1
|
Feodorova VA, Zaitsev SS, Lyapina AM, Kichemazova NV, Saltykov YV, Khizhnyakova MA, Evstifeev VV, Larionova OS. Whole genome sequencing characteristics of Chlamydia psittaci caprine AMK-16 strain, a promising killed whole cell veterinary vaccine candidate against chlamydia infection. PLoS One 2023; 18:e0293612. [PMID: 37903115 PMCID: PMC10615304 DOI: 10.1371/journal.pone.0293612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Chlamydia psittaci is a primary zoonotic pathogen with a broad host range causing severe respiratory and reproductive system infection in animals and humans. To reduce the global burden of C. psittaci-associated diseases on animal welfare and health and to control the pathogen spread in husbandry, effective vaccines based on promising vaccine candidate(s) are required. Recently, the caprine C. psittaci AMK-16 strain (AMK-16) demonstrated a high level of protection (up to 80-100%) in outbred mice and pregnant rabbits immunized with these formaldehyde-inactivated bacteria against experimental chlamydial wild-type infection. This study investigated the molecular characteristics of AMK-16 by whole-genome sequencing followed by molecular typing, phylogenetic analysis and detection of main immunodominant protein(s) eliciting the immune response in mouse model. Similarly to other C. psittaci, AMK-16 harbored an extrachromosomal plasmid. The whole-genome phylogenetic analysis proved that AMK-16 strain belonging to ST28 clustered with only C. psittaci but not with Chlamydia abortus strains. However, AMK-16 possessed the insert which resulted from the recombination event as the additional single chromosome region of a 23,100 bp size with higher homology to C. abortus (98.38-99.94%) rather than to C. psittaci (92.06-92.55%). At least six of 16 CDSs were absent in AMK-16 plasticity zone and 41 CDSs in other loci compared with the reference C. psittaci 6BC strain. Two SNPs identified in the AMK-16 ompA sequence resulted in MOMP polymorphism followed by the formation of a novel genotype/subtype including three other C. psittaci strains else. AMK-16 MOMP provided marked specific cellular and humoral immune response in 100% of mice immunized with the inactivated AMK-16 bacteria. Both DnaK and GrpE encoded by the recombination region genes were less immunoreactive, inducing only a negligible T-cell murine immune response, while homologous antibodies could be detected in 50% and 30% of immunized mice, respectively. Thus, AMK-16 could be a promising vaccine candidate for the development of a killed whole cell vaccine against chlamydiosis in livestock.
Collapse
Affiliation(s)
- Valentina A. Feodorova
- Laboratory for Fundamental and Applied Research, Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Sergey S. Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Anna M. Lyapina
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Natalya V. Kichemazova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Yury V. Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Mariya A. Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Vitaliy V. Evstifeev
- Laboratory of Viral and Chlamydial Infections, Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
- Department of Microbiology, Virology and Immunology, Kazan State Academy of Veterinary Medicine by N.E. Bauman, Kazan City, Russia
| | - Olga S. Larionova
- Laboratory for Fundamental and Applied Research, Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| |
Collapse
|
2
|
Zaręba-Marchewka K, Bomba A, Scharf S, Niemczuk K, Schnee C, Szymańska-Czerwińska M. Whole Genome Sequencing and Comparative Genomic Analysis of Chlamydia gallinacea Field Strains Isolated from Poultry in Poland. Pathogens 2023; 12:891. [PMID: 37513738 PMCID: PMC10384503 DOI: 10.3390/pathogens12070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chlamydia gallinacea is an intracellular bacterium belonging to the Chlamydiaceae family. Poultry is considered to be the major reservoir of this agent, which has worldwide distribution and a particularly consistent worldwide occurrence in chicken flocks. The bacterium has been linked to respiratory disease in humans but without definitive confirmation; nevertheless, while it has not been proved to be the cause of human respiratory disease, a recent report from Italy verified its bird-to-human transmission. This aspect being significant for public health, more research is needed to gain insight into the infection biology of C. gallinacea. In this study, the genomes of eleven novel C. gallinacea field strains from different regions of Poland were analyzed comparatively. It was confirmed that C. gallinacea strains are closely related, with at least 99.46% sequence identity. They possess a conservative genome structure involving the plasticity zone with a complete cytotoxin, the type three secretion system, inclusion membrane proteins, polymorphic membrane proteins, hctA and hctB histone-like proteins, and the chlamydial protease-like activating factor exoenzyme, as well as plasmids. Genetic diversity seems to be restricted. However, some genetic loci, such as ompA and multi-locus sequence typing target genes, are diverse enough to enable high-resolution genotyping and epidemiological tracing.
Collapse
Affiliation(s)
- Kinga Zaręba-Marchewka
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Sabine Scharf
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96 a, D-07743 Jena, Germany
| | - Krzysztof Niemczuk
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96 a, D-07743 Jena, Germany
| | - Monika Szymańska-Czerwińska
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| |
Collapse
|
3
|
Cheong HC, Sulaiman S, Looi CY, Chang LY, Wong WF. Chlamydia Infection Remodels Host Cell Mitochondria to Alter Energy Metabolism and Subvert Apoptosis. Microorganisms 2023; 11:1382. [PMID: 37374883 DOI: 10.3390/microorganisms11061382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chlamydia infection represents an important cause for concern for public health worldwide. Chlamydial infection of the genital tract in females is mostly asymptomatic at the early stage, often manifesting as mucopurulent cervicitis, urethritis, and salpingitis at the later stage; it has been associated with female infertility, spontaneous abortion, ectopic pregnancy, and cervical cancer. As an obligate intracellular bacterium, Chlamydia depends heavily on host cells for nutrient acquisition, energy production, and cell propagation. The current review discusses various strategies utilized by Chlamydia in manipulating the cell metabolism to benefit bacterial propagation and survival through close interaction with the host cell mitochondrial and apoptotic pathway molecules.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
5
|
Cheong HC, Cheok YY, Chan YT, Tang TF, Sulaiman S, Looi CY, Gupta R, Arulanandam B, Chang LY, Wong WF. Chlamydia trachomatis plasmid-encoding Pgp3 protein induces secretion of distinct inflammatory signatures from HeLa cervical epithelial cells. BMC Microbiol 2023; 23:58. [PMID: 36870960 PMCID: PMC9985209 DOI: 10.1186/s12866-023-02802-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Genital Chlamydia trachomatis infection is the most common bacterial sexual transmitted disease that causes severe complications including pelvic inflammatory disease, ectopic pregnancy, and infertility in females. The Pgp3 protein encoded by C. trachomatis plasmid has been speculated to be an important player in chlamydial pathogenesis. However, the precise function of this protein is unknown and thus remains to be thoroughly investigated. METHODS In this study, we synthesized Pgp3 protein for in vitro stimulation in the Hela cervical carcinoma cells. RESULTS AND CONCLUSION We showed that Pgp3 induced prominent expression of host inflammatory cytokine genes including interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha-induced protein 3 (TNFAIP3), and chemokine C-X-C motif ligand 1 (CXCL1), implying a possible role of Pgp3 in modulating the inflammatory reaction in the host.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Bernard Arulanandam
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr Biol 2021; 31:346-357.e3. [PMID: 33157023 PMCID: PMC7846284 DOI: 10.1016/j.cub.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Tamara Halter
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Daryl Domman
- Wellcome Sanger Institute, Parasites and Microbes Programme, Hinxton, Cambridge CB10 1SA, UK; Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
7
|
Dirks JAMC, Janssen K, Hoebe CJPA, Geelen THB, Lucchesi M, Dukers-Muijrers NHTM, Wolffs PFG. Chlamydia trachomatis intra-bacterial and total plasmid copy number in clinical urogenital samples. Sci Rep 2021; 11:259. [PMID: 33420252 PMCID: PMC7794532 DOI: 10.1038/s41598-020-80645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
Chlamydia trachomatis (CT) increases its plasmid numbers when stressed, as occurs in clinical trachoma samples. Most CT tests target the plasmid to increase the test sensitivity, but some only target the chromosome. We investigated clinical urogenital samples for total plasmid copy numbers to assess its diagnostic value and intra-bacterial plasmid copy numbers to assess its natural variation. Both plasmid and chromosome copies were quantified using qPCR, and the plasmid:chromosome ratio (PCr) calculated in two cohorts: (1) 383 urogenital samples for the total PCR (tPCr), and (2) 42 vaginal swabs, with one half treated with propium-monoazide (PMA) to prevent the quantification of extracellular DNA and the other half untreated to allow for both tPCr and intra-bacterial PCr (iPCr) quantification. Mann-Whitney U tests compared PCr between samples, in relation to age and gender. Cohort 1: tPCr varied greatly (1-677, median 16). Median tPCr was significantly higher in urines than vaginal swabs (32 vs. 11, p < 0.001). Cohort 2: iPCr was more stable than tPCr (range 0.1-3 vs. 1-11). To conclude, tPCr in urogenital samples was much more variable than previously described. Transport time and temperature influences DNA degradation, impacting chromosomal DNA more than plasmids and urine more than vaginal samples. Data supports a plasmid target in CT screening assays to increase clinical sensitivity.
