1
|
Meng X, Luo Y, Cui L, Wang S. Involvement of Tim-3 in Maternal-fetal Tolerance: A Review of Current Understanding. Int J Biol Sci 2025; 21:789-801. [PMID: 39781467 PMCID: PMC11705645 DOI: 10.7150/ijbs.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways. Strikingly, Tim-3 plays a pivotal role in maternal-fetal tolerance by regulating immune cell functions and orchestrating the maternal-fetal cross-talk. In this review, we elaborate on the involvement of Tim-3 in immunology, with a focus on its participation in maternal-fetal tolerance to provide new insights into immunoregulation during pregnancy. Our work will be helpful in further understanding the pathogenesis of pregnancy-related diseases and will inspire new strategies for their diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| |
Collapse
|
2
|
Shi ZY, Sun K, Xie DH, Wang YZ, Jiang H, Jiang Q, Huang XJ, Qin YZ. Features and prognostic significance of soluble TIM-3 and its ligands Gal-9 and CEACAM1 levels in the diagnostic bone marrow of adult acute myeloid leukemia patients. J Leukoc Biol 2024; 117:qiae191. [PMID: 39267264 DOI: 10.1093/jleuko/qiae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
The prognostic significance of soluble immune checkpoint molecule TIM-3 and its ligands in the plasma has been illustrated in various solid tumors, but such study in newly diagnosed acute myeloid leukemia (AML) remains absent. Soluble TIM-3, Gal-9, and CEACAM1 levels in bone marrow plasma samples collected from 90 adult AML patients at diagnosis and 12 healthy donors were measured by enzyme-linked immunosorbent assays, and 16 AML patients were simultaneously tested cell membrane TIM-3 expression by multicolor flow cytometry. AML patients had significantly elevated soluble TIM-3 levels and similar soluble Gal-9 and CEACAM1 levels compared with healthy donors (P = 0.0003, 0.26, and 0.96, respectively). In the whole cohort, a high soluble TIM-3 level was the sole independent adverse prognostic factor for relapse-free survival (RFS) (P = 0.0060), and together with adverse European LeukemiaNet genetic risk they were independent poor prognostic factors for event-free survival (P = 0.0030 and 0.0040, respectively). A high soluble CEACAM1 level was significantly related to lower RFS (P = 0.028). In addition, a high soluble Gal-9 level had a significant association with lower RFS in patients receiving allogeneic hematopoietic stem cell transplantation at the first complete remission (P = 0.037). Furthermore, soluble TIM-3 level tended to have positive correlation with the percentage of nonblast myeloid TIM-3+ cells in nucleated cells in AML (r = 0.48, P = 0.073). Therefore, the high soluble TIM-3 level in the diagnostic BM plasma predicted poor outcome in adult AML patients, and a high sGal-9 level was associated with relapse after allogeneic hematopoietic stem cell transplantation.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/mortality
- Female
- Male
- Middle Aged
- Adult
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/blood
- Antigens, CD/blood
- Antigens, CD/metabolism
- Prognosis
- Cell Adhesion Molecules/blood
- Aged
- Galectins/blood
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Young Adult
- Ligands
- Disease-Free Survival
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Adolescent
Collapse
Affiliation(s)
- Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Dai-Hong Xie
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| |
Collapse
|
3
|
Sun K, Shi ZY, Xie DH, Wang YZ, Jiang H, Jiang Q, Huang XJ, Qin YZ. The Functional Role and Prognostic Significance of TIM-3 Expression on NK Cells in the Diagnostic Bone Marrows in Acute Myeloid Leukemia. Biomedicines 2024; 12:2717. [PMID: 39767624 PMCID: PMC11727352 DOI: 10.3390/biomedicines12122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Compared to other immune checkpoint molecules, T cell immunoglobulin domain and mucin domain-3 (TIM-3) is highly expressed on natural killer (NK) cells, but its functional role and prognostic significance in acute myeloid leukemia (AML) remains unclear. This study aims to evaluate the role of TIM-3 expression on the cytotoxic and killing capacity of NK cells and its prognostic significance in AML. Methods: AML public single-cell RNA sequencing (scRNAseq) data were used to analyze the correlation of transcript levels between HAVCR2 (encoding TIM-3) and cytotoxic molecules in NK cells. NK cells from the bone marrows of seven newly diagnosed AML patients and five healthy donors (HDs) were stimulated in vitro and cell-killing activity was evaluated. A total of one hundred and five newly diagnosed adult AML patients and seven HDs were tested the expression of TIM-3 and cytotoxic molecules on the bone marrow NK cells by multi-parameter flow cytometry (MFC). Results: Both scRNAseq and MFC analysis demonstrated that TIM-3 expression on NK cells was positively related to the levels of perforin (PFP) and granzyme B (GZMB) (all p < 0.05) in AML. It was PFP and GZMB but not the TIM-3 level that was related to NK-cell-killing activity against K562 cells (p = 0.027, 0.042 and 0.55). A high frequency of TIM-3+ NK cells predicted poorer relapse-free survival (RFS) and event-free survival (EFS) (p = 0.013 and 0.0074), but was not an independent prognostic factor, whereas low GZMB levels in TIM-3+ NK cells independently predicted poorer RFS (p = 0.0032). Conclusions: TIM-3 expression on NK cells is positively related to PFP and GZMB levels but has no relation to cell-killing activity in AML, and low GZMB levels in TIM-3+ NK cells in the diagnostic bone marrows predicts poor outcomes. This study lays a theoretical foundation for the clinical application of immune checkpoint inhibitor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya-Zhen Qin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China; (K.S.); (Z.-Y.S.); (D.-H.X.); (Y.-Z.W.); (H.J.); (Q.J.); (X.-J.H.)
