1
|
Anft M, Zgoura P, Skrzypczyk S, Dürr M, Viebahn R, Westhoff TH, Stervbo U, Babel N. Effects of switching from twice-daily tacrolimus to once-daily extended-release meltdose tacrolimus on cellular immune response. FRONTIERS IN TRANSPLANTATION 2024; 3:1405070. [PMID: 39386200 PMCID: PMC11461451 DOI: 10.3389/frtra.2024.1405070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
Background LCP-Tacro [LCPT], a novel once-daily, extended-release formulation of tacrolimus, has a reduced Cmax with comparable AUC exposure, requiring a ∼30% dose reduction in contrast to immediate-release tacrolimus (IR-Tac). Once-daily LCPT in de novo kidney transplantation has a comparable efficacy and safety profile to that of IR-Tac with advantages in bioavailability and absorption. The present investigation intends to analyze the effects of conversion from IR-Tac to LCPT on phenotype and function of T-cells and B-cells. Methods 16 kidney transplant patients treated by triple standard immunosuppression with a stable graft function undergoing a switch from IR-Tac to LCPT were included in this observational prospective study. We measured the main immune cell types and performed an in-depth characterization of B cell, dendritic cells and T cells including regulatory T cells of the patients before, 4 and 8 weeks after IR-Tac to LCPT conversion using multi-parameter fl ow cytometry. Additionally, we analyzed T cells by assessing third-party antigens (Tetanus Diphtheria, TD)-reactive T cells, which could be analyzed by restimulation with tetanus vaccine. Results Overall, we found no significant alterations following LCPT conversion for the most immune cell populations with a few cell populations showing transient quantitative increase. Thus, 4 weeks after conversion, more regulatory T cells could be measured in the patients with a significant shift from memory to naïve Tregs. Furthermore, we found a transient B cell expansion 4 weeks after conversion from IR-Tac to LCPT. There were no changes in the percentage of other basic immune cell types and the antigen-reactive T cells were also not altered after changing the medication to LCP-tacrolimus. Conclusion Here, we demonstrate first insights into the immune system changes occurred under IR-Tac to LCPT conversion therapy in kidney transplant patients. While phenotypic and functional characteristics of the most immune cell populations did not change, we could observe an a transient expansion of regulatory T cells in peripheral blood following IR-Tac to LCTP conversion, which might additionally contribute to the overall immunosuppressive effect.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Panagiota Zgoura
- Clinic for Internal Medicine, St. Anna Hospital Herne, Herne, Germany
- Clinic for Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Michael Dürr
- Clinic for Internal Medicine, St. Anna Hospital Herne, Herne, Germany
- Clinic for Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
- Berlin Institute of Health, Berlin-BrandenburgCenter for Regenerative Therapies, and Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz, Berlin, Germany
| | - Richard Viebahn
- Clinic for Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Timm H. Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health, Berlin-BrandenburgCenter for Regenerative Therapies, and Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz, Berlin, Germany
| |
Collapse
|
2
|
Chatterjee S, Bhattacharya M, Saxena S, Lee SS, Chakraborty C. Autoantibodies in COVID-19 and Other Viral Diseases: Molecular, Cellular, and Clinical Perspectives. Rev Med Virol 2024; 34:e2583. [PMID: 39289528 DOI: 10.1002/rmv.2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Autoantibodies are immune system-produced antibodies that wrongly target the body's cells and tissues for attack. The COVID-19 pandemic has made it possible to link autoantibodies to both the severity of pathogenic infection and the emergence of several autoimmune diseases after recovery from the infection. An overview of autoimmune disorders and the function of autoantibodies in COVID-19 and other infectious diseases are discussed in this review article. We also investigated the different categories of autoantibodies found in COVID-19 and other infectious diseases including the potential pathways by which they contribute to the severity of the illness. Additionally, it also highlights the probable connection between vaccine-induced autoantibodies and their adverse outcomes. The review also discusses the therapeutic perspectives of autoantibodies. This paper advances our knowledge about the intricate interaction between autoantibodies and COVID-19 by thoroughly assessing the most recent findings.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | | | - Sanskriti Saxena
- Division of Biology, Indian Institute of Science Education and Research-Tirupati, Tirupati, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
3
|
Liang C, Spoerl S, Xiao Y, Habenicht KM, Haeusl SS, Sandner I, Winkler J, Strieder N, Eder R, Stanewsky H, Alexiou C, Dudziak D, Rosenwald A, Edinger M, Rehli M, Hoffmann P, Winkler TH, Berberich-Siebelt F. Oligoclonal CD4 +CXCR5 + T cells with a cytotoxic phenotype appear in tonsils and blood. Commun Biol 2024; 7:879. [PMID: 39025930 PMCID: PMC11258247 DOI: 10.1038/s42003-024-06563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.
Collapse
Affiliation(s)
- Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina M Habenicht
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrun S Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Isabel Sandner
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Julia Winkler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Else Kröner-Fresenius-Foundation-Professorship, Section of Experimental Oncology & Nanomedicine (SEON), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Matthias Edinger
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
4
|
Wu N, Zhao Y, Xiao M, Liu H, Chen H, Liu B, Wang X, Fan X. Methylprednisolone Modulates the Tfr/Tfh ratio in EAE-Induced Neuroinflammation through the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR Signalling Pathways. Inflammation 2024:10.1007/s10753-024-02099-y. [PMID: 38980500 DOI: 10.1007/s10753-024-02099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-β1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Yun Zhao
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Minjun Xiao
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Hui Liu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Xuezhen Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China.
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
5
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
6
|
Wang M, Zhou J, Niu Q, Wang H. Mechanism of tacrolimus in the treatment of lupus nephritis. Front Pharmacol 2024; 15:1331800. [PMID: 38774214 PMCID: PMC11106426 DOI: 10.3389/fphar.2024.1331800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, with more than half of the patients developing lupus nephritis (LN), which significantly contributes to chronic kidney disease (CKD) and end-stage renal disease (ESRD). The treatment of lupus nephritis has always been challenging. Tacrolimus (TAC), an effective immunosuppressant, has been increasingly used in the treatment of LN in recent years. This review aims to explore the mechanisms of action of tacrolimus in treating LN. Firstly, we briefly introduce the pharmacological properties of tacrolimus, including its role as a calcineurin (CaN) inhibitor, exerting immunosuppressive effects by inhibiting T cell activation and cytokine production. Subsequently, we focus on various other immunomodulatory mechanisms of tacrolimus in LN therapy, including its effects on T cells, B cells, and immune cells in kidney. Particularly, we emphasize tacrolimus' regulatory effect on inflammatory mediators and its importance in modulating the Th1/Th2 and Th17/Treg balance. Additionally, we review its effects on actin cytoskeleton, angiotensin II (Ang II)-specific vascular contraction, and P-glycoprotein activity, summarizing its impacts on non-immune mechanisms. Finally, we summarize the efficacy and safety of tacrolimus in clinical studies and trials. Although some studies have shown significant efficacy of tacrolimus in treating LN, its safety remains a challenge. We outline the potential adverse reactions of long-term tacrolimus use and provide suggestions on effectively monitoring and managing these adverse reactions in clinical practice. In general, tacrolimus, as a novel immunosuppressant, holds promising prospects for treating LN. Of course, further research is needed to better understand its therapeutic mechanisms and ensure its safety and efficacy in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Wang YH, Li W, McDermott M, Son GY, Maiti G, Zhou F, Tao A, Raphael D, Moreira AL, Shen B, Vaeth M, Nadorp B, Chakravarti S, Lacruz RS, Feske S. Regulatory T cells and IFN-γ-producing Th1 cells play a critical role in the pathogenesis of Sjögren's Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576314. [PMID: 38328096 PMCID: PMC10849570 DOI: 10.1101/2024.01.23.576314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objectives Sjögren's Disease (SjD) is an autoimmune disorder characterized by progressive dysfunction, inflammation and destruction of salivary and lacrimal glands, and by extraglandular manifestations. Its etiology and pathophysiology remain incompletely understood, though a role for autoreactive B cells has been considered key. Here, we investigated the role of effector and regulatory T cells in the pathogenesis of SjD. Methods Histological analysis, RNA-sequencing and flow cytometry were conducted on glands, lungs, eyes and lymphoid tissues of mice with regulatory T cell-specific deletion of stromal interaction proteins (STIM) 1 and 2 ( Stim1/2 Foxp3 ), which play key roles in calcium signaling and T cell function. The pathogenicity of T cells from Stim1/2 Foxp3 mice was investigated through adoptively transfer into lymphopenic host mice. Additionally, single-cell transcriptomic analysis was performed on peripheral blood mononuclear cells (PBMCs) of patients with SjD and control subjects. Results Stim1/2 Foxp3 mice develop a severe SjD-like disorder including salivary gland (SG) and lacrimal gland (LG) inflammation and dysfunction, autoantibodies and extraglandular symptoms. SG inflammation in Stim1/2 Foxp3 mice is characterized by T and B cell infiltration, and transcriptionally by a Th1 immune response that correlates strongly with the dysregulation observed in patients with SjD. Adoptive transfer of effector T cells from Stim1/2 Foxp3 mice demonstrates that the SjD-like disease is driven by interferon (IFN)-γ producing autoreactive CD4 + T cells independently of B cells and autoantiboodies. scRNA-seq analysis identifies increased Th1 responses and attenuated memory Treg function in PBMCs of patients with SjD. Conclusions We report a more accurate mouse model of SjD while providing evidence for a critical role of Treg cells and IFN-γ producing Th1 cells in the pathogenesis of SjD, which may be effective targets for therapy.