Collapse
Affiliation(s)
- J A M C Dirks
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands.
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands.
| | - K Janssen
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - C J P A Hoebe
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - T H B Geelen
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| | - M Lucchesi
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| | - N H T M Dukers-Muijrers
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - P F G Wolffs
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| |
Collapse
|
8
|
Chlamydia trachomatis Plasmid Gene Protein 3 Is Essential for the Establishment of Persistent Infection and Associated Immunopathology. mBio 2020; 11:mBio.01902-20. [PMID: 32817110 PMCID: PMC7439461 DOI: 10.1128/mbio.01902-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can cause persistent infection that drives damaging inflammatory responses resulting in infertility and blindness. Little is known about chlamydial genes that cause persistence or factors that drive damaging pathology. In this work, we show that the C. trachomatis plasmid protein gene 3 (Pgp3) is the essential virulence factor for establishing persistent female genital tract infection and provide supportive evidence that Pgp3 functions similarly in a nonhuman primate trachoma model. We further show that persistent Ppg3-dependent infection drives damaging immunopathology. These results are important advances in understanding the pathophysiology of chlamydial persistence. Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease afflicting hundreds of millions of people globally. A fundamental but poorly understood pathophysiological characteristic of chlamydial infection is the propensity to cause persistent infection that drives damaging inflammatory disease. The chlamydial plasmid is a virulence factor, but its role in the pathogenesis of persistent infection capable of driving immunopathology is unknown. Here, we show by using mouse and nonhuman primate infection models that the secreted plasmid gene protein 3 (Pgp3) is essential for establishing persistent infection. Ppg3-dependent persistent genital tract infection resulted in a severe endometritis caused by an intense infiltration of endometrial submucosal macrophages. Pgp3 released from the cytosol of lysed infected oviduct epithelial cells, not organism outer membrane-associated Pgp3, inhibited the chlamydial killing activity of antimicrobial peptides. Genetic Pgp3 rescue experiments in cathelin-related antimicrobial peptide (CRAMP)-deficient mice showed Pgp3-targeted antimicrobial peptides to subvert innate immunity as a pathogenic strategy to establish persistent infection. These findings provide important advances in understanding the role of Pgp3 in the pathogenesis of persistent chlamydial infection and associated immunopathology.
Collapse
|
9
|
Dimond ZE, Hefty PS. Comprehensive genome analysis and comparisons of the swine pathogen, Chlamydia suis reveals unique ORFs and candidate host-specificity factors. Pathog Dis 2020; 79:5868767. [PMID: 32639528 DOI: 10.1093/femspd/ftaa035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Chlamydia suis, a ubiquitous swine pathogen, has the potential for zoonotic transmission to humans and often encodes for resistance to the primary treatment antibiotic, tetracycline. Because of this emerging threat, comparative genomics for swine isolate R19 with inter- and intra-species genomes was performed. A 1.094 Mb genome was determined through de novo assembly of Illumina high throughput sequencing reads. Annotation and subsystem analyses were conducted, revealing 986 putative genes (Chls_###) that are predominantly orthologs to other known Chlamydia genes. Subsequent comparative genomics revealed a high level of genomic synteny and overall sequence identity with other Chlamydia while 92 unique C. suis open reading frames were annotated. Direct comparison of Chlamydia-specific gene families that included the plasticity zone, inclusion membrane proteins, polymorphic membrane proteins and the major outer membrane protein, demonstrated high gene content identity with C. trachomatis and C. muridarum. These comparisons also identified diverse components that potentially could contribute to host-specificity. This study constitutes the first genome-wide comparative analysis for C. suis, generating a fully annotated reference genome. These studies will enable focused efforts on factors that provide key species specificity and adaptation to cognate hosts that are attributed to chlamydial infections, including humans.
Collapse
Affiliation(s)
- Zoe E Dimond
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave. Lawrence KS 66044
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave. Lawrence KS 66044
| |
Collapse
|
10
|
Abstract
Background Evolutionary studies have been conducted that have investigated the chromosomal variance in the genus of Chlamydia. However, no all-encompassing genus-wide comparison has been performed on the plasmid. Therefore, there is a gap in the current knowledge on Chlamydia plasmid diversity. Aims This project is aimed to investigate and establish the nature and extent of diversity across the entire genus of Chlamydia, by comparing the sequences of all currently available plasmid carrying strains. Methods The PUBMED database was used to identify plasmid sequences from all available strains that met the set quality criteria for their inclusion in the study. Alignments were performed on the 51 strains that fulfilled the criteria using MEGA X software. Following that Maximum Likelihood estimation was used to construct 11 phylogenetic trees of the whole plasmid sequence, the individual 8 coding sequences, the iteron and a chromosomal gene ompA as a comparator. Results The genus-wide plasmid phylogeny produced three distinct lineages labelled as alpha, beta and gamma. Nineteen genotypes were found in the initial whole plasmid analysis. Their distribution was allocated as six C. pecorum, two C. pneumoniae, one C. gallinacea, one C. avium, one C. caviae, one C. felis, two C. psittaci, one C. trachomatis, one C. muridarum, and two C. suis. The chromosomal comparative gene ompA supported this distribution, with the same number of primary clades with the same species distribution. However, ompA sequence comparison resulted in fewer genotypes due to a reduced amount of available sequences (33 out of 51). All results were statistically significant. Conclusion The results of this study indicate that the common bacterial ancestor of all the species had a plasmid, which has diverged over time. Moreover, it suggests that there is a strong evolutionary selection towards these species retaining their plasmids due to its high level of conservation across the genus, with the notable exception of C. pneumoniae. Furthermore, the evolutionary analysis showed that the plasmid and the chromosome have co-evolved.
