018.01828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs capable of rapidly producing copious amounts of type I IFN (IFN-I) in response to viral infections. The mechanism regulating rapid production of IFN-I after pDCs are exposed to viral nucleic acids remains elusive. Here, we show that the transcription factor Blimp-1 is promptly induced in pDCs after exposure to TLR7 and TLR9 ligands via a unique Ras-related C3 botulinum toxin substrate (Rac)-mediated pathway. Deletion of the Prdm1 gene encoding Blimp-1 impaired production of IFN-I, but not other cytokines, upon viral infection or treatment with CpG DNA in pDCs. Accordingly, mice lacking Blimp-1 in DCs failed to produce IFN-I after CpG stimulation and did not mount proper antiviral responses following flavivirus infection. The development of pDCs in bone marrow as well as the induction of several activation markers, such as CD86, CD69, and MHCII, by CpG stimulation was generally not affected by the absence of Blimp-1. Mechanistically, we found that Blimp-1 controls the activation of IKKα and IRF7 by directly suppressing interleukin-1 receptor-associated kinase 3 (Irak3), a negative regulator of TLR signaling, in pDCs. Together, we identify a Blimp-1-dependent pathway that rapidly facilitates IFN-I production by relieving interleukin-1 receptor-associated kinase M, encoded by Irak3, in pDCs.
Collapse
Affiliation(s)
- Yi-An Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | - Chin-Hsiu Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Kim SJ, Lee K, Diamond B. Follicular Helper T Cells in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1793. [PMID: 30123218 PMCID: PMC6085416 DOI: 10.3389/fimmu.2018.01793] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells constitute a subset of effector T cells that participate in the generation of high-affinity humoral responses. They express the chemokine receptor CXCR5 and produce the cytokine IL-21, both of which are required for their contribution to germinal center formation. Uncontrolled expansion of Tfh cells is observed in various mouse models of systemic autoimmune diseases and in patients with these diseases. In particular, the frequency of circulating Tfh is correlated with disease activity and anti-DNA antibody titer in patients with systemic lupus erythematosus. Recent studies reveal functional diversity within the Tfh population in both humans and mice. We will summarize here the molecular mechanisms for Tfh cell generation, survival and function in both humans and mice, and the relationship between Tfh cells and autoimmune disease in animal models and in patients.
Collapse
Affiliation(s)
- Sun Jung Kim
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| | - Kyungwoo Lee
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| | - Betty Diamond
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| |
Collapse
|
39
|
Cretney E, Leung PS, Trezise S, Newman DM, Rankin LC, Teh CE, Putoczki TL, Gray DH, Belz GT, Mielke LA, Dias S, Nutt SL. Characterization of Blimp-1 function in effector regulatory T cells. J Autoimmun 2018; 91:73-82. [PMID: 29724515 DOI: 10.1016/j.jaut.2018.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022]
Abstract
Regulatory T (Treg) cells maintain immunological tolerance in steady-state and after immune challenge. Activated Treg cells can undergo further differentiation into an effector state that highly express genes critical for Treg cell function, including ICOS, TIGIT and IL-10, although how this process is controlled is poorly understood. Effector Treg cells also specifically express the transcriptional regulator Blimp-1 whose expression overlaps with many of the canonical markers associated with effector Treg cells, although not all ICOS+TIGIT+ Treg cells express Blimp-1 or IL-10. In this study, we addressed the role of Blimp-1 in effector Treg cell function. Mice lacking Blimp-1 specifically in Treg cells mature normally, but succumb to a multi-organ inflammatory disease later in life. Blimp-1 is not required for Treg cell differentiation, with mutant mice having increased numbers of effector Treg cells, but regulated a suite of genes involved in cell signaling, communication and survival, as well as being essential for the expression of the immune modulatory cytokine IL-10. Thus, Blimp-1 is a marker of effector Treg cells in all contexts examined and is required for the full functionality of these cells during aging.