Collapse
|
8
|
Sokolova S, Grigorova IL. Follicular regulatory T cell subsets in mice and humans: origins, antigen specificity and function. Int Immunol 2023; 35:583-594. [PMID: 37549239 DOI: 10.1093/intimm/dxad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
Follicular regulatory T (Tfr) cells play various roles in immune responses, contributing to both positive and negative regulation of foreign antigen-specific B cell responses, control over autoreactive antibody responses and autoimmunity, and B cell class-switching to IgE and allergy development. Studies conducted on mice uncovered various subsets of CXCR5+FoxP3+CD4+ Tfr cells that could differently contribute to immune regulation. Moreover, recent studies of human Tfr cells revealed similar complexity with various subsets of follicular T cells of different origins and immunosuppressive and/or immunostimulatory characteristics. In this review we will overview and compare Tfr subsets currently identified in mice and humans and will discuss their origins and antigen specificity, as well as potential modes of action and contribution to the control of the autoimmune and allergic reactions.
Collapse
Affiliation(s)
- Sophia Sokolova
- Division of Molecular Technology, Institute of Translational Medicine, Pirogov National Research Medical University, Moscow, 117513, Russia
| | - Irina L Grigorova
- Division of Molecular Technology, Institute of Translational Medicine, Pirogov National Research Medical University, Moscow, 117513, Russia
- Department of Microbiology and Immunology, Michigan Medicine University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Gselman S, Fabjan TH, Bizjak A, Potočnik U, Gorenjak M. Cholecalciferol Supplementation Induced Up-Regulation of SARAF Gene and Down-Regulated miR-155-5p Expression in Slovenian Patients with Multiple Sclerosis. Genes (Basel) 2023; 14:1237. [PMID: 37372417 DOI: 10.3390/genes14061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis is a common immune-mediated inflammatory and demyelinating disease. Lower cholecalciferol levels are an established environmental risk factor in multiple sclerosis. Although cholecalciferol supplementation in multiple sclerosis is widely accepted, optimal serum levels are still debated. Moreover, how cholecalciferol affects pathogenic disease mechanisms is still unclear. In the present study, we enrolled 65 relapsing-remitting multiple sclerosis patients who were double-blindly divided into two groups with low and high cholecalciferol supplementation, respectively. In addition to clinical and environmental parameters, we obtained peripheral blood mononuclear cells to analyze DNA, RNA, and miRNA molecules. Importantly, we investigated miRNA-155-5p, a previously published pro-inflammatory miRNA in multiple sclerosis known to be correlated to cholecalciferol levels. Our results show a decrease in miR-155-5p expression after cholecalciferol supplementation in both dosage groups, consistent with previous observations. Subsequent genotyping, gene expression, and eQTL analyses reveal correlations between miR-155-5p and the SARAF gene, which plays a role in the regulation of calcium release-activated channels. As such, the present study is the first to explore and suggest that the SARAF miR-155-5p axis hypothesis might be another mechanism by which cholecalciferol supplementation might decrease miR-155 expression. This association highlights the importance of cholecalciferol supplementation in multiple sclerosis and encourages further investigation and functional cell studies.
Collapse
Affiliation(s)
- Saša Gselman
- Clinic of Neurology, University Clinical Centre Maribor, 2000 Maribor, Slovenia
| | - Tanja Hojs Fabjan
- Clinic of Neurology, University Clinical Centre Maribor, 2000 Maribor, Slovenia
- Department of Neurology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Anja Bizjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Department for Science and Research, University Clinical Centre Maribor, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Cao Y, Hou Y, Zhao L, Huang Y, Liu G. New insights into follicular regulatory T cells in the intestinal and tumor microenvironments. J Cell Physiol 2023. [PMID: 37210730 DOI: 10.1002/jcp.31039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Follicular regulatory T (Tfr) cells are a novel and unique subset of effector regulatory T (Treg) cells that are located in germinal centers (GCs). Tfr cells express transcription profiles that are characteristic of both follicular helper T (Tfh) cells and Treg cells and negatively regulate GC reactions, including Tfh cell activation and cytokine production, class switch recombination and B cell activation. Evidence also shows that Tfr cells have specific characteristics in different local immune microenvironments. This review focuses on the regulation of Tfr cell differentiation and function in unique local immune microenvironments, including the intestine and tumor.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:biomedicines11041130. [PMID: 37189748 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease’s origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a “double-edged sword” in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
12
|
Panneton V, Mindt BC, Bouklouch Y, Bouchard A, Mohammaei S, Chang J, Diamantopoulos N, Witalis M, Li J, Stancescu A, Bradley JE, Randall TD, Fritz JH, Suh WK. ICOS costimulation is indispensable for the differentiation of T follicular regulatory cells. Life Sci Alliance 2023; 6:e202201615. [PMID: 36754569 PMCID: PMC9909462 DOI: 10.26508/lsa.202201615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
ICOS is a T-cell costimulatory receptor critical for Tfh cell generation and function. However, the role of ICOS in Tfr cell differentiation remains unclear. Using Foxp3-Cre-mediated ICOS knockout (ICOS FC) mice, we show that ICOS deficiency in Treg-lineage cells drastically reduces the number of Tfr cells during GC reactions but has a minimal impact on conventional Treg cells. Single-cell transcriptome analysis of Foxp3+ cells at an early stage of the GC reaction suggests that ICOS normally inhibits Klf2 expression to promote follicular features including Bcl6 up-regulation. Furthermore, ICOS costimulation promotes nuclear localization of NFAT2, a known driver of CXCR5 expression. Notably, ICOS FC mice had an unaltered overall GC B-cell output but showed signs of expanded autoreactive B cells along with elevated autoantibody titers. Thus, our study demonstrates that ICOS costimulation is critical for Tfr cell differentiation and highlights the importance of Tfr cells in maintaining humoral immune tolerance during GC reactions.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | | | - Antoine Bouchard
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Saba Mohammaei
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Nikoletta Diamantopoulos
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | | | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| |
Collapse
|
13
|
Betzler AC, Ushmorov A, Brunner C. The transcriptional program during germinal center reaction - a close view at GC B cells, Tfh cells and Tfr cells. Front Immunol 2023; 14:1125503. [PMID: 36817488 PMCID: PMC9936310 DOI: 10.3389/fimmu.2023.1125503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) reaction is a key process during an adaptive immune response to T cell specific antigens. GCs are specialized structures within secondary lymphoid organs, in which B cell proliferation, somatic hypermutation and antibody affinity maturation occur. As a result, high affinity antibody secreting plasma cells and memory B cells are generated. An effective GC response needs interaction between multiple cell types. Besides reticular cells and follicular dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized subset of regulatory T cells (Tregs), are able to suppress the GC reaction maintaining the balance between immune activation and tolerance. The formation and function of GCs is regulated by a complex network of signals and molecules at multiple levels. In this review, we highlight recent developments in GC biology by focusing on the transcriptional program regulating the GC reaction. This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose important role for GC B, Tfh and Tfr cell differentiation became increasingly clear in recent years. Moreover, we outline how deregulation of the GC transcriptional program can drive lymphomagenesis.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Ulm University, Institute of Physiological Chemistry, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany,*Correspondence: Cornelia Brunner,
| |
Collapse
|
14
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
15
|
Julé AM, Lam KP, Taylor M, Hoyt KJ, Wei K, Gutierrez-Arcelus M, Case SM, Chandler M, Chang MH, Cohen EM, Dedeoglu F, Halyabar O, Hausmann J, Hazen MM, Janssen E, Lo J, Lo MS, Meidan E, Roberts JE, Wobma H, Son MBF, Sundel RP, Lee PY, Sage PT, Chatila TA, Nigrovic PA, Rao DA, Henderson LA. Disordered T cell-B cell interactions in autoantibody-positive inflammatory arthritis. Front Immunol 2023; 13:1068399. [PMID: 36685593 PMCID: PMC9849554 DOI: 10.3389/fimmu.2022.1068399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
T peripheral helper (Tph) cells, identified in the synovium of adults with seropositive rheumatoid arthritis, drive B cell maturation and antibody production in non-lymphoid tissues. We sought to determine if similarly dysregulated T cell-B cell interactions underlie another form of inflammatory arthritis, juvenile oligoarthritis (oligo JIA). Clonally expanded Tph cells able to promote B cell antibody production preferentially accumulated in the synovial fluid (SF) of oligo JIA patients with antinuclear antibodies (ANA) compared to autoantibody-negative patients. Single-cell transcriptomics enabled further definition of the Tph gene signature in inflamed tissues and showed that Tph cells from ANA-positive patients upregulated genes associated with B cell help to a greater extent than patients without autoantibodies. T cells that co-expressed regulatory T and B cell-help factors were identified. The phenotype of these Tph-like Treg cells suggests an ability to restrain T cell-B cell interactions in tissues. Our findings support the central role of disordered T cell-help to B cells in autoantibody-positive arthritides.