Collapse
Affiliation(s)
- Kolos V. Szabo
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- * E-mail:
| | - Colette E. O’Neill
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| | - Ian N. Clarke
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
11
|
Jones CA, Hadfield J, Thomson NR, Cleary DW, Marsh P, Clarke IN, O’Neill CE. The Nature and Extent of Plasmid Variation in Chlamydia trachomatis. Microorganisms 2020; 8:microorganisms8030373. [PMID: 32155798 PMCID: PMC7143637 DOI: 10.3390/microorganisms8030373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.
Collapse
Affiliation(s)
- Charlotte A. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - David W. Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Peter Marsh
- Public Health England, Porton Down, Wiltshire SP40JG, UK;
| | - Ian N. Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Colette E. O’Neill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
- Correspondence:
| |
Collapse
|
12
|
Harvie MC, Carey AJ, Armitage CW, O'Meara CP, Peet J, Phillips ZN, Timms P, Beagley KW. Chlamydia-infected macrophages are resistant to azithromycin treatment and are associated with chronic oviduct inflammation and hydrosalpinx development. Immunol Cell Biol 2019; 97:865-876. [PMID: 31348541 DOI: 10.1111/imcb.12285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/28/2022]
Abstract
Chlamydia infection remains the leading sexually-transmitted bacterial infection worldwide, causing damaging sequelae such as tubal scarring, infertility and ectopic pregnancy. As infection is often asymptomatic, prevention via vaccination is the optimal strategy for disease control. Vaccination strategies aimed at preventing bacterial infection have shown some promise, although these strategies often fail to prevent damaging inflammatory pathology when Chlamydia is encountered. Using a murine model of Chlamydia muridarum genital infection, we employed two established independent models to compare immune responses underpinning pathologic development of genital Chlamydia infection. Model one uses antibiotic treatment during infection, with only early treatment preventing pathology. Model two uses a plasmid-cured variant strain of C. muridarum that does not cause pathologic outcomes like the plasmid-containing wild-type counterpart. Using these infection models, contrasted by the development of pathology, we identified an unexpected role for macrophages. We observed that mice showing signs of pathology had greater numbers of activated macrophages present in the oviducts. This may have been due to early differences in macrophage activation and proinflammatory signaling leading to persistent or enhanced infection. These results provide valuable insight into the cellular mechanisms driving pathology in Chlamydia infection and contribute to the design and development of more effective vaccine strategies for protection against the deleterious sequelae of Chlamydia infection of the female reproductive tract.
Collapse
Affiliation(s)
- Marina Cg Harvie
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alison J Carey
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Charles W Armitage
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Connor P O'Meara
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jesse Peet
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Zachary N Phillips
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Faculty of Science, Health, Education and Engineering, University of Sunshine Coast (USC), Brisbane, QLD, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Hadfield J, Bénard A, Domman D, Thomson N. The Hidden Genomics of Chlamydia trachomatis. Curr Top Microbiol Immunol 2019; 412:107-131. [PMID: 29071471 DOI: 10.1007/82_2017_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of whole-genome sequencing has moved us on from sequencing single genomes to defining unravelling population structures in different niches, and at the -species, -serotype or even -genus level, and in local, national and global settings. This has been instrumental in cataloguing and revealing a huge a range of diversity in this bacterium, when at first we thought there was little. Genomics has challenged assumptions, added insight, as well as confusion and glimpses of truths. What is clear is that at a time when we start to realise the extent and nature of the diversity contained within a genus or a species like this, the huge depth of knowledge communities have developed, through cell biology, as well as the new found molecular approaches will be more precious than ever to link genotype to phenotype. Here we detail the technological developments and insights we have seen during the relatively short time since we began to see the hidden genome of Chlamydia trachomatis.
Collapse
Affiliation(s)
- James Hadfield
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
14
|
Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019; 7:microorganisms7050146. [PMID: 31137741 PMCID: PMC6560403 DOI: 10.3390/microorganisms7050146] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Chlamydiaceae family are a type of Gram-negative microorganism typified by their obligate intracellular lifestyle. The majority of the members in the Chlamydiaceae family are known pathogenic organisms that primarily infect the host mucosal surfaces in both humans and animals. For instance, Chlamydia trachomatis is a well-known etiological agent for ocular and genital sexually transmitted diseases, while C. pneumoniae has been implicated in community-acquired pneumonia in humans. Other chlamydial species such as C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, and C. psittaci are important pathogens that are associated with high morbidities in animals. Importantly, some of these animal pathogens have been recognized as zoonotic agents that pose a significant infectious threat to human health through cross-over transmission. The current review provides a succinct recapitulation of the characteristics as well as transmission for the previously established members of the Chlamydiaceae family and a number of other recently described chlamydial organisms.
Collapse
|
15
|
Shima K, Wanker M, Skilton RJ, Cutcliffe LT, Schnee C, Kohl TA, Niemann S, Geijo J, Klinger M, Timms P, Rattei T, Sachse K, Clarke IN, Rupp J. The Genetic Transformation of Chlamydia pneumoniae. mSphere 2018; 3:e00412-18. [PMID: 30305318 PMCID: PMC6180227 DOI: 10.1128/msphere.00412-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022] Open
Abstract
We demonstrate the genetic transformation of Chlamydia pneumoniae using a plasmid shuttle vector system which generates stable transformants. The equine C. pneumoniae N16 isolate harbors the 7.5-kb plasmid pCpnE1. We constructed the plasmid vector pRSGFPCAT-Cpn containing a pCpnE1 backbone, plus the red-shifted green fluorescent protein (RSGFP), as well as the chloramphenicol acetyltransferase (CAT) gene used for the selection of plasmid shuttle vector-bearing C. pneumoniae transformants. Using the pRSGFPCAT-Cpn plasmid construct, expression of RSGFP in koala isolate C. pneumoniae LPCoLN was demonstrated. Furthermore, we discovered that the human cardiovascular isolate C. pneumoniae CV-6 and the human community-acquired pneumonia-associated C. pneumoniae IOL-207 could also be transformed with pRSGFPCAT-Cpn. In previous studies, it was shown that Chlamydia spp. cannot be transformed when the plasmid shuttle vector is constructed from a different plasmid backbone to the homologous species. Accordingly, we confirmed that pRSGFPCAT-Cpn could not cross the species barrier in plasmid-bearing and plasmid-free C. trachomatis, C. muridarum, C. caviae, C. pecorum, and C. abortus However, contrary to our expectation, pRSGFPCAT-Cpn did transform C. felis Furthermore, pRSGFPCAT-Cpn did not recombine with the wild-type plasmid of C. felis Taken together, we provide for the first time an easy-to-handle transformation protocol for C. pneumoniae that results in stable transformants. In addition, the vector can cross the species barrier to C. felis, indicating the potential of horizontal pathogenic gene transfer via a plasmid.IMPORTANCE The absence of tools for the genetic manipulation of C. pneumoniae has hampered research into all aspects of its biology. In this study, we established a novel reproducible method for C. pneumoniae transformation based on a plasmid shuttle vector system. We constructed a C. pneumoniae plasmid backbone shuttle vector, pRSGFPCAT-Cpn. The construct expresses the red-shifted green fluorescent protein (RSGFP) fused to chloramphenicol acetyltransferase in C. pneumoniaeC. pneumoniae transformants stably retained pRSGFPCAT-Cpn and expressed RSGFP in epithelial cells, even in the absence of chloramphenicol. The successful transformation in C. pneumoniae using pRSGFPCAT-Cpn will advance the field of chlamydial genetics and is a promising new approach to investigate gene functions in C. pneumoniae biology. In addition, we demonstrated that pRSGFPCAT-Cpn overcame the plasmid species barrier without the need for recombination with an endogenous plasmid, indicating the potential probability of horizontal chlamydial pathogenic gene transfer by plasmids between chlamydial species.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - Maximilian Wanker