Collapse
Affiliation(s)
- Erika Cretney
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Sk Leung
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Trezise
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Charis E Teh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hd Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheila Dias
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
40
|
Liu A, Frostegård J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Intern Med 2018; 284:193-210. [PMID: 29617044 DOI: 10.1111/joim.12758] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Activated T cells and dendritic cells (DCs) occur in atherosclerotic plaques. Proprotein convertase subtilisin kexin 9 (PCSK9) targets the LDL-receptor (LDLR) and results in increased LDL levels. We here investigate immune effects of PCSK9 on OxLDL induced DC maturation and T-cell activation. METHODS T cells were isolated from carotid specimens of patients undergoing carotid endarterectomy or from peripheral blood of healthy individuals. Human peripheral blood monocytes were differentiated into DCs. Naïve T cells were cocultured with pretreated DCs. The effects of PCSK9 and its inhibition by silencing were studied. RESULTS OxLDL induced PCSK9 in DCs and promoted DC maturation with increased expressions of CD80, CD83, CD86 and HLA-DR and the scavenger receptors LOX-1 and CD36. T cells exposed to OxLDL-treated DCs proliferated and produced IFN-γ and IL-17, thus with polarization to Th1 and/or Th17 subsets. Silencing of PCSK9 reversed the OxLDL effects on DCs and T cells. DC maturation was repressed, and the production of TNF-α, IL-1β and IL-6 was limited, while TGF-β and IL-10 secretion and T regulatory cells were induced. OxLDL induced miRNA let-7c, miR-27a, miR-27b, miR-185. Silencing PCSK9 repressed miR-27a and to a lesser extent let-7c. PCSK9 silencing enhanced SOCS1 expression induced by OxLDL. Experiments on T cells from carotid atherosclerotic plaques or healthy individuals showed similar results. CONCLUSIONS We demonstrate immunological effects of PCSK9 in relation to activation and maturation of DCs and plaque T cells by OxLDL, a central player in atherosclerosis. This may directly influence atherosclerosis and cardiovascular disease, independent of LDL lowering.
Collapse
Affiliation(s)
- A Liu
- Institute of Environmental Medicine, Unit of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
| | - J Frostegård
- Institute of Environmental Medicine, Unit of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Kurosawa Y, Ozawa M, Kanda Y, Takeuchi A, Kawamura T, Narita I, Katakai T. Extensively re-organized systemic lymph nodes provide a feasible environment for self-reactivity in lupus-prone NZB × NZW F1 mice. Int Immunol 2017; 29:567-579. [PMID: 29202179 DOI: 10.1093/intimm/dxx066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
Lymphadenopathy is a frequently observed symptom in systemic lupus erythematosus, although the immunological role of lymph nodes (LNs) in systemic autoimmunity remains largely unknown. Here, we performed comprehensive and systematic analyses of LNs in lupus-prone NZB × NZW F1 (BWF1) mice, demonstrating extensive tissue re-organization of the systemic LNs with follicular expansion, hyper germinal center (GC) formation, atrophy of the paracortical T-cell area and expansion of the medulla in aged BWF1 mice bearing glomerulonephritis. The proportion of B cells was significantly increased in these reactive LNs but not in the spleen, and lymphocyte subsets involved in antibody production, i.e. GC B cells, follicular helper T cells and plasma cells, were elevated. Draining LNs of the affected organs, such as the renal and cervical nodes, showed enhanced tissue re-organization and accumulation of effector lymphocytes, suggesting the presence of a positive feedback loop of regional responses. LN cells isolated from disease-bearing animals produced anti-DNA antibody, indicating activation of autoreactive lymphocytes in situ. The substantial development of disease and LN alterations in mice that received a splenectomy at a young age points to the importance of other secondary lymphoid organs, most likely LNs, for the progression of autoimmune responses independent of the spleen. Taken together, our findings highlight the value of taking LN alterations and activities into consideration for understanding the pathogenesis of systemic autoimmunity.