Collapse
Affiliation(s)
- Amélie M. Julé
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ki Pui Lam
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kacie J. Hoyt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Siobhan M. Case
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mia Chandler
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ezra M. Cohen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan Hausmann
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Melissa M. Hazen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Erin Janssen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffrey Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jordan E. Roberts
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mary Beth F. Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
17
|
Kim S, Shukla RK, Yu H, Baek A, Cressman SG, Golconda S, Lee GE, Choi H, Reneau JC, Wang Z, Huang CA, Liyanage NPM, Kim S. CD3e-immunotoxin spares CD62L lo Tregs and reshapes organ-specific T-cell composition by preferentially depleting CD3e hi T cells. Front Immunol 2022; 13:1011190. [PMID: 36389741 PMCID: PMC9643874 DOI: 10.3389/fimmu.2022.1011190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
CD3-epsilon(CD3e) immunotoxins (IT), a promising precision reagent for various clinical conditions requiring effective depletion of T cells, often shows limited treatment efficacy for largely unknown reasons. Tissue-resident T cells that persist in peripheral tissues have been shown to play pivotal roles in local and systemic immunity, as well as transplant rejection, autoimmunity and cancers. The impact of CD3e-IT treatment on these local cells, however, remains poorly understood. Here, using a new murine testing model, we demonstrate a substantial enrichment of tissue-resident Foxp3+ Tregs following CD3e-IT treatment. Differential surface expression of CD3e among T-cell subsets appears to be a main driver of Treg enrichment in CD3e-IT treatment. The surviving Tregs in CD3e-IT-treated mice were mostly the CD3edimCD62Llo effector phenotype, but the levels of this phenotype markedly varied among different lymphoid and nonlymphoid organs. We also found notable variations in surface CD3e levels among tissue-resident T cells of different organs, and these variations drive CD3e-IT to uniquely reshape T-cell compositions in local organs. The functions of organs and anatomic locations (lymph nodes) also affected the efficacy of CD3e-IT. The multi-organ pharmacodynamics of CD3e-IT and potential treatment resistance mechanisms identified in this study may generate new opportunities to further improve this promising treatment.
Collapse
Affiliation(s)
- Shihyoung Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Rajni Kant Shukla
- Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH, United States
| | - Hannah Yu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Alice Baek
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Sophie G. Cressman
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Sarah Golconda
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Ga-Eun Lee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Hyewon Choi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - John C. Reneau
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Zhirui Wang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Christene A. Huang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Namal P. M. Liyanage
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States,Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH, United States,Infectious Disease Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Namal P. M. Liyanage, ; Sanggu Kim,
| | - Sanggu Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States,Infectious Disease Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Namal P. M. Liyanage, ; Sanggu Kim,
| |
Collapse
|
18
|
Different antibody-associated autoimmune diseases have distinct patterns of T follicular cell dysregulation. Sci Rep 2022; 12:17638. [PMID: 36271118 PMCID: PMC9587230 DOI: 10.1038/s41598-022-21576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autoantibodies are produced within germinal centers (GC), in a process regulated by interactions between B, T follicular helper (Tfh), and T follicular regulatory (Tfr) cells. The GC dysregulation in human autoimmunity has been inferred from circulating cells, albeit with conflicting results due to diverse experimental approaches. We applied a consistent approach to compare circulating Tfr and Tfh subsets in patients with different autoimmune diseases. We recruited 97 participants, including 72 patients with Hashimoto's thyroiditis (HT, n = 18), rheumatoid arthritis (RA, n = 16), or systemic lupus erythematosus (SLE, n = 32), and 31 matched healthy donors (HD). We found that the frequency of circulating T follicular subsets differed across diseases. Patients with HT had an increased frequency of blood Tfh cells (p = 0.0215) and a reduced Tfr/Tfh ratio (p = 0.0338) when compared with HD. This was not observed in patients with systemic autoimmune rheumatic diseases (RA, SLE), who had a reduction in both Tfh (p = 0.0494 and p = 0.0392, respectively) and Tfr (p = 0.0003 and p = 0.0001, respectively) cells, resulting in an unchanged Tfr/Tfh ratio. Activated PD-1+ICOS+Tfh and CD4+PD-1+CXCR5-Tph cells were raised only in patients with SLE (p = 0.0022 and p = 0.0054), without association with disease activity. Our data suggest that GC dysregulation, assessed by T follicular subsets, is not uniform in human autoimmunity. Specific patterns of dysregulation may become potential biomarkers for disease and patient stratification.
Collapse
|
19
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
20
|
Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, Dziubek K, Kurkowiak M, Kote S, Kaźmierczak-Siedlecka K, Połom K, Marek-Trzonkowska N, Trzonkowski P. Autoimmunity and Cancer-Two Sides of the Same Coin. Front Immunol 2022; 13:793234. [PMID: 35634292 PMCID: PMC9140757 DOI: 10.3389/fimmu.2022.793234] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
21
|
Lin H, Wang H, Liu Q, Wang Z, Wen S, Wang L, Guo J, Ran L, Yue Z, Wu Q, Tang J, Li Z, Hu L, Xu L, Huang Q, Ye L. A novel strategy to investigate the factors regulating the Treg to Tfr transition during acute viral infection. J Immunol Methods 2022; 505:113266. [DOI: 10.1016/j.jim.2022.113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/15/2022]
|
22
|
Kozina E, Byrne M, Smeyne RJ. Mutant LRRK2 in lymphocytes regulates neurodegeneration via IL-6 in an inflammatory model of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:24. [PMID: 35292674 PMCID: PMC8924242 DOI: 10.1038/s41531-022-00289-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in a number of genes contribute to development of Parkinson’s disease (PD), including several within the LRRK2 gene. However, little is known about the signals that underlie LRRK2-mediated neuronal loss. One clue resides in the finding that the neurodegenerative cascades emanate from signals arising from the peripheral immune system. Here, using two chimeric mouse models, we demonstrate that: 1) the replacement of mutant LRRK2 with wt form of the protein in T- and B-lymphocytes diminishes LPS-mediated inflammation and rescues the SNpc DA neuron loss in the mutant LRRK2 brain; 2) the presence of G2019S or R1441G LRRK2 mutation in lymphocytes alone is sufficient for LPS-induced DA neuron loss in the genotypically wt brain; and 3) neutralization of peripheral IL-6 overproduction prevents the SNpc DA neuron loss in LPS-treated mutant LRRK2 mice. These results represent a major paradigm shift in our understanding of PD pathogenesis and suggest that immune dysfunction in some forms of familial PD may have primacy over the CNS as the initiating site of the disorder.