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
| | - Rachel J Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Lesley T Cutcliffe
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-lnstitute (Federal Research Institute for Animal Health), Jena, Germany
| | - Thomas A Kohl
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Javier Geijo
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | | | - Peter Timms
- University of Sunshine Coast, Maroochydore, Australia
| | - Thomas Rattei
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
| |
Collapse
|
16
|
Patiño LH, Camargo M, Muñoz M, Ríos-Chaparro DI, Patarroyo MA, Ramírez JD. Unveiling the Multilocus Sequence Typing (MLST) Schemes and Core Genome Phylogenies for Genotyping Chlamydia trachomatis. Front Microbiol 2018; 9:1854. [PMID: 30186244 PMCID: PMC6113918 DOI: 10.3389/fmicb.2018.01854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Multilocus sequence typing (MLST) has become a useful tool for studying the genetic diversity of important public health pathogens, such as Chlamydia trachomatis (Ct). Four MLST schemes have been proposed for Ct (data available from Chlamydiales MLST databases). However, the lack of a sole standardized scheme represents the greatest limitation regarding typing this species. This study was thus aimed at evaluating the usefulness of the four MLST schemes available for Ct, describing each molecular marker's pattern and its contribution toward a description of intra-specific genetic diversity and population structure. The markers for each scheme, showed a variable power of dicrimination, exhibiting in some cases over estimation in the determination of Sequence Types (STs). However, individual analysis of each locus's typing efficiency and discrimination power led to identifying 8 markers as having a suitable pattern for intra-specific typing. analyzing the 8 candidate markers gave a combination of 3 of these loci as an optimal scheme for identifying a large amount of STs, maximizing discrimination power whilst maintaining suitable typing efficiency. One scheme was compared against core genome phylogenies, finding a higher typing resolution through the last approach. These results confirm once again that although complete genome data, in particular from core genome MLST (cgMLST) allow a high resolution clustering for Ct isolates. There are combinations of molecular markers that could generate equivalent results, with the advantage of representing an easy implementation strategy and lower costs leading to contribute to the monitoring and molecular epidemiology of Ct.
Collapse
Affiliation(s)
- Luz H. Patiño
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Dora I. Ríos-Chaparro
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan D. Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
17
|
Skilton RJ, Wang Y, O'Neill C, Filardo S, Marsh P, Bénard A, Thomson NR, Ramsey KH, Clarke IN. The Chlamydia muridarum plasmid revisited : new insights into growth kinetics. Wellcome Open Res 2018; 3:25. [PMID: 29657985 PMCID: PMC5871946 DOI: 10.12688/wellcomeopenres.13905.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Research in chlamydial genetics is challenging because of its obligate intracellular developmental cycle.
In vivo systems exist that allow studies of different aspects of basic biology of chlamydiae, the murine
Chlamydia muridarum model is one of great importance and thus an essential research tool.
C. muridarum carries a plasmid that has a role in virulence. Our aim was to compare and contrast the
C. muridarum plasmid-free phenotype with that of a chromosomally isogenic plasmid-bearing strain, through the inclusion phase of the developmental cycle. Methods: We measured infectivity for plasmid bearing and plasmid-cured
C. muridarum by inclusion forming assays in McCoy cells and in parallel bacterial chromosome replication by quantitative PCR, throughout the developmental cycle. In addition to these studies, we have carefully monitored chlamydial inclusion formation by confocal microscopy and transmission electron microscopy. A new
E.coli/chlamydial shuttle vector (pNigg::GFP) was constructed using standard cloning technology and used to transform
C. muridarum for further phenotypic studies. Results: We have advanced the definition of the chlamydial phenotype away from the simple static observation of mature inclusions and redefined the
C. muridarum plasmid-based phenotype on growth profile and inclusion morphology. Our observations on the growth properties of plasmid-cured
C. muridarum challenge the established interpretations, especially with regard to inclusion growth kinetics. Introduction of the shuttle plasmid pNigg::GFP into plasmid-cured
C. muridarum restored the wild-type plasmid-bearing phenotype and confirmed that loss of the plasmid was the sole cause for the changes in growth and chromosomal replication. Conclusions: Accurate growth curves and sampling at multiple time points throughout the developmental cycle is necessary to define plasmid phenotypes. There are subtle but important (previously unnoticed) differences in the overall growth profile of plasmid-bearing and plasmid-free
C. muridarum. We have proven that the differences described are solely due to the plasmid pNigg.
Collapse
Affiliation(s)
- Rachel J Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Yibing Wang
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colette O'Neill
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, Rome, Italy
| | - Peter Marsh
- Public Health England, Public Health Laboratory Southampton, Southampton General Hospital, Southampton, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Kyle H Ramsey
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
18
|
Guo W, Jelocnik M, Li J, Sachse K, Polkinghorne A, Pannekoek Y, Kaltenboeck B, Gong J, You J, Wang C. From genomes to genotypes: molecular epidemiological analysis of Chlamydia gallinacea reveals a high level of genetic diversity for this newly emerging chlamydial pathogen. BMC Genomics 2017; 18:949. [PMID: 29212448 PMCID: PMC5717833 DOI: 10.1186/s12864-017-4343-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia (C.) gallinacea is a recently identified bacterium that mainly infects domestic chickens. Demonstration of C. gallinacea in human atypical pneumonia suggests its zoonotic potential. Its prevalence in chickens exceeds that of C. psittaci, but genetic and genomic research on C. gallinacea is still at the beginning. In this study, we conducted whole-genome sequencing of C. gallinacea strain JX-1 isolated from an asymptomatic chicken, and comparative genomic analysis between C. gallinacea strains and related chlamydial species. RESULTS The genome of C. gallinacea JX-1 was sequenced by single-molecule, real-time technology and is comprised of a 1,059,522-bp circular chromosome with an overall G + C content of 37.93% and sequence similarity of 99.4% to type strain 08-1274/3. In addition, a plasmid designated pJX-1, almost identical to p1274 of the type strain, except for two point mutations, was only found in field strains from chicken, but not in other hosts. In contrast to chlamydial species with notably variable polymorphic membrane protein (pmp) genes and plasticity zone (PZ), these regions were conserved in both C. gallinacea strains. There were 15 predicted pmp genes, but only B, A, E1, H, G1 and G2 were apparently intact in both strains. In comparison to chlamydial species where the PZ may be up to 50 kbp, C. gallinacea strains displayed gene content reduction in the PZ (14 kbp), with strain JX-1 having a premature STOP codon in the cytotoxin (tox) gene, while tox gene is intact in the type strain. In multilocus sequence typing (MLST), 15 C. gallinacea STs were identified among 25 strains based on cognate MLST allelic profiles of the concatenated sequences. The type strain and all Chinese strains belong to two distinct phylogenetic clades. Clade of the Chinese strains separated into 14 genetically distinct lineages, thus revealing considerable genetic diversity of C. gallinacea strains in China. CONCLUSIONS In this first detailed comparative genomic analysis of C. gallinacea, we have provided evidence for substantial genetic diversity among C. gallinacea strains. How these genetic polymorphisms affect C. gallinacea biology and pathogenicity should be addressed in future studies that focus on phylogenetics and host adaption of this enigmatic bacterial agent.