| |
Collapse
|
4
|
Zhang J, Wang L, Guo H, Kong S, Li W, He Q, Ding L, Yang B. The role of Tim-3 blockade in the tumor immune microenvironment beyond T cells. Pharmacol Res 2024; 209:107458. [PMID: 39396768 DOI: 10.1016/j.phrs.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Numerous preclinical studies have demonstrated the inhibitory function of T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) on T cells as an inhibitory receptor, leading to the clinical development of anti-Tim-3 blocking antibodies. However, recent studies have shown that Tim-3 is expressed not only on T cells but also on multiple cell types in the tumor microenvironment (TME), including dendritic cells (DCs), natural killer (NK) cells, macrophages, and tumor cells. Therefore, Tim-3 blockade in the immune microenvironment not only affect the function of T cells but also influence the functions of other cells. For example, Tim-3 blockade can enhance the ability of DCs to regulate innate and adaptive immunity. The role of Tim-3 blockade in NK cells function is controversial, as it can enhance the antitumor function of NK cells under certain conditions while having the opposite effect in other situations. Additionally, Tim-3 blockade can promote the reversal of macrophage polarization from the M2 phenotype to the M1 phenotype. Furthermore, Tim-3 blockade can inhibit tumor development by suppressing the proliferation and metastasis of tumor cells. In summary, increasing evidence has shown that Tim-3 in other cell types also plays a critical role in the efficacy of anti-Tim-3 therapy. Understanding the function of anti-Tim-3 therapy in non-T cells can help elucidate the diverse responses observed in clinical patients, leading to better development of relevant therapeutic strategies. This review aims to discuss the role of Tim-3 in the TME and emphasize the impact of Tim-3 blockade in the tumor immune microenvironment beyond T cells.
Collapse
Affiliation(s)
- Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
5
|
Jiang J, Xu Y, Chen D, Li J, Zhu X, Pan J, Zhang L, Cheng P, Huang J. Pan-cancer analysis of immune checkpoint receptors and ligands in various cells in the tumor immune microenvironment. Aging (Albany NY) 2024; 16:11683-11728. [PMID: 39120585 PMCID: PMC11346784 DOI: 10.18632/aging.206053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Drugs that target immune checkpoint have become the most popular weapon in cancer immunotherapy, yet only have practical benefits for a small percentage of patients. Tumor cells constantly interact with their microenvironment, which is made up of a variety of immune cells as well as endothelial cells and fibroblasts. Immune checkpoint expression and blocked signaling of immune cells in the tumor microenvironment (TME) are key to tumor progression. In this study, we perform deliberation convolution on the TCGA database for human lung, breast, and colorectal cancer to infer crosstalk between immune checkpoint receptors (ICRs) and ligands (ICLs) in TME of pan-carcinogenic solid tumor types, validated by flow cytometry. Analysis of immune checkpoints showed that there was little variation between different tumor types. It showed that CD160, LAG3, TIGIT were found to be highly expressed in CD8+ T cells instead of CD4+ T cells, PD-L1, PD-L2, CD86, LGALS9, TNFRSF14, LILRB4 and other ligands were highly expressed on macrophages, FVR, NECTIN2, FGL1 were highly expressed on Epithelial cells, CD200 was highly expressed in Endothelial cells, and CD80 was highly expressed in CD8 High expression on T cells. Overall, our study provides a new resource for the expression of immune checkpoints in TME on various types of cells. Significance: This study provides immune checkpoint expression of immune cells of multiple cancer types to infer immune mechanisms in the tumor microenvironment and provide ideas for the development of new immune checkpoint-blocking drugs.
Collapse
Affiliation(s)
- Jiahuan Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Yazhang Xu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jiaxin Li
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xiaoling Zhu
- Department of Colorectal Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Pu Cheng
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310009, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
6
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
7
|
Chen XJ, Tang R, Zha J, Zeng L, Zhou L, Liu Z, Yang D, Zeng M, Zhu X, Chen A, Liu H, Chen H, Chen G. A potential defensive role of TIM-3 on T lymphocytes in the inflammatory involvement of diabetic kidney disease. Front Immunol 2024; 15:1365226. [PMID: 38812511 PMCID: PMC11133625 DOI: 10.3389/fimmu.2024.1365226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Objective The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Runyan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Linshan Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
8
|
Dixon KO, Lahore GF, Kuchroo VK. Beyond T cell exhaustion: TIM-3 regulation of myeloid cells. Sci Immunol 2024; 9:eadf2223. [PMID: 38457514 DOI: 10.1126/sciimmunol.adf2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is an important immune checkpoint molecule initially identified as a marker of IFN-γ-producing CD4+ and CD8+ T cells. Since then, our understanding of its role in immune responses has significantly expanded. Here, we review emerging evidence demonstrating unexpected roles for TIM-3 as a key regulator of myeloid cell function, in addition to recent work establishing TIM-3 as a delineator of terminal T cell exhaustion, thereby positioning TIM-3 at the interface between fatigued immune responses and reinvigoration. We share our perspective on the antagonism between TIM-3 and T cell stemness, discussing both cell-intrinsic and cell-extrinsic mechanisms underlying this relationship. Looking forward, we discuss approaches to decipher the underlying mechanisms by which TIM-3 regulates stemness, which has remarkable potential for the treatment of cancer, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Gonzalo Fernandez Lahore
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Wang Z, Li X, Tian L, Sha D, Sun Q, Wang J. Application of Bioinformatics in Predicting the Efficacy of Digestive Tumour Immunotherapy Target TIM-3 and its Inhibitors. J Cancer 2024; 15:1954-1965. [PMID: 38434966 PMCID: PMC10905402 DOI: 10.7150/jca.92446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Our main objective is to apply bioinformatics in predicting the efficacy of digestive tumour immunotherapy target TIM-3 and its inhibitors. Methods: Our study used the gene expression omnibus (GEO) database to identify datasets associated with digestive tumours and the action of TIM-3. The GSE427729 dataset based on the GPL10192 platform. The dataset consisted of six samples of total RNA derived from TIM-3 control and knockdown RAW 264.7 cells. We used GEO2R tool to identify DEGs before performing Gene Ontology and identifying the kyoto encyclopedia of genes and genomes (KEGG) pathways. Lastly, we determined the PPI networks to identify hub genes. Results: Our study identified 57 differentially expressed genes based on an adjusted p-value of less than 0.05 and a log2 fold change of 2.0. There were 26 down-regulated genes with 31 up-regulated genes while 22, 404 genes were non-significant. The DEGs were enriched in biological pathways such as activating leukocytes, cells, and development of the immune system. Additionally, we identified four significant KEGG pathways that were implicated in digestive tumour immunotherapy and TIM-3; pathways of pancreatic cancer, NF-Kappa B signalling pathway, Toll-like receptor signalling pathway and C-type lectin receptor signalling pathway. The PPI networks identified 10 hub genes that were implicated in digestive tumour immunotherapy target TIM-3 (Myd88, Traf6, Irf7, Cdk4, Ccnd2, Mapkap1, Prr5, Mpp3, Serpinb6b and Pvrl3). Conclusion: Targeting these biological pathways, KEGG pathways, molecular functions and cellular processes can lead to novel therapeutic treatment and management in digestive tumours based on TIM-3 immunotherapy.