Collapse
Affiliation(s)
- Elena Kozina
- Department of Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA, 19107, USA
| | - Matthew Byrne
- Department of Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA, 19107, USA
| | - Richard Jay Smeyne
- Department of Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, 900 Walnut St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
23
|
Kawano S, Mitoma H, Inokuchi S, Yamauchi Y, Yokoyama K, Nogami J, Semba Y, Ayano M, Kimoto Y, Akahoshi M, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. TNFR2 Signaling Enhances Suppressive Abilities of Human Circulating T Follicular Regulatory Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1057-1065. [PMID: 35149531 DOI: 10.4049/jimmunol.2100323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
T follicular regulatory (Tfr) cells are a subset of CD4+ T cells that express CXCR5 and migrate into germinal centers (GCs). They regulate GC reactions by communicating with T follicular helper (Tfh) and B cells. TNF inhibitors are used in inflammatory diseases; however, the generation of autoantibodies or anti-drug Abs sometimes causes problems. Because TNFR2 signaling is important for suppressive functions of regulatory T cells, we investigated the role of TNFR2 on human Tfr cells. Tfr cells stimulated with MR2-1 (an anti-TNFR2 agonistic Ab) were analyzed for cell proliferation, Foxp3 expression, and surface molecules. Tfh/B cell proliferation, IgM production, and differentiation in cocultures with MR2-1-stimulated Tfr cells were examined. Tfr cells express a high level of TNFR2. MR2-1 stimulation altered the gene expression profile of Tfr cells. Cell proliferation and Foxp3 expression of Tfr cells were enhanced by MR2-1. MR2-1-stimulated Tfr cells expressed ICOS and Programmed cell death protein 1 and significantly suppressed Tfh/B cell proliferation, IgM production, and B cell differentiation. TNFR2-stimulated Tfr cells retained the migration function according to the CXCL13 gradient. In conclusion, we showed that TNFR2-stiumulated Tfr cells can regulate Tfh and B cells. Aberrant antibody production during TNF inhibitor treatment might be, at least in part, associated with TNFR2 signaling inhibition in Tfr cells. In addition, expansion and maturation of Tfr cells via TNFR2 stimulation in vitro may be useful for a cell-based therapy in inflammatory and autoimmune diseases to control GC reactions.
Collapse
Affiliation(s)
- Shotaro Kawano
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan;
| | | | - Yusuke Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kana Yokoyama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Mitsuteru Akahoshi
- Division of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan; and
| | - Nobuyuki Ono
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
24
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
25
|
Koenig A, Vaeth M, Xiao Y, Chiarolla CM, Erapaneedi R, Klein M, Dietz L, Hundhausen N, Majumder S, Schuessler F, Bopp T, Klein-Hessling S, Rosenwald A, Berberich I, Berberich-Siebelt F. NFATc1/αA and Blimp-1 Support the Follicular and Effector Phenotype of Tregs. Front Immunol 2022; 12:791100. [PMID: 35069572 PMCID: PMC8770984 DOI: 10.3389/fimmu.2021.791100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
CD4+CXCR5+Foxp3+ T-follicular regulatory (TFR) cells control the germinal center responses. Like T-follicular helper cells, they express high levels of Nuclear Factor of Activated T-cells c1, predominantly its short isoform NFATc1/αA. Ablation of NFATc1 in Tregs prevents upregulation of CXCR5 and migration of TFR cells into B-cell follicles. By contrast, constitutive active NFATc1/αA defines the surface density of CXCR5, whose level determines how deep a TFR migrates into the GC and how effectively it controls antibody production. As one type of effector Treg, TFR cells express B lymphocyte-induced maturation protein-1 (Blimp-1). Blimp-1 can directly repress Cxcr5 and NFATc1/αA is necessary to overcome this Blimp-1-mediated repression. Interestingly, Blimp-1 even reinforces the recruitment of NFATc1 to Cxcr5 by protein-protein interaction and by those means cooperates with NFATc1 for Cxcr5 transactivation. On the contrary, Blimp-1 is necessary to counterbalance NFATc1/αA and preserve the Treg identity. This is because although NFATc1/αA strengthens the follicular development of Tregs, it bears the inherent risk of causing an ex-Treg phenotype.
Collapse
Affiliation(s)
- Anika Koenig
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Yin Xiao
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Raghu Erapaneedi
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Lena Dietz
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Snigdha Majumder
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Felix Schuessler
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center, University of Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Frankfurt/Mainz, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, University of Würzburg, Würzburg, Germany
| | - Ingolf Berberich
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
26
|
Ghosh S, Leavenworth JW. Current Advances in Follicular Regulatory T-Cell Biology. Crit Rev Immunol 2022; 42:35-47. [PMID: 37017287 PMCID: PMC11034780 DOI: 10.1615/critrevimmunol.2022045746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Follicular regulatory T (TFR) cells are a population of CD4+ T-cells that concomitantly express markers for regulatory T-cells and follicular helper T (TFH) cells, and have been predominantly implicated in the regulation of humoral immunity via their suppressive functions. Rapid and robust progress has been made in the field of TFR cell research since the discovery of this subset over a decade ago. However, there is still a significant gap in our understanding of the mechanisms underlying the phenotypic and functional heterogeneity of TFR cells under various physiologic and pathologic settings. In this review article, we aim to highlight the most up-to-date concepts and investigations in both experimental animal models and human studies to provide a perspective on our understanding of TFR biology with particular emphasis on these cells in the context of disease settings.
Collapse
Affiliation(s)
- Sadashib Ghosh
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
27
|
Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021; 22:ijms222413311. [PMID: 34948104 PMCID: PMC8706102 DOI: 10.3390/ijms222413311] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.
Collapse
|
28
|
Zhang X, Ge R, Chen H, Ahiafor M, Liu B, Chen J, Fan X. Follicular Helper CD4 + T Cells, Follicular Regulatory CD4 + T Cells, and Inducible Costimulator and Their Roles in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2021; 2021:2058964. [PMID: 34552387 PMCID: PMC8452443 DOI: 10.1155/2021/2058964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Follicular helper CD4+ T (TFH) cells are a specialized subset of effector T cells that play a central role in orchestrating adaptive immunity. TFH cells mainly promote germinal center (GC) formation, provide help to B cells for immunoglobulin affinity maturation and class-switch recombination of B cells, and facilitate production of long-lived plasma cells and memory B cells. TFH cells express the nuclear transcriptional repressor B cell lymphoma 6 (Bcl-6), the chemokine (C-X-C motif) receptor 5 (CXCR5), the CD28 family members programmed cell death protein-1 (PD-1) and inducible costimulator (ICOS) and are also responsible for the secretion of interleukin-21 (IL-21) and IL-4. Follicular regulatory CD4+ T (TFR) cells, as a regulatory counterpart of TFH cells, participate in the regulation of GC reactions. TFR cells not only express markers of TFH cells but also express markers of regulatory T (Treg) cells containing FOXP3, glucocorticoid-induced tumor necrosis factor receptor (GITR), cytotoxic T lymphocyte antigen 4 (CTLA-4), and IL-10, hence owing to the dual characteristic of TFH cells and Treg cells. ICOS, expressed on activated CD4+ effector T cells, participates in T cell activation, differentiation, and effector process. The expression of ICOS is highest on TFH and TFR cells, indicating it as a key regulator of humoral immunity. Multiple sclerosis (MS) is a severe autoimmune disease that affects the central nervous system and results in disability, mediated by autoreactive T cells with evolving evidence of a remarkable contribution from humoral responses. This review summarizes recent advances regarding TFH cells, TFR cells, and ICOS, as well as their functional characteristics in relation to MS.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Maxwell Ahiafor
- School of International Studies, Binzhou Medical University, Yantai, 264003 Shandong, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| |
Collapse
|
29
|
Xiao Y, Qureischi M, Dietz L, Vaeth M, Vallabhapurapu SD, Klein-Hessling S, Klein M, Liang C, König A, Serfling E, Mottok A, Bopp T, Rosenwald A, Buttmann M, Berberich I, Beilhack A, Berberich-Siebelt F. Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity. J Exp Med 2021; 218:152124. [PMID: 32986812 PMCID: PMC7953626 DOI: 10.1084/jem.20181853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/22/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modification with SUMO is known to regulate the activity of transcription factors, but how SUMOylation of individual proteins might influence immunity is largely unexplored. The NFAT transcription factors play an essential role in antigen receptor-mediated gene regulation. SUMOylation of NFATc1 represses IL-2 in vitro, but its role in T cell-mediated immune responses in vivo is unclear. To this end, we generated a novel transgenic mouse in which SUMO modification of NFATc1 is prevented. Avoidance of NFATc1 SUMOylation ameliorated experimental autoimmune encephalomyelitis as well as graft-versus-host disease. Elevated IL-2 production in T cells promoted T reg expansion and suppressed autoreactive or alloreactive immune responses. Mechanistically, increased IL-2 secretion counteracted IL-17 and IFN-γ expression through STAT5 and Blimp-1 induction. Then, Blimp-1 repressed IL-2 itself, as well as the induced, proliferation-associated survival factor Bcl2A1. Collectively, these data demonstrate that prevention of NFATc1 SUMOylation fine-tunes T cell responses toward lasting tolerance. Thus, targeting NFATc1 SUMOylation presents a novel and promising strategy to treat T cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yin Xiao
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Musga Qureischi
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Medicine II, Center for Interdisciplinary Clinical Research, University Hospital Wuerzburg, Wuerzburg, Germany.,Graduate School of Life Sciences, University of Wuerzburg, Wuerzburg, Germany
| | - Lena Dietz
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Vaeth
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Stefan Klein-Hessling
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Molecular Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Anika König
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Edgar Serfling
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Molecular Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Mottok
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center, University of Mainz, Mainz, Germany.,German Cancer Consortium, University Medical Center, University of Mainz, Mainz, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ingolf Berberich
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II, Center for Interdisciplinary Clinical Research, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
30
|
CXCL13 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:71-90. [PMID: 34286442 DOI: 10.1007/978-3-030-62658-7_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most-if not all-hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.