Collapse
Affiliation(s)
- Weina Guo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
- College of Animal Science, Anhui Science and Technology University, Maanshan, Anhui China
| | - Martina Jelocnik
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD Australia
| | - Jing Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Konrad Sachse
- Institute of Bioinformatics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD Australia
| | - Yvonne Pannekoek
- Department of Microbiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu China
| | - Jinfeng You
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Chengming Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
- College of Veterinary Medicine, Auburn University, Auburn, AL USA
| |
Collapse
|
19
|
Wannaratana S, Thontiravong A, Amonsin A, Pakpinyo S. Persistence of Chlamydia psittaci in Various Temperatures and Times. Avian Dis 2017; 61:40-45. [PMID: 28301242 DOI: 10.1637/11475-072216-reg] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chlamydia psittaci, an obligate intracellular gram-negative bacteria, causes an important zoonotic disease in humans, namely, psittacosis. The objective of this study was to determine the persistent viability of C. psittaci at various temperature conditions. The cloacal swab samples were collected from feral and racing pigeons to find a C. psittaci field strain. The bacterial isolation showed that 1.3% of feral pigeons were PCR positive, while all samples of racing pigeons were PCR negative. Also, bacterial characterization suggested that it belonged to genotype B, which had bacterial titers 3.2 and 3.89 log 50% lethal dose/ml, respectively. A bacterial persistence test was performed, and the results showed that C. psittaci could survive at 56 C for up to 72 hr. In conclusion, C. psittaci could be found in feral pigeons in central Thailand. The bacteria can survive in equatorial temperature areas. This study was the first to report that C. psittaci could survive and has infectivity at 56 C for 72 hr. Therefore, awareness of C. psittaci infection in humans is necessary and should be a public health concern.
Collapse
Affiliation(s)
- Suwarak Wannaratana
- A Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi 20110, Thailand
| | - Aunyaratana Thontiravong
- B Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alongkorn Amonsin
- C Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,D Emerging and Re-emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somsak Pakpinyo
- E Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
21
|
Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics 2016; 17:710. [PMID: 27595750 PMCID: PMC5011893 DOI: 10.1186/s12864-016-3055-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent molecular studies have revealed considerably more diversity in the phylum Chlamydiae than was previously thought. Evidence is growing that many of these novel chlamydiae may be important pathogens in humans and animals. A significant barrier to characterising these novel chlamydiae is the requirement for culturing. We recently identified a range of novel uncultured chlamydiae in captive snakes in Switzerland, however, nothing is known about their biology. Using a metagenomics approach, the aim of this study was to characterise the genome of a novel chlamydial taxon from the choana of a captive snake. In doing so, we propose a new candidate species in the genus Chlamydia (Candidatus Chlamydia sanzinia) and reveal new information about the biological diversity of this important group of pathogens. RESULTS We identified two chlamydial genomic contigs: a 1,113,073 bp contig, and a 7,504 bp contig, representing the chromosome and plasmid of Ca. Chlamydia sanzinia strain 2742-308, respectively. The 998 predicted coding regions include an expanded repertoire of outer membrane proteins (Pmps and Omps), some of which exhibited frameshift mutations, as well as several chlamydial virulence factors such as the translocating actin-recruitment phosphoprotein (Tarp) and macrophage inhibition potentiator (Mip). A suite of putative inclusion membrane proteins were also predicted. Notably, no evidence of a traditional chlamydial plasticity zone was identified. Phylogenetically, Ca. Chlamydia sanzinia forms a clade with C. pneumoniae and C. pecorum, distinct from former "Chlamydophila" species. CONCLUSIONS Genomic characterisation of a novel uncultured chlamydiae from the first reptilian host has expanded our understanding of the diversity and biology of a genus that was thought to be the most well-characterised in this unique phylum. It is anticipated that this method will be suitable for characterisation of other novel chlamydiae.
Collapse
|
22
|
Chlamydia trachomatis Genital Tract Infections: When Host Immune Response and the Microbiome Collide. Trends Microbiol 2016; 24:750-765. [PMID: 27320172 DOI: 10.1016/j.tim.2016.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 02/08/2023]
Abstract
Genital infections with Chlamydia trachomatis continue to be a major health problem worldwide. While some individuals clear their infection (presumed to be the result of an effective Th1/interferon-γ response), others develop chronic infections and some are prone to repeat infections. In females in particular, chronic asymptomatic infections are common and can lead to pelvic inflammatory disease and infertility. Recent studies suggest that the genital tract microbiota could be a significant factor and explain person-to-person variation in C. trachomatis infections. One hypothesis suggests that C. trachomatis can use its trpBA genes to rescue tryptophan from indole, which is a product of anaerobic members of the genital tract microbiota. Women with particular microbiota types, such as seen in bacterial vaginosis, have increased numbers of anaerobes, and this would enable the chlamydia in these individuals to overcome the host's interferon-γ attempts to eliminate it, resulting in more repeat and/or chronic infections.
Collapse
|
23
|
Yeow TC, Wong WF, Sabet NS, Sulaiman S, Shahhosseini F, Tan GMY, Movahed E, Looi CY, Shankar EM, Gupta R, Arulanandam BP, Hassan J, Abu Bakar S. Prevalence of plasmid-bearing and plasmid-free Chlamydia trachomatis infection among women who visited obstetrics and gynecology clinics in Malaysia. BMC Microbiol 2016; 16:45. [PMID: 26987367 PMCID: PMC4797335 DOI: 10.1186/s12866-016-0671-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/10/2016] [Indexed: 11/23/2022] Open
Abstract
Background The 7.5 kb cryptic plasmid of Chlamydia trachomatis has been shown to be a virulence factor in animal models, but its significance in humans still remains unknown. The aim of this study was to investigate the prevalence and potential involvement of the C. trachomatis cryptic plasmid in causing various clinical manifestations; including infertility, reproductive tract disintegrity, menstrual disorder, and polycystic ovarian syndrome (PCOS) among genital C. trachomatis–infected patients. Results A total of 180 female patients of child bearing age (mean 30.9 years old, IQR:27–35) with gynecological complications and subfertility issues, who visited Obstetrics and Gynecology clinics in Kuala Lumpur, Malaysia were recruited for the study. Prevalence of genital chlamydial infection among these patients was alarmingly high at 51.1 % (92/180). Of the 92 chlamydia-infected patients, 93.5 % (86/92) were infected with plasmid-bearing (+) C. trachomatis while the remaining 6.5 % (6/92) were caused by the plasmid-free (−) variant. Our data showed that genital C. trachomatis infection was associated with infertility issues, inflammation in the reproductive tract (mucopurulent cervicitis or endometriosis), irregular menstrual cycles and polycystic ovarian syndrome (PCOS). However, no statistical significance was detected among patients with plasmid (+) versus plasmid (−) C. trachomatis infection. Interestingly, plasmid (+) C. trachomatis was detected in all patients with PCOS, and the plasmid copy numbers were significantly higher among PCOS patients, relative to non-PCOS patients. Conclusion Our findings show a high incidence of C. trachomatis infection among women with infertility or gynecological problems in Malaysia. However, due to the low number of plasmid (−) C. trachomatis cases, a significant role of the plasmid in causing virulence in human requires further investigation of a larger cohort.