Collapse
Affiliation(s)
- Yoichi Kurosawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihiko Kawamura
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Immunology, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
42
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
43
|
Shi F, Yang Y, Kouadir M, Xu W, Hu S, Wang T. Inflammasome-independent role of NLRP12 in suppressing colonic inflammation regulated by Blimp-1. Oncotarget 2017; 7:30575-84. [PMID: 27105524 PMCID: PMC5058702 DOI: 10.18632/oncotarget.8872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/31/2016] [Indexed: 12/19/2022] Open
Abstract
NLRP12 is a member of the Nod-like receptor (NLR). Previous studies have reported enhanced colitis-associated inflammatory responses in NLRP12-deficient mice. In this study, we sought to investigate the role of NLRP12 in DSS-stimulated proinflammatory response in dendritic cells and mice colitis, and the molecular mechanisms involved in the development of the inflammation. Our results showed that down-regulation of NLRP12 is required for DSS-induced release of proinflammatory cytokines IL-1β and TNF-α; that PR domain zinc finger protein 1 (also known as Blimp-1) induces NLRP12 down-regulation during DSS-induced proinflammatory response and colitis; and that TLR4 is implicated in the up-regulation of Blimp-1 that led to the down-regulation of NLRP12 expression in DSS-induced colitis. Taken together, the results suggest that the TLR4-Blimp-1 axis promotes DSS induced experimental colitis through the down-regulation of NLRP12.
Collapse
Affiliation(s)
- Fushan Shi
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Yang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China
| | | | - Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tiancheng Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Costa ML, Robinette ML, Bugatti M, Longtine MS, Colvin BN, Lantelme E, Vermi W, Colonna M, Nelson DM, Cella M. Two Distinct Myeloid Subsets at the Term Human Fetal-Maternal Interface. Front Immunol 2017; 8:1357. [PMID: 29123519 PMCID: PMC5662895 DOI: 10.3389/fimmu.2017.01357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
During pregnancy, immune cells infiltrate the placenta at different stages of fetal development. NK cells and macrophages are the most predominant cell types. These immune cells play pleiotropic roles, as they control spiral artery remodeling to ensure appropriate blood supply and maintain long-term tolerance to a true allograft; yet, they must be able to mount appropriate immune defenses to pathogens that may threaten the fetus. Whether the same cell type accomplishes all these tasks or if there are dedicated subsets remains controversial. Here, we identify and characterize two distinct subsets of myeloid cells that differ in their pro-inflammatory/regulatory capacity. While one subset predominantly produces the immune-modulating cytokine IL-10, the second subset has superior capacity to secrete pro-inflammatory mediators, such as IL-1β and IL-6. The putative regulatory myeloid cells also express high levels of inhibitory receptors and their ligands, including programmed cell death 1 (PD1) ligands. Importantly, a large fraction of CD8 and CD4 cells in normal term human placenta are PD1 positive, suggesting that the PD1/PD1 ligands axis might be critical to maintain tolerance during pregnancy.
Collapse
Affiliation(s)
- Maria Laura Costa
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States.,Department of Obstetrics and Gynecology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Michelle L Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Mark S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Bryanne N Colvin
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States.,Department of Pediatrics, Washington University School of Medicine, St Louis, MO, United States
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States.,Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - D Michael Nelson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| |
Collapse
|
45
|
Roquilly A, McWilliam HEG, Jacqueline C, Tian Z, Cinotti R, Rimbert M, Wakim L, Caminschi I, Lahoud MH, Belz GT, Kallies A, Mintern JD, Asehnoune K, Villadangos JA. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity 2017; 47:135-147.e5. [PMID: 28723546 DOI: 10.1016/j.immuni.2017.06.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/15/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
Lung infections cause prolonged immune alterations and elevated susceptibility to secondary pneumonia. We found that, after resolution of primary viral or bacterial pneumonia, dendritic cells (DC), and macrophages exhibited poor antigen-presentation capacity and secretion of immunogenic cytokines. Development of these "paralyzed" DCs and macrophages depended on the immunosuppressive microenvironment established upon resolution of primary infection, which involved regulatory T (Treg) cells and the cytokine TGF-β. Paralyzed DCs secreted TGF-β and induced local Treg cell accumulation. They also expressed lower amounts of IRF4, a transcription factor associated with increased antigen-presentation capacity, and higher amounts of Blimp1, a transcription factor associated with tolerogenic functions, than DCs present during primary infection. Blimp1 expression in DC of humans suffering sepsis or trauma correlated with severity and complicated outcomes. Our findings describe mechanisms underlying sepsis- and trauma-induced immunosuppression, reveal prognostic markers of susceptibility to secondary infections and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antoine Roquilly