Collapse
|
31
|
Basto AP, Graca L. Regulation of antibody responses against self and foreign antigens by Tfr cells: implications for vaccine development. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab012. [PMID: 36845568 PMCID: PMC9914583 DOI: 10.1093/oxfimm/iqab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
The production of antibodies can constitute a powerful protective mechanism against infection, but antibodies can also participate in autoimmunity and allergic responses. Recent advances in the understanding of the regulation of germinal centres (GC), the sites where B cells acquire the ability to produce high-affinity antibodies, offered new prospects for the modulation of antibody production in autoimmunity and vaccination. The process of B cell affinity maturation and isotype switching requires signals from T follicular helper (Tfh) cells. In addition, Foxp3+ T follicular regulatory (Tfr) cells represent the regulatory counterpart of Tfh in the GC reaction. Tfr cells were identified one decade ago and since then it has become clear their role in controlling the emergence of autoreactive B cell clones following infection and immunization. At the same time, Tfr cells are essential for fine-tuning important features of the humoral response directed to foreign antigens that are critical in vaccination. However, this regulation is complex and several aspects of Tfr cell biology are yet to be disclosed. Here, we review the current knowledge about the regulation of antibody responses against self and foreign antigens by Tfr cells and its implications for the future rational design of safer and more effective vaccines.
Collapse
Affiliation(s)
- Afonso P Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Luis Graca
- Correspondence address. Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal. Tel: +351 217999411; Fax: +351 217999412: E-mail:
| |
Collapse
|
32
|
Ye Y, Wang M, Huang H. Follicular regulatory T cell biology and its role in immune-mediated diseases. J Leukoc Biol 2021; 110:239-255. [PMID: 33938586 DOI: 10.1002/jlb.1mr0321-601rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Follicular regulatory T (Tfr) cells are recently found to be a special subgroup of regulatory T (Treg) cells. Tfr cells play an important role in regulating the germinal center (GC) response, especially modulating follicular helper T (Tfh) cells and GC-B cells, thereby affecting the production of antibodies. Tfr cells are involved in the generation and development of many immune-related and inflammatory diseases. This article summarizes the advances in several aspects of Tfr cell biology, with special focus on definition and phenotype, development and differentiation, regulatory factors, functions, and interactions with T/B cells and molecules involved in performance and regulation of Tfr function. Finally, we highlight the current understanding of Tfr cells involvement in autoimmunity and alloreactivity, and describe some drugs targeting Tfr cells. These latest studies have answered some basic questions in Tfr cell biology and explored the roles of Tfr cells in immune-mediated diseases.
Collapse
Affiliation(s)
- Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Hao H, Nakayamada S, Tanaka Y. Differentiation, functions, and roles of T follicular regulatory cells in autoimmune diseases. Inflamm Regen 2021; 41:14. [PMID: 33934711 PMCID: PMC8088831 DOI: 10.1186/s41232-021-00164-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
T follicular helper cells participate in stimulating germinal center (GC) formation and supporting B cell differentiation and autoantibody production. However, T follicular regulatory (Tfr) cells suppress B cell activation. Since changes in the number and functions of Tfr cells lead to dysregulated GC reaction and autoantibody response, targeting Tfr cells may benefit the treatment of autoimmune diseases. Differentiation of Tfr cells is a multistage and multifactorial process with various positive and negative regulators. Therefore, understanding the signals regulating Tfr cell generation is crucial for the development of targeted therapies. In this review, we discuss recent studies that have elucidated the roles of Tfr cells in autoimmune diseases and investigated the modulators of Tfr cell differentiation. Additionally, potential immunotherapies targeting Tfr cells are highlighted.
Collapse
Affiliation(s)
- He Hao
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.,Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
34
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
36
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
37
|
Yao Y, Chen C, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy 2021; 76:456-470. [PMID: 33098663 DOI: 10.1111/all.14639] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Allergic diseases are characterized by overactive type 2 immune responses to allergens and immunoglobulin E (IgE)-mediated hypersensitivity. Emerging evidence suggests that follicular helper T (TFH ) cells, rather than type 2 T-helper (TH 2) cells, play a crucial role in controlling IgE production. However, follicular regulatory T (TFR ) cells, a specialized subset of regulatory T (TREG ) cells resident in B-cell follicles, restricts TFH cell-mediated help in extrafollicular antibody production, germinal center (GC) formation, immunoglobulin affinity maturation, and long-lived, high-affinity plasma and memory B-cell differentiation. In mouse models of allergic asthma and food allergy, CXCR5+ TFH cells, not CXCR5- conventional TH 2 cells, are needed to support IgE production, otherwise exacerbated by CXCR5+ TFR cell deletion. Upregulation of TFH cell activities, including a skewing toward type 2 TFH (TFH 2) and IL-13 producing TFH (TFH 13) phenotypes, and defects in TFR cells have been identified in patients with allergic diseases. Allergen immunotherapy (AIT) reinstates the balance between TFH and TFR cells in patients with allergic diseases, resulting in clinical benefits. Collectively, further understanding of TFH and TFR cells and their role in the immunopathogenesis of allergic diseases creates opportunities to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yin Yao
- Department of Otolaryngology‐Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane Qld Australia
| | - Cai‐Ling Chen
- Department of Otolaryngology‐Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Di Yu
- The University of Queensland Diamantina Institute Faculty of Medicine The University of Queensland Brisbane Qld Australia
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
38
|
Chen W, Yang F, Xu G, Ma J, Lin J. Follicular helper T cells and follicular regulatory T cells in the immunopathology of primary Sjögren's syndrome. J Leukoc Biol 2020; 109:437-447. [PMID: 33325085 DOI: 10.1002/jlb.5mr1020-057rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease, characterized by lymphocytic infiltration into exocrine glands, which causes dry eyes, dry mouth, and systemic damage. Although the precise etiology of pSS is not clear yet, highly activated B cells, abundant anti-SSA/Ro, and anti-SSB/La autoantibodies are the hallmarks of this disease. Follicular helper T cells (Tfh), a subset of CD4+ T cells, with cell surface receptors PD-1 and CXCR5, express ICOS, transcription factor Bcl-6, and a cytokine IL-21. These cells help in the differentiation of B cells into plasma cells and stimulate the formation of germinal center (GC). Previous studies have demonstrated abundant Tfh cells in the peripheral blood and salivary glands (SGs) of the patients with pSS, correlated with extensive lymphocytic infiltration of the SGs and high disease activity scores. Patients with pSS who are treated with abatacept (CTLA-4 Ig) show fewer circulating Tfh cells, reduced expression of ICOS, and lower disease activity scores. Recently identified follicular regulatory T (Tfr) cells, a subset of regulatory T cells, control the function of Tfh cells and the GC reactions. Here, we summarize the observed alterations in Tfh and Tfr cell numbers, activation state, and circulating subset distribution in pSS. Our goal is to improve the understanding of the roles of Tfh and Tfr cells (surface marker expression, cytokine production, and transcription factors) in the pathogenesis of pSS, thus contributing to the identification of candidate therapeutic agents for this disease.