Collapse
Affiliation(s)
- Tee Cian Yeow
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Negar Shafiei Sabet
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Faculty of Medicine, SEGi University, 47810, Petaling Jaya, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fatemeh Shahhosseini
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Elaheh Movahed
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Esaki M Shankar
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rishien Gupta
- Center of Excellence in Infection Genomics, South Texas Center For Emerging Infectious Diseases, University of Texas at San Antonio, 78249, San Antonio, TX, USA
| | - Bernard P Arulanandam
- Center of Excellence in Infection Genomics, South Texas Center For Emerging Infectious Diseases, University of Texas at San Antonio, 78249, San Antonio, TX, USA
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sazaly Abu Bakar
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Jelocnik M, Bachmann NL, Seth-Smith H, Thomson NR, Timms P, Polkinghorne AM. Molecular characterisation of the Chlamydia pecorum plasmid from porcine, ovine, bovine, and koala strains indicates plasmid-strain co-evolution. PeerJ 2016; 4:e1661. [PMID: 26870613 PMCID: PMC4748734 DOI: 10.7717/peerj.1661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background. Highly stable, evolutionarily conserved, small, non-integrative plasmids are commonly found in members of the Chlamydiaceae and, in some species, these plasmids have been strongly linked to virulence. To date, evidence for such a plasmid in Chlamydia pecorum has been ambiguous. In a recent comparative genomic study of porcine, ovine, bovine, and koala C. pecorum isolates, we identified plasmids (pCpec) in a pig and three koala strains, respectively. Screening of further porcine, ovine, bovine, and koala C. pecorum isolates for pCpec showed that pCpec is common, but not ubiquitous in C. pecorum from all of the infected hosts. Methods. We used a combination of (i) bioinformatic mining of previously sequenced C. pecorum genome data sets and (ii) pCpec PCR-amplicon sequencing to characterise a further 17 novel pCpecs in C. pecorum isolates obtained from livestock, including pigs, sheep, and cattle, as well as those from koala. Results and Discussion. This analysis revealed that pCpec is conserved with all eight coding domain sequences (CDSs) present in isolates from each of the hosts studied. Sequence alignments revealed that the 21 pCpecs show 99% nucleotide sequence identity, with 83 single nucleotide polymorphisms (SNPs) shown to differentiate all of the plasmids analysed in this study. SNPs were found to be mostly synonymous and were distributed evenly across all eight pCpec CDSs as well as in the intergenic regions. Although conserved, analyses of the 21 pCpec sequences resolved plasmids into 12 distinct genotypes, with five shared between pCpecs from different isolates, and the remaining seven genotypes being unique to a single pCpec. Phylogenetic analysis revealed congruency and co-evolution of pCpecs with their cognate chromosome, further supporting polyphyletic origin of the koala C. pecorum. This study provides further understanding of the complex epidemiology of this pathogen in livestock and koala hosts and paves the way for studies to evaluate the function of this putative C. pecorum virulence factor.
Collapse
Affiliation(s)
- Martina Jelocnik
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Helena Seth-Smith
- Functional Genomics Center Zurich, University of Zurich , Zurich , Switzerland
| | - Nicholas R Thomson
- Infection Genomics, The Wellcome Trust Sanger Institute , Cambridge , United Kingdom
| | - Peter Timms
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Adam M Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| |
Collapse
|
25
|
Jelocnik M, Bachmann NL, Kaltenboeck B, Waugh C, Woolford L, Speight KN, Gillett A, Higgins DP, Flanagan C, Myers GSA, Timms P, Polkinghorne A. Genetic diversity in the plasticity zone and the presence of the chlamydial plasmid differentiates Chlamydia pecorum strains from pigs, sheep, cattle, and koalas. BMC Genomics 2015; 16:893. [PMID: 26531162 PMCID: PMC4632680 DOI: 10.1186/s12864-015-2053-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Background Chlamydia pecorum is a globally recognised pathogen of livestock and koalas. To date, comparative genomics of C. pecorum strains from sheep, cattle and koalas has revealed that only single nucleotide polymorphisms (SNPs) and a limited number of pseudogenes appear to contribute to the genetic diversity of this pathogen. No chlamydial plasmid has been detected in these strains despite its ubiquitous presence in almost all other chlamydial species. Genomic analyses have not previously included C. pecorum from porcine hosts. We sequenced the genome of three C. pecorum isolates from pigs with differing pathologies in order to re-evaluate the genetic differences and to update the phylogenetic relationships between C. pecorum from each of the hosts. Methods Whole genome sequences for the three porcine C. pecorum isolates (L1, L17 and L71) were acquired using C. pecorum-specific sequence capture probes with culture-independent methods, and assembled in CLC Genomics Workbench. The pairwise comparative genomic analyses of 16 pig, sheep, cattle and koala C. pecorum genomes were performed using several bioinformatics platforms, while the phylogenetic analyses of the core C. pecorum genomes were performed with predicted recombination regions removed. Following the detection of a C. pecorum plasmid, a newly developed C. pecorum-specific plasmid PCR screening assay was used to evaluate the plasmid distribution in 227 C. pecorum samples from pig, sheep, cattle and koala hosts. Results Three porcine C. pecorum genomes were sequenced using C. pecorum-specific sequence capture probes with culture-independent methods. Comparative genomics of the newly sequenced porcine C. pecorum genomes revealed an increased average number of SNP differences (~11 500) between porcine and sheep, cattle, and koala C. pecorum strains, compared to previous C. pecorum genome analyses. We also identified a third copy of the chlamydial cytotoxin gene, found only in porcine C. pecorum isolates. Phylogenetic analyses clustered porcine isolates into a distinct clade, highlighting the polyphyletic origin of C. pecorum in livestock. Most surprising, we also discovered a plasmid in the porcine C. pecorum genome. Using this novel C. pecorum plasmid (pCpec) sequence, a) we developed a pCpec screening assay to evaluate the plasmid distribution in C. pecorum from different hosts; and b) to characterise the pCpec sequences from available previously sequenced C. pecorum genome data. pCpec screening showed that the pCpec is common in all hosts of C. pecorum, however not all C. pecorum strains carry pCpec. Conclusions This study provides further insight into the complexity of C. pecorum epidemiology and novel genomic regions that may be linked to host specificity. C. pecorum plasmid characterisation may aid in improving our understanding of C. pecorum pathogenesis across the variety of host species this animal pathogen infects. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2053-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Jelocnik
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | | | - Courtney Waugh
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - K Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, 4519, Australia
| | - Damien P Higgins
- Faculty of Veterinary Science, The University of Sydney, New South Wales, 2006, Australia
| | - Cheyne Flanagan
- Port Macquarie Koala Hospital, Port Macquarie, NSW, 2444, Australia
| | - Garry S A Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia.