Collapse
Affiliation(s)
- Zexin Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021
| | - Xibin Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021
| | - Litao Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021
| | - Dan Sha
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021
| | - Qinhui Sun
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021
| |
Collapse
|
10
|
Manandhar P, Szymczak-Workman AL, Kane LP. Tim-3 Is Not Required for Establishment of CD8+ T Cell Memory to Lymphocytic Choriomeningitis Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:466-474. [PMID: 38108417 PMCID: PMC10906969 DOI: 10.4049/jimmunol.2300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Tim-3 is a transmembrane protein that is best known for being highly expressed on terminally exhausted CD8+ T cells associated with chronic infection and tumors, although its expression is not limited to those settings. Tim-3 is also expressed by CD8+ T cells during acute infection and by multiple other immune cell types, including CD4+ Th1 and regulatory T cells, dendritic cells, and mast cells. In this study, we investigated the role of Tim-3 signaling on CD8+ T cell memory using a Tim-3 conditional knockout mouse model and mice lacking the signaling portion of the Tim-3 cytoplasmic domain. Together, our results indicate that Tim-3 has at most a modest effect on the formation and function of CD8+ memory T cells.
Collapse
Affiliation(s)
- Priyanka Manandhar
- Dept. of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Lawrence P. Kane
- Dept. of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
11
|
Patwekar M, Sehar N, Patwekar F, Medikeri A, Ali S, Aldossri RM, Rehman MU. Novel immune checkpoint targets: A promising therapy for cancer treatments. Int Immunopharmacol 2024; 126:111186. [PMID: 37979454 DOI: 10.1016/j.intimp.2023.111186] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
The immune system frequently comprises immunological checkpoints. They serve as a barrier to keep the immune system from overreacting and damaging cells that are robust. Immune checkpoint inhibitors (ICIs) are utilized in immunotherapy to prevent the synergy of partner proteins of checkpoint proteins with auxiliary proteins. Moreover, the T cells may target malignant cells since the "off" signal cannot be conveyed. ICIs, which are mostly composed of monoclonal antibodies (mAbs) against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and anti- programmed death-1/programmed ligand 1 (anti-PD-1/PD-L1), might transform the context of cancer therapy. Further, more patients continued to exhibit adaptive resistance, even though several ICIs demonstrated convincing therapeutic benefits in selective tumor types. Immune checkpoint therapy's overall effectiveness is still lacking at this time. A popular area of study involves investigating additional immune checkpoint molecules. Recent research has found a number of fresh immune checkpoint targets, including NKG2A ligands, TIGIT, B7-H6 ligands, Galectin 3, TIM3, and so on. These targets have been focus of the study, and recent investigational approaches have shown encouraging outcomes. In this review article, we covered the development and present level understanding of these recently identified immune checkpoint molecules, its effectiveness and limitations.
Collapse
Affiliation(s)
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062, India
| | - Faheem Patwekar
- Luqman College of Pharmacy, Gulbarga, 585102, Karnataka, India
| | | | - Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Rana M Aldossri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Teagle AR, Castro-Sanchez P, Brownlie RJ, Logan N, Kapoor SS, Wright D, Salmond RJ, Zamoyska R. Deletion of the protein tyrosine phosphatase PTPN22 for adoptive T cell therapy facilitates CTL effector function but promotes T cell exhaustion. J Immunother Cancer 2023; 11:e007614. [PMID: 38056892 PMCID: PMC10711921 DOI: 10.1136/jitc-2023-007614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) is a promising strategy for treating cancer, yet it faces several challenges such as lack of long-term protection due to T cell exhaustion induced by chronic TCR stimulation in the tumor microenvironment. One benefit of ACT, however, is that it allows for cellular manipulations, such as deletion of the phosphotyrosine phosphatase non-receptor type 22 (PTPN22), which improves CD8+ T cell antitumor efficacy in ACT. We tested whether Ptpn22KO cytolytic T cells (CTLs) were also more effective than Ptpn22WT CTL in controlling tumors in scenarios that favor T cell exhaustion. METHODS Tumor control by Ptpn22WT and Ptpn22KO CTL was assessed following adoptive transfer of low numbers of CTL to mice with subcutaneously implanted MC38 tumors. Tumor infiltrating lymphocytes were isolated for analysis of effector functions. An in vitro assay was established to compare CTL function in response to acute and chronic restimulation with antigen-pulsed tumor cells. The expression of effector and exhaustion-associated proteins by Ptpn22WT and Ptpn22KO T cells was followed over time in vitro and in vivo using the ID8 tumor model. Finally, the effect of PD-1 and TIM-3 blockade on Ptpn22KO CTL tumor control was assessed using monoclonal antibodies and CRISPR/Cas9-mediated knockout. RESULTS Despite having improved effector function at the time of transfer, Ptpn22KO CTL became more exhausted than Ptpn22WT CTL, characterized by more rapid loss of effector functions, and earlier and higher expression of inhibitory receptors (IRs), particularly the terminal exhaustion marker TIM-3. TIM-3 expression, under the control of the transcription factor NFIL3, was induced by IL-2 signaling which was enhanced in Ptpn22KO cells. Antitumor responses of Ptpn22KO CTL were improved following PD-1 blockade in vivo, yet knockout or antibody-mediated blockade of TIM-3 did not improve but further impaired tumor control, indicating TIM-3 signaling itself did not drive the diminished function seen in Ptpn22KO CTL. CONCLUSIONS This study questions whether TIM-3 plays a role as an IR and highlights that genetic manipulation of T cells for ACT needs to balance short-term augmented effector function against the risk of T cell exhaustion in order to achieve longer-term protection.