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France; Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, 44093 Nantes, France
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cedric Jacqueline
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France
| | - Zehua Tian
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Raphael Cinotti
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France; Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, 44093 Nantes, France
| | - Marie Rimbert
- CHU Nantes, Laboratoire d'immunologie, Center for Immuno-Monitoring Nantes Atlantic (CIMNA), Laboratoire d'Immunologie, CHU de Nantes, Nantes, France
| | - Linda Wakim
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Irina Caminschi
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mireille H Lahoud
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karim Asehnoune
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Medical University of Nantes, 44000 Nantes, France; Surgical Intensive Care Unit, Hotel Dieu, University Hospital of Nantes, 44093 Nantes, France
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
46
|
Differential regulation of Effector and Regulatory T cell function by Blimp1. Sci Rep 2017; 7:12078. [PMID: 28935958 PMCID: PMC5608714 DOI: 10.1038/s41598-017-12171-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023] Open
Abstract
The transcriptional regulator Blimp1 plays crucial roles in controlling terminal differentiation in several lineages. In T cells, Blimp1 is expressed in both effector (Teff) and regulatory (Treg) cells, and mice with T cell-specific deletion of Blimp1 (Blimp1CKO mice) spontaneously develop severe intestinal inflammation, indicating a crucial role for Blimp1 in T cell homeostasis regulation. Blimp1 has been shown to function as a direct activator of the Il10 gene and although its requirement for IL10 expression has been demonstrated in both Treg and Teff cells under inflammatory conditions, the intrinsic requirement of Blimp1 for homeostatic maintenance of these T cell subsets had not been investigated. Using mice with Foxp3+ Treg-cell specific deletion of Blimp1 and other approaches, here we show that Foxp3+ Treg cell-intrinsic expression of Blimp1 is required to control Treg and Teff cells homeostasis but, unexpectedly, it is dispensable to prevent development of severe spontaneous intestinal inflammation. In addition, we show that Blimp1 controls common and unique aspects of Treg and Teff cell function by differentially regulating gene expression in these T cell subsets. These findings document previously unappreciated aspects of Blimp1’s role in T cell biology and shed light on the intricate mechanisms regulating Treg and Teff cell function.
Collapse
|
47
|
Berggren O, Hagberg N, Alexsson A, Weber G, Rönnblom L, Eloranta ML. Plasmacytoid dendritic cells and RNA-containing immune complexes drive expansion of peripheral B cell subsets with an SLE-like phenotype. PLoS One 2017; 12:e0183946. [PMID: 28846748 PMCID: PMC5573130 DOI: 10.1371/journal.pone.0183946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/15/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hyperactive B cells and a continuous interferon (IFN)-α production by plasmacytoid dendritic cells (pDCs) play a key role in systemic lupus erythematosus (SLE). We asked whether the interaction between B cells and pDCs stimulated with RNA-containing immune complexes affects peripheral B cell subsets. METHODS B cells and pDCs were isolated from blood of healthy individuals and stimulated with immune complexes consisting of SLE-IgG and U1snRNP (RNA-IC). Expression of cell surface molecules as well as IL-6 and IL-10 production were determined by flow cytometry and immunoassays. Gene expression profiles were determined by a NanoString nCounter expression array. RESULTS We found a remarkable increase of double negative CD27-IgD- B cells, from 7% within fresh CD19+ B cells to 37% in the RNA-IC-stimulated co-cultures of B cells and pDCs, comparable to the frequency of double negative B cells in SLE patients. Gene expression analysis of the double negative CD27-IgD- and the CD27+IgD- memory B cells revealed that twenty-one genes were differentially expressed between the two B cell subsets (≥ 2-fold, p<0.001). The, IL21R, IL4R, CCL4, CCL3, CD83 and the IKAROS Family Zinc Finger 2 (IKZ2) showed higher expression in the double negative CD27-IgD- B cells. CONCLUSION The interactions between B cells and pDCs together with RNA-containing IC led to an expansion of B cells with similar phenotype as seen in SLE, suggesting that the pDC-B cell crosstalk contributes to the autoimmune feed-forward loop in SLE.