| |
Collapse
|
26
|
Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis. Infect Immun 2014; 83:534-43. [PMID: 25404022 DOI: 10.1128/iai.02764-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular epitheliotropic bacterial pathogen of humans. Infection of the eye can result in trachoma, the leading cause of preventable blindness in the world. The pathophysiology of blinding trachoma is driven by multiple episodes of reinfection of conjunctival epithelial cells, producing an intense chronic inflammatory response resulting in submucosal tissue remodeling and scarring. Recent reports have shown that infection with trachoma organisms lacking the cryptic chlamydial plasmid is highly attenuated in macaque eyes, a relevant experimental model of human trachoma infection. To better understand the molecular basis of plasmid-mediated infection attenuation and the potential modulation of host immunity, we conducted transcriptional profiling of human epithelial cells infected with C. trachomatis plasmid-bearing (A2497) and plasmid-deficient (A2497P(-)) organisms. Infection of human epithelial cells with either strain increased the expression of host genes coding for proinflammatory (granulocyte-macrophage colony-stimulating factor [GM-CSF], macrophage colony-stimulating factor [MCSF], interleukin-6 [IL-6], IL-8, IL-1α, CXCL1, CXCL2, CXCL3, intercellular adhesion molecule 1 [ICAM1]), chemoattraction (CCL20, CCL5, CXCL10), immune suppression (PD-L1, NFKB1B, TNFAIP3, CGB), apoptosis (CASP9, FAS, IL-24), and cell growth and fibrosis (EGR1 and IL-20) proteins. Statistically significant increases in the levels of expression of many of these genes were found in A2497-infected cells compared to the levels of expression in A2497P(-)-infected cells. Our findings suggest that the chlamydial plasmid plays a focal role in the host cell inflammatory response to infection and immune avoidance. These results provide new insights into the role of the chlamydial plasmid as a chlamydial virulence factor and its contributions to trachoma pathogenesis.
Collapse
|
27
|
Leonard CA, Borel N. Chronic Chlamydial Diseases: From Atherosclerosis to Urogenital Infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014. [DOI: 10.1007/s40588-014-0005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
da Cunha M, Milho C, Almeida F, Pais SV, Borges V, Maurício R, Borrego MJ, Gomes JP, Mota LJ. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. BMC Microbiol 2014; 14:40. [PMID: 24533538 PMCID: PMC3931295 DOI: 10.1186/1471-2180-14-40] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background Chlamydia trachomatis is an obligate intracellular human pathogen causing ocular and urogenital infections that are a significant clinical and public health concern. This bacterium uses a type III secretion (T3S) system to manipulate host cells, through the delivery of effector proteins into their cytosol, membranes, and nucleus. In this work, we aimed to find previously unidentified C. trachomatis T3S substrates. Results We first analyzed the genome of C. trachomatis L2/434 strain for genes encoding mostly uncharacterized proteins that did not appear to possess a signal of the general secretory pathway and which had not been previously experimentally shown to be T3S substrates. We selected several genes with these characteristics and analyzed T3S of the encoding proteins using Yersinia enterocolitica as a heterologous system. We identified 23 C. trachomatis proteins whose first 20 amino acids were sufficient to drive T3S of the mature form of β-lactamase TEM-1 by Y. enterocolitica. We found that 10 of these 23 proteins were also type III secreted in their full-length versions by Y. enterocolitica, providing additional support that they are T3S substrates. Seven of these 10 likely T3S substrates of C. trachomatis were delivered by Y. enterocolitica into host cells, further suggesting that they could be effectors. Finally, real-time quantitative PCR analysis of expression of genes encoding the 10 likely T3S substrates of C. trachomatis showed that 9 of them were clearly expressed during infection of host cells. Conclusions Using Y. enterocolitica as a heterologous system, we identified 10 likely T3S substrates of C. trachomatis (CT053, CT105, CT142, CT143, CT144, CT161, CT338, CT429, CT656, and CT849) and could detect translocation into host cells of CT053, CT105, CT142, CT143, CT161, CT338, and CT429. Therefore, we revealed several C. trachomatis proteins that could be effectors subverting host cell processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luís Jaime Mota
- Infection Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
29
|
Subtil A, Collingro A, Horn M. Tracing the primordial Chlamydiae: extinct parasites of plants? TRENDS IN PLANT SCIENCE 2014; 19:36-43. [PMID: 24210739 DOI: 10.1016/j.tplants.2013.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
Chlamydiae are obligate intracellular bacteria found as symbionts and pathogens in a wide range of eukaryotes, including protists, invertebrates, and vertebrates. It was recently proposed that an ancient chlamydial symbiont facilitated the establishment of primary plastids in a tripartite symbiosis with cyanobacteria and early eukaryotes. In this review, we summarize recent advances in understanding of the lifestyle and the evolutionary history of extant Chlamydiae. We reconstruct and describe key features of the ancient chlamydial symbiont. We propose that it was already adapted to an intracellular lifestyle before the emergence of Archaeplastida, and that several observations are compatible with an essential contribution of Chlamydiae to the evolution of algae and plants.
Collapse
Affiliation(s)
- Agathe Subtil
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France; CNRS URA2582, Paris, France.
| | - Astrid Collingro
- University of Vienna, Division of Microbial Ecology, Vienna, Austria
| | - Matthias Horn
- University of Vienna, Division of Microbial Ecology, Vienna, Austria
| |
Collapse
|
30
|
Kannan RM, Gérard HC, Mishra MK, Mao G, Wang S, Hali M, Whittum-Hudson JA, Hudson AP. Dendrimer-enabled transformation of Chlamydia trachomatis. Microb Pathog 2013; 65:29-35. [PMID: 24075820 DOI: 10.1016/j.micpath.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Lack of a system for genetic manipulation of Chlamydia trachomatis has been a key challenge to advancing understanding the molecular genetic basis of virulence for this bacterial pathogen. We developed a non-viral, dendrimer-enabled system for transformation of this organism and used it to characterize the effects of inserting the common 7.5 kbp chlamydial plasmid into strain L2(25667R), a C. trachomatis isolate lacking it. The plasmid was cloned in pUC19 and the clone complexed to polyamidoamine dendrimers, producing ∼83 nm spherical particles. Nearly confluent McCoy cell cultures were infected with L2(25667R) and reference strain L2(434). At 16 h post-infection, medium was replaced with dendrimer-plasmid complexes in medium lacking additives (L2(25667R)) or with additive-free medium alone (L2(434)). Three h later complexes/buffer were removed, and medium was replaced; cultures were harvested at various times post-transformation for analyses. Real time PCR and RT-PCR of nucleic acids from transformed cultures demonstrated plasmid replication and gene expression. A previous report indicated that one or more plasmid-encoded product govern(s) transcription of the glycogen synthase gene (glgA) in standard strains. In L2(25667R) the gene is not expressed, but transformants of that strain given the cloned chlamydial plasmid increase glgA expression, as does L2(434). The cloned plasmid is retained, replicated, and expressed in transformants over at least 5 passages, and GFP is expressed when transformed into growing L2(25667R). This transformation system will allow study of chlamydial gene function in pathogenesis.