Collapse
Affiliation(s)
- Alexandra Rose Teagle
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca J Brownlie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Nicola Logan
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simran S Kapoor
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - David Wright
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Robert J Salmond
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Rose Zamoyska
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W, Oślizło M, Kulbacka J, Novickij V, Karłowicz-Bodalska K. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother 2023; 72:3405-3425. [PMID: 37567938 PMCID: PMC10576709 DOI: 10.1007/s00262-023-03516-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expression has been a trending topic in recent years due to its differential expression in a wide range of neoplasms. TIM-3 is one of the key immune checkpoint receptors that interact with GAL-9, PtdSer, HMGB1 and CEACAM1. Initially identified on the surface of T helper 1 (Th1) lymphocytes and later on cytotoxic lymphocytes (CTLs), monocytes, macrophages, natural killer cells (NKs), and dendritic cells (DCs), TIM-3 plays a key role in immunoregulation. Recently, a growing body of evidence has shown that its differential expression in various tumor types indicates a specific prognosis for cancer patients. Here, we discuss which types of cancer TIM-3 can serve as a prognostic factor and the influence of coexpressed immune checkpoint inhibitors, such as LAG-3, PD-1, and CTLA-4 on patients' outcomes. Currently, experimental medicine involving TIM-3 has significantly enhanced the anti-tumor effect and improved patient survival. In this work, we summarized clinical trials incorporating TIM-3 targeting monoclonal and bispecific antibodies in monotherapy and combination therapy and highlighted the emerging role of cell-based therapies.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Wioletta Dwernicka
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | |
Collapse
|
14
|
Yiong CS, Lin TP, Lim VY, Toh TB, Yang VS. Biomarkers for immune checkpoint inhibition in sarcomas - are we close to clinical implementation? Biomark Res 2023; 11:75. [PMID: 37612756 PMCID: PMC10463641 DOI: 10.1186/s40364-023-00513-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Sarcomas are a group of diverse and complex cancers of mesenchymal origin that remains poorly understood. Recent developments in cancer immunotherapy have demonstrated a potential for better outcomes with immune checkpoint inhibition in some sarcomas compared to conventional chemotherapy. Immune checkpoint inhibitors (ICIs) are key agents in cancer immunotherapy, demonstrating improved outcomes in many tumor types. However, most patients with sarcoma do not benefit from treatment, highlighting the need for identification and development of predictive biomarkers for response to ICIs. In this review, we first discuss United States (US) Food and Drug Administration (FDA)-approved and European Medicines Agency (EMA)-approved biomarkers, as well as the limitations of their use in sarcomas. We then review eight potential predictive biomarkers and rationalize their utility in sarcomas. These include gene expression signatures (GES), circulating neutrophil-to-lymphocyte ratio (NLR), indoleamine 2,3-dioxygenase (IDO), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and mucin domain-containing protein 3 (TIM-3), TP53 mutation status, B cells, and tertiary lymphoid structures (TLS). Finally, we discuss the potential for TLS as both a predictive and prognostic biomarker for ICI response in sarcomas to be implemented in the clinic.
Collapse
Affiliation(s)
- Chin Sern Yiong
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Tzu Ping Lin
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Vivian Yujing Lim
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Valerie Shiwen Yang
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
- Duke-NUS Medical School, Oncology Academic Clinical Program, Singapore, 169857, Singapore.
| |
Collapse
|
15
|
Yadav R, Hakobyan N, Wang JC. Role of Next Generation Immune Checkpoint Inhibitor (ICI) Therapy in Philadelphia Negative Classic Myeloproliferative Neoplasm (MPN): Review of the Literature. Int J Mol Sci 2023; 24:12502. [PMID: 37569880 PMCID: PMC10420159 DOI: 10.3390/ijms241512502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs), which include essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF), are enduring and well-known conditions. These disorders are characterized by the abnormal growth of one or more hematopoietic cell lineages in the body's stem cells, leading to the enlargement of organs and the manifestation of constitutional symptoms. Numerous studies have provided evidence indicating that the pathogenesis of these diseases involves the dysregulation of the immune system and the presence of chronic inflammation, both of which are significant factors. Lately, the treatment of cancer including hematological malignancy has progressed on the agents aiming for the immune system, cytokine environment, immunotherapy agents, and targeted immune therapy. Immune checkpoints are the molecules that regulate T cell function in the tumor microenvironment (TME). The first line of primary immune checkpoints are programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4). Immune checkpoint inhibitor therapy (ICIT) exerts its anti-tumor actions by blocking the inhibitory pathways in T cells and has reformed cancer treatment. Despite the impressive clinical success of ICIT, tumor internal resistance poses a challenge for oncologists leading to a low response rate in solid tumors and hematological malignancies. A Phase II trial on nivolumab for patients with post-essential thrombocythemia myelofibrosis, primary myelofibrosis, or post-polycythemia myelofibrosis was performed (Identifier: NCT02421354). This trial tested the efficacy of a PD-1 blockade agent, namely nivolumab, but was terminated prematurely due to adverse events and lack of efficacy. A multicenter, Phase II, single-arm open-label study was conducted including pembrolizumab in patients with primary thrombocythemia, post-essential thrombocythemia or post-polycythemia vera myelofibrosis that were ineligible for or were previously treated with ruxolitinib. This study showed that pembrolizumab treatment did not have many adverse events, but there were no pertinent clinical responses hence it was terminated after the first stage was completed. To avail the benefits from immunotherapy, the paradigm has shifted to new immune checkpoints in the TME such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) forming the basis of next-generation ICIT. The primary aim of this article is to underscore and elucidate the significance of next-generation ICIT in the context of MPN. Specifically, we aim to explore the potential of monoclonal antibodies as targeted immunotherapy and the development of vaccines targeting specific MPN epitopes, with the intent of augmenting tumor-related immune responses. It is anticipated that these therapeutic modalities rooted in immunotherapy will not only expand but also enhance the existing treatment regimens for patients afflicted with MPN. Preliminary studies from our laboratory showed over-expressed MDSC and over-expressed VISTA in MDSC, and in progenitor and immune cells directing the need for more clinical trials using next-generation ICI in the treatment of MPN.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Narek Hakobyan
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Jen-Chin Wang
- Department of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| |
Collapse
|
16
|
Liu G, Liu B, Liu B, Tang L, Liu Z, Dai H. Cytokines as Prognostic Biomarkers in Osteosarcoma Patients: A Systematic Review and Meta-analysis. J Interferon Cytokine Res 2023; 43:335-343. [PMID: 37566475 DOI: 10.1089/jir.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Osteosarcoma is the most prevalent type of primary bone malignancy in children and adolescents. The effect of cytokines on osteosarcoma prognosis has been studied and reported. This meta-analysis aimed to assess the prognostic value of cytokines as osteosarcoma biomarkers. Databases including PubMed, Embase, and Cochrane Library were searched for studies on the prognostic value of cytokines in osteosarcoma. From the eligible studies, data on overall survival (OS), disease-free survival, and metastasis-free survival (MFS) were extracted. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. A total of 11 studies involving 755 patients were included in this analysis. High macrophage migration inhibitory factor (MIF) expression in tumors was significantly associated with shortened OS (HR = 2.01, 95% CI: 1.18-3.42, P = 0.010) and MFS (HR = 2.51, 95% CI: 1.47-4.01, P = 0.001). Elevated T cell immunoglobulin and mucin domain-3 (Tim-3) levels in serum correlated with increased risk of disease progression in patients with osteosarcoma (HR = 3.14, 95% CI: 2.88-3.03, P < 0.001). However, interleukin 6 (IL-6) and tumor necrosis factor were not substantially associated with osteosarcoma prognosis. Owing to a paucity of research, other relevant cytokines [interferon-α/β receptor, tissue factor, macrophage inhibitory cytokine 1 (MIC-1), and IL-23] could not be combined. In conclusion, MIF levels in tumors and Tim-3 levels in serum can be potential biomarkers of poor prognosis in osteosarcoma. To confirm this finding and implement these biomarkers into clinical applications, additional large-scale, high-quality studies are needed.