Collapse
Affiliation(s)
- Weiqian Chen
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Yang
- State Key Laboratory of Infectious Diseases Diagnosis and Treatment, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guanhua Xu
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jilin Ma
- Division of Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Jin Lin
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Fahlquist Hagert C, Degn SE. T follicular regulatory cells: Guardians of the germinal centre? Scand J Immunol 2020; 92:e12942. [PMID: 32697349 PMCID: PMC7583367 DOI: 10.1111/sji.12942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
It is a central tenet of the clonal selection theory, that lymphocyte repertoires are tolerized to self‐antigens during their ontogeny. Germinal centres are the sites in secondary lymphoid tissues where B cells undergo affinity maturation and class‐switching to produce high‐affinity antibodies. This process is crucial, both in our ability to mount protective humoral responses to infections and to vaccinations, but it is also involved in untoward reactions to self‐antigens, which underlie autoimmunity. The process of affinity maturation poses a significant challenge to tolerance, as the random nature of somatic hypermutation can introduce novel reactivities. Therefore, it has been a long‐standing idea that mechanisms must exist which limit the emergence of autoreactivity at the germinal centre level. One of these mechanisms is the requirement for linked recognition, which imposes on B cells a dependence on centrally tolerant T follicular helper cells. However, as linked recognition can be bypassed by adduct formation of autoantigenic complexes, it has been an appealing notion that there should be an additional layer of dominant mechanisms regulating emergence of autoreactive specificities. About a decade ago, this notion was addressed by the discovery of a novel subset of T regulatory cells localizing to the germinal centre and regulating germinal centre B‐cell responses. Here, we detail the progress that has been made towards characterizing this T follicular regulatory cell subset and understanding the functions of these ‘guardians of the germinal centre’.
Collapse
Affiliation(s)
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
40
|
Giri PS, Dwivedi M, Laddha NC, Begum R, Bharti AH. Altered expression of nuclear factor of activated T cells, forkhead box P3, and immune-suppressive genes in regulatory T cells of generalized vitiligo patients. Pigment Cell Melanoma Res 2020; 33:566-578. [PMID: 31917889 DOI: 10.1111/pcmr.12862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/15/2019] [Accepted: 01/06/2020] [Indexed: 02/05/2023]
Abstract
The study was aimed to analyze expression of nuclear factor of activated T cells (NFATs), forkhead box P3 (FOXP3), and their associated genes (sCTLA4, flCTLA4, IL10, TGFB, IL2, IL4, CD25) in regulatory T cells (Tregs) of 48 generalized vitiligo (GV) patients and 45 unaffected controls. The transcripts of NFATC1 to NFATC4, FOXP3, IL10, flCTLA4 (p < .0001), NFAT5 (p = .0003), sCTLA4 (p = .001), and FOXP3 protein in Tregs and plasma IL-10 levels were reduced significantly (p < .0001) in GV Tregs compared to controls. The FOXP3 promoter polymorphisms [rs3761548(C > A), rs3761547(A > G), and rs2232365(A > G)] revealed significantly decreased FOXP3 protein levels in patients' Tregs with susceptible AA, GG, and GG genotypes (p < .0001, p = .028, p = .022, respectively). The active vitiligo Tregs showed reduced levels of NFATC3, NFATC4, NFAT5, FOXP3, TGFB, and flCTLA4 transcripts (p = .0005, p = .0003, p = .0002, p = .020, p < .0001, p = .006, respectively) and FOXP3 and TGF-β proteins (p = .0394 and p = .0013) compared to stable vitiligo. Early-onset patients (1-20 years) demonstrated decreased IL-10, sCTLA-4, flCTLA-4, TGFB, and FOXP3 transcripts and FOXP3 protein as compared to late-onset patients (41-60 years) (p = .001, p = .003, p = .009, p = .005, p = .038, p = .0226, respectively). Overall, our results for the first time suggest a likely role of NFATs and FOXP3 together with Treg immune-suppressive genes in GV pathogenesis and disease progression, warranting additional investigations.
Collapse
Affiliation(s)
- Prashant S Giri
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, India
| | | | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | | |
Collapse
|
41
|
Robles RJ, Mukherjee S, Vuerich M, Xie A, Harshe R, Cowan PJ, Csizmadia E, Wu Y, Moss AC, Chen R, Robson SC, Longhi MS. Modulation of CD39 and Exogenous APT102 Correct Immune Dysfunction in Experimental Colitis and Crohn's Disease. J Crohns Colitis 2020; 14:818-830. [PMID: 31693091 PMCID: PMC7457187 DOI: 10.1093/ecco-jcc/jjz182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD39/ENTPD1 scavenges pro-inflammatory nucleotides, to ultimately generate immunosuppressive adenosine, which has a central role in immune homeostasis. Global deletion of Cd39 increases susceptibility to experimental colitis while single nucleotide polymorphisms within the human CD39 promoter, and aberrant patterns of expression during experimental hypoxia, predispose to Crohn's disease. We aimed to define the impact of transgenic human CD39 [hTG] overexpression in experimental colitis and to model therapeutic effects using the recombinant apyrase APT102 in vivo. We also determined the in vitro effects of APT102 on phenotypic and functional properties of regulatory T-lymphocytes derived from patients with Crohn's disease. METHODS Colitis was induced by administration of dextran sulfate sodium in wild-type [WT] or hTG mice, and, in another model, by adoptive transfer of CD45RBhigh cells with or without WT or hTG regulatory T cells [Treg]. In additional experiments, mice were treated with APT102. The effects of APT102 on phenotype and function of Treg and type-1 regulatory T [Tr1] cells were also evaluated, after purification from peripheral blood and lamina propria of Crohn's disease patients [n = 38]. RESULTS Overexpression of human CD39 attenuated experimental colitis and protected from the deleterious effects of systemic hypoxia, pharmacologically induced by deferoxamine. Administration of APT102 in vivo enhanced the beneficial effects of endogenous Cd39 boosted by the administration of the aryl hydrocarbon receptor [AhR] ligand unconjugated bilirubin [UCB]. Importantly, supplemental APT102 restored responsiveness to AhR stimulation by UCB in Treg and Tr1 cells, obtained from Crohn's disease patients. CONCLUSIONS hCD39 overexpression ameliorated experimental colitis and prevented hypoxia-related damage in vivo. Exogenous administration of APT102 boosted AhR-mediated regulatory effects in vivo while enhancing Treg functions in Crohn's disease in vitro.
Collapse
Affiliation(s)
- René J Robles
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samiran Mukherjee
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anyan Xie
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rasika Harshe
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yan Wu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alan C Moss
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simon C Robson
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Correspondence: Maria Serena Longhi, Department of Anesthesia, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA. Tel: 617 735 2905; Fax: 617 735 2930;
| |
Collapse
|
42
|
Wing JB, Lim EL, Sakaguchi S. Control of foreign Ag-specific Ab responses by Treg and Tfr. Immunol Rev 2020; 296:104-119. [PMID: 32564426 DOI: 10.1111/imr.12888] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) expressing the transcription factor Foxp3 play a critical role in the control of immune homeostasis including the regulation of humoral immunity. Recently, it has become clear that a specialized subset of Tregs, T-follicular regulatory cells (Tfr), have a particular role in the control of T-follicular helper (Tfh) cell-driven germinal center (GC) responses. Following similar differentiation signals as received by Tfh, Tfr gain expression of characteristic chemokine receptors and transcription factors such as CXCR5 and BCL6 allowing them to travel to the B-cell follicle and deliver in situ suppression. It seems clear that Tfr are critical for the prevention of autoimmune antibody induction. However, their role in the control of foreign antigen-specific antibody responses appears more complex with various reports demonstrating either increased or decreased antigen-specific antibody responses following inhibition of Tfr function. Due to their recent discovery, our understanding of Tfr formation and function still has many gaps. In this review, we discuss our current knowledge of both Tregs and Tfr in the context of humoral immunity and how these cells might be manipulated in order to better control vaccine responses.