Collapse
Affiliation(s)
- Rangaramanujam M Kannan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21235, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hafner LM, Wilson DP, Timms P. Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine 2013; 32:1563-71. [PMID: 23973245 DOI: 10.1016/j.vaccine.2013.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/04/2013] [Accepted: 08/11/2013] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis continues to be the most commonly reported sexually transmitted bacterial infection in many countries with more than 100 million new cases estimated annually. These acute infections translate into significant downstream health care costs, particularly for women, where complications can include pelvic inflammatory disease and other disease sequelae such as tubal factor infertility. Despite years of research, the immunological mechanisms responsible for protective immunity versus immunopathology are still not well understood, although it is widely accepted that T cell driven IFN-g and Th17 responses are critical for clearing infection. While antibodies are able to neutralize infections in vitro, alone they are not protective, indicating that any successful vaccine will need to elicit both arms of the immune response. In recent years, there has been an expansion in the number and types of antigens that have been evaluated as vaccines, and combined with the new array of mucosal adjuvants, this aspect of chlamydial vaccinology is showing promise. Most recently, the opportunities to develop successful vaccines have been given a significant boost with the development of a genetic transformation system for Chlamydia, as well as the identification of the key role of the chlamydial plasmid in virulence. While still remaining a major challenge, the development of a successful C. trachomatis vaccine is starting to look more likely.
Collapse
Affiliation(s)
- Louise M Hafner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - David P Wilson
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
32
|
Ferreira R, Borges V, Nunes A, Borrego MJ, Gomes JP. Assessment of the load and transcriptional dynamics of Chlamydia trachomatis plasmid according to strains' tissue tropism. Microbiol Res 2013; 168:333-339. [PMID: 23590987 DOI: 10.1016/j.micres.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Chlamydia trachomatis maintain a conserved plasmid, which is a primary regulator of chromosomal genes, but there is no experimental evidences associating it with the strains' differential tissue tropism (ocular and genital mucosae, and lymph nodes). We investigated if the number of plasmids per strain correlate with expression profiles of plasmid ORFs and small anti-sense RNAs (sRNAs), and also if these molecular features underlie tropism dissimilarities. We performed absolute and relative qPCR to determine both the plasmid load and expression throughout C. trachomatis development. Our findings suggest that plasmid load (never exceeding 8 copies) is not a function of expression needs and does not reflect tissue tropism. However, for most ORFs, ocular strains presented lower expression than genital or lymphogranuloma venereum (LGV) strains, and ORF6/pgp4 (transcriptional regulator of virulence associated genes) presented the highest mean expression among strains, followed by the virulence factor ORF5/pgp3 (also regulated by ORF6/pgp4). More, the mean expression levels of the sRNA-2 (anti-sense to ORF2/pgp8) were up to 100-fold higher than those of the ORFs, and up to 12-fold higher than that of sRNA-7 (anti-sense to ORF7/pgp5) for the LGV strains. Overall, besides the known regulatory role of C. trachomatis plasmid, its transcriptional dynamics sustains tropism differences.
Collapse
Affiliation(s)
- Rita Ferreira
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Maria José Borrego
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
33
|
Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Persson K, Bjartling C, Clarke IN. Genetic transformation of a clinical (genital tract), plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector. PLoS One 2013; 8:e59195. [PMID: 23527131 PMCID: PMC3601068 DOI: 10.1371/journal.pone.0059195] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide “proof of principle” that it is possible to “knock out” selected plasmid genes (retaining a replication competent plasmid) and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP-) was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO) was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without the need for plaquing, fluorescence or antibody staining.
Collapse
Affiliation(s)
- Yibing Wang
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Simona Kahane
- Department of Virology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Lesley T. Cutcliffe
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Rachel J. Skilton
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Paul R. Lambden
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Kenneth Persson
- Department of Laboratory Medicine, Malmo University Hospital, Malmo, Sweden
| | - Carina Bjartling
- Department of Obstetrics and Gynaecology, Malmo University Hospital, Malmo, Sweden
| | - Ian N. Clarke
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Wang Y, Cutcliffe LT, Skilton RJ, Persson K, Bjartling C, Clarke IN. Transformation of a plasmid-free, genital tract isolate of Chlamydia trachomatis with a plasmid vector carrying a deletion in CDS6 revealed that this gene regulates inclusion phenotype. Pathog Dis 2013; 67:100-3. [PMID: 23620154 PMCID: PMC3638368 DOI: 10.1111/2049-632x.12024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022] Open
Abstract
The development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis provides the basis for the detailed investigation of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In this study we constructed a plasmid vector with CDS6 deleted (pCDS6KO) from the original Escherichia coli/C. trachomatis shuttle vector pGFP::SW2. pCDS6KO was transformed into a clinical isolate of C. trachomatis from Sweden that is plasmid-free (C. trachomatis SWFP–). Penicillin-resistant transformants expressing the green fluorescent protein were selected. These transformants did not stain with iodine, indicating that this property is regulated by CDS6 or its gene product. In addition, mature inclusions of C. trachomatis SWFP– transformed by pCDS6KO displayed an identical morphological phenotype to the untransformed plasmid-free recipient host. In this phenotype the morphology of inclusions was altered with the chlamydiae lining the periphery of the inclusion leaving a ‘hole’ in the centre. These green fluorescent inclusions appear ‘doughnut-shaped’ with an empty centre when examined under blue light, giving rise to a characteristic ‘black hole’ phenotype. Our study demonstrates the power of the new genetic system for investigating chlamydial gene function using gene deletion technology.
Collapse
Affiliation(s)
- Yibing Wang
- Faculty of Medicine, Molecular Microbiology Group, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | |
Collapse
|
35
|
A major advance in elucidating the biology/pathobiology of Chlamydia trachomatis. Infect Immun 2013; 81:622-4. [PMID: 23319560 DOI: 10.1128/iai.00012-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect Immun 2013; 81:636-44. [PMID: 23319558 DOI: 10.1128/iai.01305-12] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis causes chronic inflammatory diseases of the eye and genital tract and has global medical importance. The chlamydial plasmid plays an important role in the pathophysiology of these diseases, as plasmid-deficient organisms are highly attenuated. The cryptic plasmid carries noncoding RNAs and eight conserved open reading frames (ORFs). To understand plasmid gene function, we generated plasmid shuttle vectors with deletions in each of the eight ORFs. The individual deletion mutants were used to transform chlamydiae and the transformants were characterized phenotypically and at the transcriptional level. We show that pgp1, -2, -6, and -8 are essential for plasmid maintenance, while the other ORFs can be deleted and the plasmid stably maintained. We further show that a pgp4 knockout mutant exhibits an in vitro phenotype similar to its isogenic plasmidless strain, in terms of abnormal inclusion morphology and lack of glycogen accumulation. Microarray and qRT-PCR analysis revealed that Pgp4 is a transcriptional regulator of plasmid-encoded pgp3 and multiple chromosomal genes, including the glycogen synthase gene glgA, that are likely important in chlamydial virulence. Our findings have major implications for understanding the plasmid's role in chlamydial pathogenesis at the molecular level.
Collapse
|
37
|
Current world literature. Curr Opin Ophthalmol 2012; 23:330-5. [PMID: 22673820 DOI: 10.1097/icu.0b013e32835584e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|