Collapse
Affiliation(s)
- Gang Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Ben Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - BinBin Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Liyuan Tang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China
| | - Zhiwei Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Haiyang Dai
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
17
|
Plum T, Binzberger R, Thiele R, Shang F, Postrach D, Fung C, Fortea M, Stakenborg N, Wang Z, Tappe-Theodor A, Poth T, MacLaren DAA, Boeckxstaens G, Kuner R, Pitzer C, Monyer H, Xin C, Bonventre JV, Tanaka S, Voehringer D, Vanden Berghe P, Strid J, Feyerabend TB, Rodewald HR. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 2023; 620:634-642. [PMID: 37438525 PMCID: PMC10432277 DOI: 10.1038/s41586-023-06188-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 05/10/2023] [Indexed: 07/14/2023]
Abstract
The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.
Collapse
Affiliation(s)
- Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| | - Rebecca Binzberger
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Robin Thiele
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Fuwei Shang
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Daniel Postrach
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Candice Fung
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Marina Fortea
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Zheng Wang
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Duncan A A MacLaren
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Rohini Kuner
- Pharmacology Institute, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Cuiyan Xin
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Thorsten B Feyerabend
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Division for Cellular Immunology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
18
|
Kreidieh FY, Tawbi HA. The introduction of LAG-3 checkpoint blockade in melanoma: immunotherapy landscape beyond PD-1 and CTLA-4 inhibition. Ther Adv Med Oncol 2023; 15:17588359231186027. [PMID: 37484526 PMCID: PMC10357068 DOI: 10.1177/17588359231186027] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Despite major advances with immunotherapy and targeted therapy in the past decade, metastatic melanoma continues to be a deadly disease for close to half of all patients. Over the past decade, advancement in immune profiling and a deeper understanding of the immune tumor microenvironment (TME) have enabled the development of novel approaches targeting and a multitude of targets being investigated for the immunotherapy of melanoma. However, to date, immune checkpoint blockade has remained the most successful with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors, alone or in combination, yielding the most robust and durable clinical outcome in patients with metastatic melanoma. The highest rate of durable responses is achieved with the combination with PD-1 and CTLA-4 inhibition, and is effective in a variety of settings including brain metastases; however, it comes at the expense of a multitude of life-threatening toxicities occurring in up to 60% of patients. This has also established melanoma as the forefront of immuno-oncology (IO) drug development, and the search for novel checkpoints has been ongoing with multiple relevant targets including T-cell immunoglobulin and mucinodomain containing-3 (TIM-3), LAG-3, V-domain immunoglobulin suppressor T-cell activation (VISTA), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), among others. Lymphocyte activation gene-3 (LAG-3), which is a co-inhibitory receptor on T cells that suppress their activation, has revolutionized immunomodulation in melanoma. The 'game changing' results from the RELATIVITY-047 trial validated LAG-3 blockade as a relevant biological target and established it as the third clinically relevant immune checkpoint. Importantly, LAG-3 inhibition in combination with PD-1 inhibition offered impressive efficacy with modest increases in toxicity over single agent PD-1 inhibitor and has been U.S. Food and Drug Administration approved for the first-line therapy of patients with metastatic melanoma. The efficacy of this combination in patients with untreated brain or leptomeningeal metastases or with rare melanoma types, such as uveal melanoma, remains to be established. The challenge remains to elucidate specific mechanisms of response and resistance to LAG-3 blockade and to extend its benefits to other malignancies. Ongoing trials are studying the combination of LAG-3 antibodies with PD-1 inhibitors in multiple cancers and settings. The low toxicity of the combination may also allow for further layering of additional therapeutic approaches such as chemotherapy, oncolytic viruses, cellular therapies, and possibly novel cytokines, among others.
Collapse
Affiliation(s)
- Firas Y. Kreidieh
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
19
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
20
|
Shah NK, Xu P, Shan Y, Chen C, Xie M, Li Y, Meng Y, Shu C, Dong S, He J. MDSCs in pregnancy and pregnancy-related complications: an update†. Biol Reprod 2023; 108:382-392. [PMID: 36504233 DOI: 10.1093/biolre/ioac213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Maternal-fetal immune tolerance is a process that involves complex interactions of the immune system, and myeloid-derived suppressor cells have emerged as one of the novel immunomodulator in the maintenance of maternal-fetal immune tolerance. Myeloid-derived suppressor cells are myeloid progenitor cells with immunosuppressive activities on both innate and adaptive cells through various mechanisms. Emerging evidence demonstrates the accumulation of myeloid-derived suppressor cells during healthy pregnancy to establish maternal-fetal immune tolerance, placentation, and fetal-growth process. By contrast, the absence or decreased myeloid-derived suppressor cells in pregnancy complications like preeclampsia, preterm birth, stillbirth, and recurrent spontaneous abortion have been reported. Here, we have summarized the origin, mechanisms, and functions of myeloid-derived suppressor cells during pregnancy along with the recent advancements in this dynamic field. We also shed light on the immunomodulatory activity of myeloid-derived suppressor cells, which can be a foundation for potential therapeutic manipulation in immunological pregnancy complications.