Collapse
Affiliation(s)
- James B Wing
- Laboritory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ee Lyn Lim
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Bartsch YC, Eschweiler S, Leliavski A, Lunding HB, Wagt S, Petry J, Lilienthal GM, Rahmöller J, de Haan N, Hölscher A, Erapaneedi R, Giannou AD, Aly L, Sato R, de Neef LA, Winkler A, Braumann D, Hobusch J, Kuhnigk K, Krémer V, Steinhaus M, Blanchard V, Gemoll T, Habermann JK, Collin M, Salinas G, Manz RA, Fukuyama H, Korn T, Waisman A, Yogev N, Huber S, Rabe B, Rose-John S, Busch H, Berberich-Siebelt F, Hölscher C, Wuhrer M, Ehlers M. IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. J Allergy Clin Immunol 2020; 146:652-666.e11. [PMID: 32445838 DOI: 10.1016/j.jaci.2020.04.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Effector functions of IgG Abs are regulated by their Fc N-glycosylation pattern. IgG Fc glycans that lack galactose and terminal sialic acid residues correlate with the severity of inflammatory (auto)immune disorders and have also been linked to protection against viral infection and discussed in the context of vaccine-induced protection. In contrast, sialylated IgG Abs have shown immunosuppressive effects. OBJECTIVE We sought to investigate IgG glycosylation programming during the germinal center (GC) reaction following immunization of mice with a foreign protein antigen and different adjuvants. METHODS Mice were analyzed for GC T-cell, B-cell, and plasma cell responses, as well as for antigen-specific serum IgG subclass titers and Fc glycosylation patterns. RESULTS Different adjuvants induce distinct IgG+ GC B-cell responses with specific transcriptomes and expression levels of the α2,6-sialyltransferase responsible for IgG sialylation that correspond to distinct serum IgG Fc glycosylation patterns. Low IgG Fc sialylation programming in GC B cells was overall highly dependent on the Foxp3- follicular helper T (TFH) cell-inducing cytokine IL-6, here in particular induced by water-in-oil adjuvants and Mycobacterium tuberculosis. Furthermore, low IgG Fc sialylation programming was dependent on adjuvants that induced IL-27 receptor-dependent IFN-γ+ TFH1 cells, IL-6/IL-23-dependent IL-17A+ TFH17 cells, and high ratios of TFH cells to Foxp3+ follicular regulatory T cells. Here, the 2 latter were dependent on M tuberculosis and its cord factor. CONCLUSION This study's findings regarding adjuvant-dependent GC responses and IgG glycosylation programming may aid in the development of novel vaccination strategies to induce IgG Abs with both high affinity and defined Fc glycosylation patterns in the GC.
Collapse
Affiliation(s)
- Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Simon Eschweiler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hanna B Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Sander Wagt
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Department of Anesthesiology and Intensive Care, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Raghu Erapaneedi
- Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Anastasios D Giannou
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilian Aly
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Germany
| | - Ryota Sato
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Louise A de Neef
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - André Winkler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Laboratory of Tolerance and Autoimmunity at the German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Kyra Kuhnigk
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Vanessa Krémer
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriela Salinas
- NGS-Integrative Genomics, Institute Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Germany; Munich Cluster for Systems Neurology, SyNergy, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nir Yogev
- Clinic and Polyclinic for Dermatology and Venerology, University Hospital Cologne, Cologne, Germany
| | - Samuel Huber
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rabe
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Friederike Berberich-Siebelt
- Institute for Pathology, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Laboratory of Tolerance and Autoimmunity at the German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany; Airway Research Center North, University of Lübeck, German Center for Lung Research, Lübeck, Germany.
| |
Collapse
|
44
|
Homeostasis and regulation of autoreactive B cells. Cell Mol Immunol 2020; 17:561-569. [PMID: 32382130 DOI: 10.1038/s41423-020-0445-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
In contrast to the previous belief that autoreactive B cells are eliminated from the normal repertoire of B cells, many autoreactive B cells actually escape clonal deletion and develop into mature B cells. These autoreactive B cells in healthy individuals perform some beneficial functions in the host and are homeostatically regulated by regulatory T and B cells or other mechanisms to prevent autoimmune diseases. Autoreactive B-1 cells constitutively produce polyreactive natural antibodies for tissue homeostasis. Recently, autoreactive follicular B cells were reported to participate actively in the germinal center reaction. Furthermore, the selection and usefulness of autoreactive marginal zone (MZ) B cells found in autoimmune diseases are not well understood, although the repertoire of MZ B-cell receptors (BCRs) is presumed to be biased to detect bacterial antigens. In this review, we discuss the autoreactive B-cell populations among all three major B-cell subsets and their regulation in immune responses and diseases.
Collapse
|
45
|
Dhande IS, Zhu Y, Kneedler SC, Joshi AS, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Stim1 Polymorphism Disrupts Immune Signaling and Creates Renal Injury in Hypertension. J Am Heart Assoc 2020; 9:e014142. [PMID: 32075490 PMCID: PMC7335582 DOI: 10.1161/jaha.119.014142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Spontaneously hypertensive rats of the stroke‐prone line (SHR‐A3) develop hypertensive renal disease as a result of naturally occurring genetic variation. Our prior work identified a single‐nucleotide polymorphism unique to SHR‐A3 that results in truncation of the carboxy terminus of STIM1. The SHR‐B2 line, which is also hypertensive but resists hypertensive renal injury, expresses the wild‐type STIM1. STIM1 plays a central role in lymphocyte calcium signaling that directs immune effector responses. Here we show that major defects in lymphocyte function affecting calcium signaling, nuclear factor of activated T cells activation, cytokine production, proliferation, apoptosis, and regulatory T‐cell development are present in SHR‐A3 and attributable to STIM1. Methods and Results To assess the role of Stim1 variation in susceptibility to hypertensive renal injury, we created a Stim1 congenic line, SHR‐A3(Stim1‐B2), and STIM1 function was rescued in SHR‐A3. We found that Stim1 gene rescue restores disturbed lymphocyte function in SHR‐A3. Hypertensive renal injury was compared in SHR‐A3 and the SHR‐A3(Stim1‐B2) congenic line. Histologically assessed renal injury was markedly reduced in SHR‐A3(Stim1‐B2), as were renal injury biomarker levels measured in urine. Stim1 deficiency has been linked to the emergence of antibody‐mediated autoimmunity. Renal glomerular immunoglobulin deposition was greater in SHR‐A3 than SHR‐B2 and was reduced by Stim1 congenic substitution. Serum anti–double‐stranded DNA antibody titers in SHR‐A3 were elevated compared with SHR‐B2 and were reduced in SHR‐A3(Stim1‐B2). Conclusions Stim1 deficiency in lymphocyte function originating from Stim1 truncation in SHR‐A3 combines with hypertension to create end organ disease and may do so as a result of antibody formation.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Yaming Zhu
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Sterling C Kneedler
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Aniket S Joshi
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - M John Hicks
- Department of Pathology and Immunology Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Scott E Wenderfer
- Department of Pediatrics Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Michael C Braun
- Department of Pediatrics Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Peter A Doris
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| |
Collapse
|
46
|
Huang Y, Chen Z, Wang H, Ba X, Shen P, Lin W, Wang Y, Qin K, Huang Y, Tu S. Follicular regulatory T cells: a novel target for immunotherapy? Clin Transl Immunology 2020; 9:e1106. [PMID: 32082569 PMCID: PMC7019198 DOI: 10.1002/cti2.1106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022] Open
Abstract
High‐affinity antibodies are produced during multiple processes in germinal centres (GCs), where follicular helper T (Tfh) cells interact closely with B cells to support B‐cell survival, differentiation and proliferation. Recent studies have revealed that a specialised subset of regulatory T cells, follicular regulatory T (Tfr) cells, especially fine‐tune Tfh cells and GC B cells, ultimately regulating GC reactions. Alterations in frequencies or function of Tfr cells may result in multiple autoantibody‐mediated or autoantibody‐associated diseases. This review discusses recent insights into the physiology and pathology of Tfr cells, with a special emphasis on their potential roles in human diseases. Discrepancies are common among studies, reflecting the limited understanding of Tfr cells. Further exploration of the mechanisms of Tfr cells in these diseases and thus targeting Tfr cells may help reinstate immune homeostasis and provide novel immunotherapy.