Collapse
Affiliation(s)
- Olof Berggren
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niklas Hagberg
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gert Weber
- Department of Molecular Structural Biology, Institute of Biochemistry, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
48
|
Increased cathepsin S in Prdm1 -/- dendritic cells alters the T FH cell repertoire and contributes to lupus. Nat Immunol 2017; 18:1016-1024. [PMID: 28692065 PMCID: PMC5568473 DOI: 10.1038/ni.3793] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Aberrant population expansion of follicular helper T cells (TFH cells) occurs in patients with lupus. An unanswered question is whether an altered repertoire of T cell antigen receptors (TCRs) is associated with such expansion. Here we found that the transcription factor Blimp-1 (encoded by Prdm1) repressed expression of the gene encoding cathepsin S (Ctss), a cysteine protease that cleaves invariant chains and produces antigenic peptides for loading onto major histocompatibility complex (MHC) class II molecules. The increased CTSS expression in dendritic cells (DCs) from female mice with dendritic cell-specific conditional knockout of Prdm1 (CKO mice) altered the presentation of antigen to CD4+ T cells. Analysis of complementarity-determining region 3 (CDR3) regions containing the β-chain variable region (Vβ) demonstrated a more diverse repertoire of TFH cells from female CKO mice than of those from wild-type mice. In vivo treatment of CKO mice with a CTSS inhibitor abolished the lupus-related phenotype and reduced the diversity of the TFH cell TCR repertoire. Thus, Blimp-1 deficiency in DCs led to loss of appropriate regulation of Ctss expression in female mice and thereby modulated antigen presentation and the TFH cell repertoire to contribute to autoimmunity.
Collapse
|
49
|
Kurowska-Stolarska M, Alivernini S, Melchor EG, Elmesmari A, Tolusso B, Tange C, Petricca L, Gilchrist DS, Di Sante G, Keijzer C, Stewart L, Di Mario C, Morrison V, Brewer JM, Porter D, Milling S, Baxter RD, McCarey D, Gremese E, Lemke G, Ferraccioli G, McSharry C, McInnes IB. MicroRNA-34a dependent regulation of AXL controls the activation of dendritic cells in inflammatory arthritis. Nat Commun 2017. [PMID: 28639625 PMCID: PMC5489689 DOI: 10.1038/ncomms15877] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current treatments for rheumatoid arthritis (RA) do not reverse underlying aberrant immune function. A genetic predisposition to RA, such as HLA-DR4 positivity, indicates that dendritic cells (DC) are of crucial importance to pathogenesis by activating auto-reactive lymphocytes. Here we show that microRNA-34a provides homoeostatic control of CD1c+ DC activation via regulation of tyrosine kinase receptor AXL, an important inhibitory DC auto-regulator. This pathway is aberrant in CD1c+ DCs from patients with RA, with upregulation of miR-34a and lower levels of AXL compared to DC from healthy donors. Production of pro-inflammatory cytokines is reduced by ex vivo gene-silencing of miR-34a. miR-34a-deficient mice are resistant to collagen-induced arthritis and interaction of DCs and T cells from these mice are reduced and do not support the development of Th17 cells in vivo. Our findings therefore show that miR-34a is an epigenetic regulator of DC function that may contribute to RA.
Collapse
Affiliation(s)
- Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Emma Garcia Melchor
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Aziza Elmesmari
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Clare Tange
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Derek S Gilchrist
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gabriele Di Sante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Chantal Keijzer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Lynn Stewart
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Clara Di Mario
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Vicky Morrison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Duncan Porter
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Simon Milling
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Ronald D Baxter
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.,NHS Greater Glasgow and Clyde, 1055 Great Western Road, Glasgow G12 0XH, UK
| | - David McCarey
- NHS Greater Glasgow and Clyde, 1055 Great Western Road, Glasgow G12 0XH, UK
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Gianfranco Ferraccioli
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
50
|
Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol Med 2017. [PMID: 28623084 DOI: 10.1016/j.molmed.2017.05.006] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting multiple organs. A complex interaction of genetics, environment, and hormones leads to immune dysregulation and breakdown of tolerance to self-antigens, resulting in autoantibody production, inflammation, and destruction of end-organs. Emerging evidence on the role of these factors has increased our knowledge of this complex disease, guiding therapeutic strategies and identifying putative biomarkers. Recent findings include the characterization of genetic/epigenetic factors linked to SLE, as well as cellular effectors. Novel observations have provided an improved understanding of the contribution of tissue-specific factors and associated damage, T and B lymphocytes, as well as innate immune cell subsets and their corresponding abnormalities. The intricate web of involved factors and pathways dictates the adoption of tailored therapeutic approaches to conquer this disease.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Abel Suarez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esra Meidan
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Li
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|