Collapse
Affiliation(s)
- Neelam Kumari Shah
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Peng Xu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Chen
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Min Xie
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yan Li
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yizi Meng
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chang Shu
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shuai Dong
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
21
|
Inotodiol, an antiasthmatic agent with efficacy and safety, preferentially impairs membrane-proximal signaling for mast cell activation. Int Immunopharmacol 2023; 117:109854. [PMID: 36812673 DOI: 10.1016/j.intimp.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
While inhaled corticosteroids (ICSs) are the mainstay of asthma treatment, due to compliance, drug safety, and resistance issues, new medications to replace ICSs are in high demand. Inotodiol, a fungal triterpenoid, showed a unique immunosuppressive property with a preference for mast cells. It exerted a mast cell-stabilizing activity equally potent to dexamethasone in mouse anaphylaxis models when orally administered in a lipid-based formulation, upgrading bioavailability. However, it was four to over ten times less effective in suppressing other immune cell subsets, depending on the subsets, than dexamethasone showing invariably potent inhibition. Accordingly, inotodiol affected the membrane-proximal signaling for activating mast cell functions more profoundly than other subsets. Inotodiol also effectively prevented asthma exacerbation. Importantly, considering the no-observed-adverse-effect level of inotodiol was over 15 times higher than dexamethasone, its therapeutic index would be at least eight times better,implying that inotodiol is a viable option for replacing CSs in treating asthma.
Collapse
|
22
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
23
|
Zang M, Li N, Chen Q, Ran N, Fu R, Shao Z, Wang T. Bone marrow free immune checkpoints as a potential biomarker for differential diagnosis of acquired bone marrow failures. J Clin Lab Anal 2022; 36:e24677. [PMID: 36086857 PMCID: PMC9550955 DOI: 10.1002/jcla.24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Clinically, to make a definite diagnosis of aplastic anemia (AA), idiopathic cytopenia of undetermined significance (ICUS) or myelodysplastic syndrome (MDS), they should be distinguished from each other. AA and ICUS have some incidence to transform into MDS. Immunosuppressive therapy (IST) is effective in AA and partial ICUS patients, while other ICUSs are more likely to progress to MDS without response to IST. To date, we neither found a technical method that could easily identify AA from hypoproliferative MDS, nor a simple parameter that could indicate ICUS with a response to IST. Here, we detected the concentration of free immune checkpoints in bone marrow supernatant of AA, ICUS, and MDS patients, analyzed the differences of immune status among these three diseases, to try to find a way to predict the response to IST in ICUSs. Methods Seventy‐four novel patients were enrolled with newly diagnosed acquired bone marrow failure (including 29 AA patients, 11 ICUS patients, and 34 MDS patients), bone marrow supernatants were collected. Luminex liquid suspension array technology was used to measure the concentrations of 17 immune checkpoints to analyze the differences of immune status among these three diseases. Results The levels of 17 free immune checkpoints were elevated in MDS and showed a strong correlation with each other, followed by ICUS, and with the weakest in AA. By drawing the ROC curve, we found eight immune checkpoints, including sCD40, sCD86/B7‐2, sCTLA‐4, sGITR, sHVEM, sPD‐1, sTIM‐3, and sTLR‐2, could easily distinguish AA from hypoproliferative MDS. ICUSs with lower concentrations of these eight free immune checkpoints predicted a better IST response. Conclusion In conclusion, we found that there were notable differences in the immune status of AA, ICUS, and MDS. The concentrations of sCD40, sCD86/B7‐2, sCTLA‐4, sGITR, sHVEM, sPD‐1, sTIM‐3, and sTLR‐2 could be used to identify AA and hypoproliferative MDS patients, as well as to distinguish ICUS patients who could benefit from IST.
Collapse
Affiliation(s)
- Mengtong Zang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nianbin Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiulin Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - NingYuan Ran
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Hematology, The First People's Hospital of Changde City, Changde, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Hematology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ting Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
25
|
Miles J, Ward SG, Larijani B. The Fusion of Quantitative Molecular Proteomics and Immune-Oncology: A Step Towards Precision Medicine in Cancer Therapeutics. FEBS Lett 2022; 596:2721-2735. [PMID: 36002439 DOI: 10.1002/1873-3468.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 11/08/2022]
Abstract
Innate and adaptive immune systems are built-in homeostatic functions of many multicellular organisms and protect the host against foreign pathogens and infections. Dysregulation of the molecular mechanisms of the immune system can result in autoimmune diseases. The immune system can also be harnessed and manipulated to provide targeted cancer therapies, some of them relying on the blockade of immune-checkpoint receptors. Two prominent immune checkpoints, PD-1/PD-L1 and CTLA-4/CD80, comprise receptor-ligand pairs that prevent the host immune cells from attacking host tissues. However, cancer cells upregulate the respective PD-L1 and CD80 ligands for PD-1 and CTLA-4 and thereby evade the host-immune response. Therapeutic drugs that block PD-1/PD-L1 and CTLA-4/CD80 interactions re-enable the immune system to attack cancer cells, but their prognostic biomarker remains challenging. In this review, we discuss how the use of quantitative molecular imaging can be exploited to predict the response to anti-PD-1/PD-L1 therapies and to identify cancer patients who would benefit from them.
Collapse
Affiliation(s)
- James Miles
- Centre for Therapeutic Innovation, Cell Biophysics Laboratory, Department of Pharmacy and Pharmacology, Department of Physics, University of Bath, Claverton Down, Bath, United Kingdom.,Cell Biophysics Laboratory, Research Centre for Experimental Marine Biology and Biotechnology (PiE) & Instituto Biofisika, (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.,Early Phase Trials and Sarcoma, Institut Bergonié, Cours de l'Argonne, Bordeaux, France.,FASTBASE Solutions S.L. Astondo Bidea, Scientific and Technology Park of Bizkaia, Derio, Spain
| | - Stephen G Ward
- Department of Pharmacy & Pharmacology, Centre for Therapeutic Innovation Leukocyte Biology Laboratory, University of Bath, Claverton Down, Bath, United Kingdom
| | - Banafshé Larijani
- Centre for Therapeutic Innovation, Cell Biophysics Laboratory, Department of Pharmacy and Pharmacology, Department of Physics, University of Bath, Claverton Down, Bath, United Kingdom.,Cell Biophysics Laboratory, Research Centre for Experimental Marine Biology and Biotechnology (PiE) & Instituto Biofisika, (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| |
Collapse
|
26
|
Xia M, Hu X, Zhao Q, Ru Y, Wang H, Zheng F. Development and Characterization of a Nanobody against Human T-Cell Immunoglobulin and Mucin-3. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2929605. [PMID: 35726228 PMCID: PMC9206550 DOI: 10.1155/2022/2929605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies and antibody-derived biologics are essential tools for cancer research and therapy. The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. A nanobody constructed by molecular engineering of heavy-chain-only antibody, which is unique in camel or alpaca, is a burgeoning tools of diagnostic and therapeutic in clinic. In this study, we immunized a 4-year-old female alpaca with TIM-3 antigen. Then, a VHH phage was synthesized from the transcriptome of its B cells by nested PCR as an intermediate library; the library selection for Tim-3 antigen is carried out in three rounds of translation. The most reactive colonies were selected by periplasmic extract monoclonal ELISA. The nanobody was immobilized by metal affinity chromatography (IMAC) purification with the use of a Ni-NTA column, SDS-PAGE, and Western blotting. Finally, the affinity of TIM3-specific nanobody was determined by ELISA. As results, specific 15 kD bands representing nanomaterials were observed on the gel and confirmed by Western blotting. The nanobody showed obvious specific immune response to Tim-3 and had high binding affinity. We have successfully prepared a functional anti-human Tim-3 nanobody with high affinity in vitro.