Collapse
Affiliation(s)
- Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hui Wang
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
47
|
Dimitrijević M, Arsenović-Ranin N, Kosec D, Bufan B, Nacka-Aleksić M, Pilipović I, Leposavić G. Sex differences in Tfh cell help to B cells contribute to sexual dimorphism in severity of rat collagen-induced arthritis. Sci Rep 2020; 10:1214. [PMID: 31988383 PMCID: PMC6985112 DOI: 10.1038/s41598-020-58127-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/06/2020] [Indexed: 12/03/2022] Open
Abstract
The study examined germinal centre (GC) reaction in lymph nodes draining inflamed joints and adjacent tissues (dLNs) in male and female Dark Agouti rat collagen type II (CII)-induced arthritis (CIA) model of rheumatoid arthritis. Female rats exhibiting the greater susceptibility to CIA mounted stronger serum CII-specific IgG response than their male counterparts. This correlated with the higher frequency of GC B cells in female compared with male dLNs. Consistently, the frequency of activated/proliferating Ki-67+ cells among dLN B cells was higher in females than in males. This correlated with the shift in dLN T follicular regulatory (Tfr)/T follicular helper (Tfh) cell ratio towards Tfh cells in females, and greater densities of CD40L and CD40 on their dLN T and B cells, respectively. The higher Tfh cell frequency in females was consistent with the greater dLN expression of mRNA for IL-21/27, the key cytokines involved in Tfh cell generation and their help to B cells. Additionally, in CII-stimulated female rat dLN cell cultures IFN-γ/IL-4 production ratio was shifted towards IFN-γ. Consistently, the serum IgG2a(b)/IgG1 CII-specific antibody ratio was shifted towards an IgG2a(b) response in females. Thus, targeting T-/B-cell interactions should be considered in putative further sex-based translational pharmacology research.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana, 142, Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe, 458, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe, 458, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia.
| |
Collapse
|
48
|
Bell L, Lenhart A, Rosenwald A, Monoranu CM, Berberich-Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol 2020; 10:3090. [PMID: 32010141 PMCID: PMC6974514 DOI: 10.3389/fimmu.2019.03090] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
In gray matter pathology of multiple sclerosis, neurodegeneration associates with a high degree of meningeal inflammatory activity. Importantly, ectopic lymphoid follicles (eLFs) were identified at the inflamed meninges of patients with progressive multiple sclerosis. Besides T lymphocytes, they comprise B cells and might elicit germinal center (GC)-like reactions. GC reactions are controlled by FOXP3+ T-follicular regulatory cells (TFR), but it is unknown if they participate in autoantibody production in eLFs. Receiving human post-mortem material, gathered from autopsies of progressive multiple sclerosis patients, indeed, distinct inflammatory infiltrates enriched with B cells could be detected in perivascular areas and deep sulci. CD35+ cells, parafollicular CD138+ plasma cells, and abundant expression of the homing receptor for GCs, CXCR5, on lymphocytes defined some of them as eLFs. However, they resembled GCs only in varying extent, as T cells did not express PD-1, only few cells were positive for the key transcriptional regulator BCL-6 and ongoing proliferation, whereas a substantial number of T cells expressed high NFATc1 like GC-follicular T cells. Then again, predominant cytoplasmic NFATc1 and an enrichment with CD3+CD27+ memory and CD4+CD69+ tissue-resident cells implied a chronic state, very much in line with PD-1 and BCL-6 downregulation. Intriguingly, FOXP3+ cells were almost absent in the whole brain sections and CD3+FOXP3+ TFRs were never found in the lymphoid aggregates. This also points to less controlled humoral immune responses in those lymphoid aggregates possibly enabling the occurrence of CNS-specific autoantibodies in multiple sclerosis patients.
Collapse
Affiliation(s)
- Luisa Bell
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Alexander Lenhart
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
49
|
A Multiple Antigen Peptide Vaccine Containing CD4 + T Cell Epitopes Enhances Humoral Immunity against Trichinella spiralis Infection in Mice. J Immunol Res 2020; 2020:2074803. [PMID: 32377530 PMCID: PMC7199560 DOI: 10.1155/2020/2074803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/06/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Multiepitope peptide vaccine has some advantages over traditional recombinant protein vaccine due to its easy and fast production and possible inclusion of multiple protective epitopes of pathogens. However, it is usually poorly immunogenic and needs to conjugate to a large carrier protein. Peptides conjugated to a central lysine core to form multiple antigen peptides (MAPs) will increase the immunogenicity of peptide vaccine. In this study, we constructed a MAP consisting of CD4+ T cell and B cell epitopes of paramyosin (Pmy) of Trichinella spiralis (Ts-Pmy), which has been proved to be a good vaccine candidate in our previous work. The immunogenicity and induced protective immunity of MAP against Trichinella spiralis (T. spiralis) infection were evaluated in mice. We demonstrated that mice immunized with MAP containing CD4+ T cell and B cell epitopes (MAP-TB) induced significantly higher protection against the challenge of T. spiralis larvae (35.5% muscle larva reduction) compared to the MAP containing B cell epitope alone (MAP-B) with a 12.4% muscle larva reduction. The better protection induced by immunization of MAP-TB was correlated with boosted antibody titers (both IgG1 and IgG2a) and mixed Th1/Th2 cytokine production secreted by the splenocytes of immunized mice. Further flow cytometry analysis of lymphocytes in spleens and draining lymph nodes demonstrated that mice immunized with MAP-TB specifically enhanced the generation of T follicular helper (Tfh) cells and germinal center (GC) B cells, while inhibiting follicular regulatory CD4+ T (Tfr) cells and regulatory T (Treg) cells. Immunofluorescence staining of spleen sections also confirmed that MAP-TB vaccination enhanced the formation of GCs. Our results suggest that CD4+ T cell epitope of Ts-Pmy is crucial in vaccine component for inducing better protection against T. spiralis infection.
Collapse
|
50
|
Esteves de Oliveira E, de Castro E Silva FM, Caçador Ayupe M, Gomes Evangelista Ambrósio M, Passos de Souza V, Costa Macedo G, Ferreira AP. Obesity affects peripheral lymphoid organs immune response in murine asthma model. Immunology 2019; 157:268-279. [PMID: 31112301 DOI: 10.1111/imm.13081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 01/12/2023] Open
Abstract
Asthma and obesity present rising incidence, and their concomitance is a reason for concern, as obese individuals are usually resistant to conventional asthma treatments and have more exacerbation episodes. Obesity affects several features in the lungs during asthma onset, shifting the T helper type 2 (Th2)/eosinophilic response towards a Th17/neutrophilic profile. Moreover, those individuals can present reduced atopy and delayed cytokine production. However, the impact of obesity on follicular helper T (Tfh) cells and B cells that could potentially result in antibody production disturbances are still unclear. Therefore, we aimed to assess the peripheral response to ovalbumin (OVA) in a concomitant model of obesity and asthma. Pulmonary allergy was induced, in both lean and obese female BALB/c mice, through OVA sensitizations and challenges. Mediastinal lymph nodes (MLNs) and spleen were processed for immunophenotyping. Lung was used for standard allergy analysis. Obese-allergic mice produced less anti-OVA IgE and more IgG2a than lean-allergic mice. Dendritic cells (CD11c+ MHCIIhigh ) expressed less CD86 and more PDL1 in obese-allergic mice compared with lean-allergic mice, in the MLNs. Meanwhile, B cells (CD19+ CD40+ ) were more frequent and the amount of PDL1/PD1+ cells was diminished by obesity, with the opposite effects in the spleen. Tfh cells (CD3+ CD4+ CXCR5+ PD1+ ) expressing FoxP3 were more frequent in obese mice, associated with the predominance of Th (CD3+ CD4+ ) cells expressing interleukin-4/GATA3 in the MLNs and interleukin-17A/RORγT in the spleen. Those modifications to the main components of the germinal centers could be resulting in the increased IgG2a production, which - associated with the Th17/neutrophilic profile - contributes to asthma worsening and represents an important target for future treatment strategies.
Collapse
Affiliation(s)
- Erick Esteves de Oliveira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Flávia Márcia de Castro E Silva
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Marina Caçador Ayupe
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Marcilene Gomes Evangelista Ambrósio
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Viviane Passos de Souza
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gilson Costa Macedo
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ana Paula Ferreira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|