Collapse
Affiliation(s)
- Mingyuan Xia
- Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - Xiangnan Hu
- No. 986 Hospital, Air Force Military Medical University, Xi'an City, 710054 Shaanxi Province, China
| | - Qiuxiang Zhao
- Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Basic Medical College, Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - He Wang
- Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
27
|
Zhang Z, Bu L, Luo J, Guo J. Targeting protein kinases benefits cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188738. [PMID: 35660645 DOI: 10.1016/j.bbcan.2022.188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
28
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
29
|
In Vitro Validation of the Therapeutic Potential of Dendrimer-Based Nanoformulations against Tumor Stem Cells. Int J Mol Sci 2022; 23:ijms23105691. [PMID: 35628503 PMCID: PMC9143703 DOI: 10.3390/ijms23105691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor cells with stem cell properties are considered to play major roles in promoting the development and malignant behavior of aggressive cancers. Therapeutic strategies that efficiently eradicate such tumor stem cells are of highest clinical need. Herein, we performed the validation of the polycationic phosphorus dendrimer-based approach for small interfering RNAs delivery in in vitro stem-like cells as models. As a therapeutic target, we chose Lyn, a member of the Src family kinases as an example of a prominent enzyme class widely discussed as a potent anti-cancer intervention point. Our selection is guided by our discovery that Lyn mRNA expression level in glioma, a class of brain tumors, possesses significant negative clinical predictive value, promoting its potential as a therapeutic target for future molecular-targeted treatments. We then showed that anti-Lyn siRNA, delivered into Lyn-expressing glioma cell model reduces the cell viability, a fact that was not observed in a cell model that lacks Lyn-expression. Furthermore, we have found that the dendrimer itself influences various parameters of the cells such as the expression of surface markers PD-L1, TIM-3 and CD47, targets for immune recognition and other biological processes suggested to be regulating glioblastoma cell invasion. Our findings prove the potential of dendrimer-based platforms for therapeutic applications, which might help to eradicate the population of cancer cells with augmented chemotherapy resistance. Moreover, the results further promote our functional stem cell technology as suitable component in early stage drug development.
Collapse
|
30
|
Hong J, Xia L, Huang Z, Yuan X, Liang X, Dai J, Wu Z, Liang L, Ruan M, Long Z, Cheng X, Chen X, Ni J, Ge J, Li Q, Zeng Q, Xia R, Wang Y, Yang M. TIM-3 Expression Level on AML Blasts Correlates With Presence of Core Binding Factor Translocations Rather Than Clinical Outcomes. Front Oncol 2022; 12:879471. [PMID: 35494006 PMCID: PMC9046698 DOI: 10.3389/fonc.2022.879471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) expresses on leukemic stem and progenitor populations of non-M3 acute myeloid leukemia (AML) as well as T lymphocytes. TIM-3 is thought to be involved in the self-renewal of leukemic stem cells and the immune escape of AML cells, however its correlation with AML prognosis is still controversial and worthy of further investigation. Methods we simultaneously assessed TIM-3 expression levels of leukemic blasts and T lymphocytes in the bone marrow of de novo AML patients using flow cytometry. The correlations of TIM-3 expression between leukemic blasts and T lymphocytes and the correlations of TIM-3 expression with various patient parameters were analyzed. In addition, the Cancer Genome Atlas (TCGA) data of AML patients were acquired and analyzed to verify the results. Results TIM-3 expression of CD34+ leukemic blasts (R2 = 0.95, p<0.0001) and CD34+CD38- leukemic stem cells (R2 = 0.75, p<0.0001) were significantly and positively correlated with that of the whole population of leukemic blasts. In addition, TIM-3 expression level of leukemic blasts correlated significantly and positively with that of CD8+ (R2 = 0.44, p<0.0001) and CD4+ (R2 = 0.16, p=0.0181) lymphocytes, and higher TIM-3 expression of leukemic blasts was significantly associated with a greater proportion of peripheral CD8+ T lymphocytes (R2 = 0.24, p=0.0092), indicating that TIM-3 on leukemic blasts might alter adaptive immunity of AML patients. Regarding clinical data, the presence of core binding factor (CBF) translocations was significantly correlated with higher TIM-3 expression of leukemic blasts (CBF versus non-CBF, median 22.78% versus 1.28%, p=0.0012), while TIM-3 expression levels of leukemic blasts were not significantly associated with the remission status after induction chemotherapy (p=0.9799), overall survival (p=0.4201) or event-free survival (p=0.9873). Similar to our results, TCGA data showed that patients with CBF translocations had significantly higher mRNA expression level of HAVCR2 (the gene encoding TIM-3) (median, 9.81 versus 8.69, p<0.0001), and as all patients in the cohort were divided into two groups based on the median HAVCR2 expression level, 5-year overall survivals were not significantly different (low versus high, 24.95% versus 24.54%, p=0.6660). Conclusion TIM-3 expression level on AML blasts correlates with presence of CBF translocations rather than clinical outcomes.
Collapse
Affiliation(s)
- Jian Hong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Leiming Xia
- Department of Hematology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaodong Yuan
- Division of Life Sciences and Medicine, Department of Organ Transplantation Center, Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
| | - Xinglin Liang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jifei Dai
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhonghui Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Liang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Ruan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Cheng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Ni
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingshu Zeng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Mingzhen Yang, ; Yi Wang,
| | - Mingzhen Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Hematology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Mingzhen Yang, ; Yi Wang,
| |
Collapse
|
31
|
Ogando-Rivas E, Castillo P, Jones N, Trivedi V, Drake J, Dechkovskaia A, Candelario KM, Yang C, Mitchell DA. Effects of immune checkpoint blockade on antigen-specific CD8+ T cells for use in adoptive cellular therapy. Microbiol Immunol 2022; 66:201-211. [PMID: 35150167 DOI: 10.1111/1348-0421.12967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Adoptive T cell therapies have been successfully used as prophylaxis or treatment for immunocompromised patients at risk of viral infections or advanced cancers. Unfortunately, for some refractory cancers, they have failed. To overcome this, checkpoint inhibitors have shown to rescue immune anti-tumor responses. We hypothesized that in-vitro checkpoint blockade during T-cell stimulation and expansion with mRNA-pulsed dendritic cells may enhance the activity of antigen-specific T-cells and improve the efficacy of ACT platforms. METHODS Human PBMCs were isolated from CMV-seropositive donors to generate DCs. These were pulsed with CMVpp65-mRNA to educate T-cells in co-culture for 15-days. Three checkpoint blockade conditions were evaluated (anti-PD1, anti-Tim3 and anti-PD1+Tim3). IL-2 and antibodies blockades were added every 3 days. Immunophenotyping was performed on Day-0 and Day-15. Polyfunctional antigen-specific responses were evaluated upon rechallenge with CMVpp65 peptides. RESULTS CMVpp65 activated CD8+ T cells upregulate Lag3 and Tim3 (p= <0.0001). Tim3 antibody blockade alone or in combination led to a significant upregulation of Lag3 expression on CD8+pp65Tetramer+ central memory, effector memory, and TEMRA T-cells. This latter T-cell subset uniquely maintain double-positive Tim3/Lag3 expression after checkpoint blockade. In contrast, PD1 blockade had minimal effects on Tim3 or Lag3 expression. In addition, IFN-g secretion was reduced in T-cells treated with Tim3 blockade in a dose-dependent manner (p=0.004). CONCLUSION In this study, we have identified a potential activating component of Tim3 and linkage between Tim3 and Lag3 signaling upon blocking Tim3 axis during T cell/antigen presenting cell interactions that should be considered when targeting immune checkpoints for clinical use. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elizabeth Ogando-Rivas
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Paul Castillo
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Noah Jones
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Vrunda Trivedi
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Jeffrey Drake
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Anjelika Dechkovskaia
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Kate M Candelario
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Changlin Yang
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells, McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Lu C, Chen H, Wang C, Yang F, Li J, Liu H, Chen G. An Emerging Role of TIM3 Expression on T Cells in Chronic Kidney Inflammation. Front Immunol 2022; 12:798683. [PMID: 35154075 PMCID: PMC8825483 DOI: 10.3389/fimmu.2021.798683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
T cell immunoglobulin domain and mucin domain 3 (TIM3) was initially identified as an inhibitory molecule on IFNγ-producing T cells. Further research discovered the broad expression of TIM3 on different immune cells binding to multiple ligands. Apart from its suppressive effects on the Th1 cells, recent compelling experiments highlighted the indispensable role of TIM3 in the myeloid cell-mediated inflammatory response, supporting that TIM3 exerts pleiotropic effects on both adaptive and innate immune cells in a context-dependent manner. A large number of studies have been conducted on TIM3 biology in the disease settings of infection, cancer, and autoimmunity. However, there is a lack of clinical evidence to closely evaluate the role of T cell-expressing TIM3 in the pathogenesis of chronic kidney disease (CKD). Here, we reported an intriguing case of Mycobacterium tuberculosis (Mtb) infection that was characterized by persistent overexpression of TIM3 on circulating T cells and ongoing kidney tubulointerstitial inflammation for a period of 12 months. In this case, multiple histopathological biopsies revealed a massive accumulation of recruited T cells and macrophages in the enlarged kidney and liver. After standard anti-Mtb treatment, repeated renal biopsy identified a dramatic remission of the infiltrated immune cells in the tubulointerstitial compartment. This is the first clinical report to reveal a time-course expression of TIM3 on the T cells, which is pathologically associated with the progression of severe kidney inflammation in a non-autoimmunity setting. Based on this case, we summarize the recent findings on TIM3 biology and propose a novel model of CKD progression due to the aberrant crosstalk among immune cells.
Collapse
Affiliation(s)
- Can Lu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| | - Chang Wang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Fei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Jun Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Clinical Immunology Research Center, Central South University, Changsha, China
| |
Collapse
|
33
|
Regulation of Tim-3 function by binding to phosphatidylserine. Biochem J 2021; 478:3999-4004. [PMID: 34813649 DOI: 10.1042/bcj20210652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Tim-3 is a transmembrane protein that is highly expressed on subsets of chronically stimulated CD4+ helper and CD8+ cytotoxic T cells, with more transient expression during acute activation and infection. Tim-3 is also constitutively expressed by multiple types of myeloid cells. Like other TIM family members, Tim-3 can bind to phosphatidylserine displayed by apoptotic cells, and this interaction has been shown to mediate uptake of such cells by dendritic cells and cross-presentation of antigens to CD8+ T cells. In contrast, how the recognition of PS by Tim-3 might regulate the function of Tim-3+ T cells is not known. In their recent paper, Lemmon and colleagues demonstrate for the first time that recognition of PS by Tim-3 leads to enhanced T cell activation.
Collapse
|
34
|
Rezaei M, Tan J, Zeng C, Li Y, Ganjalikhani-Hakemi M. TIM-3 in Leukemia; Immune Response and Beyond. Front Oncol 2021; 11:753677. [PMID: 34660319 PMCID: PMC8514831 DOI: 10.3389/fonc.2021.753677] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
T cell immunoglobulin and mucin domain 3 (TIM-3) expression on malignant cells has been reported in some leukemias. In myelodysplastic syndrome (MDS), increased TIM-3 expression on TH1 cells, regulatory T cells, CD8+ T cells, and hematopoietic stem cells (HSCs), which play a role in the proliferation of blasts and induction of immune escape, has been reported. In AML, several studies have reported overexpression of TIM-3 on leukemia stem cells (LSCs) but not on healthy HSCs. Overexpression of TIM-3 on exhausted CD4+ and CD8+ T cells and leukemic cells in CML, ALL, and CLL patients could be a prognostic risk factor for poor therapeutic response and relapse in patients. Currently, several TIM-3 inhibitors are used in clinical trials for leukemias, and some have shown encouraging response rates for MDS and AML treatment. For AML immunotherapy, blockade TIM-3 may have dual effects: directly inhibiting AML cell proliferation and restoring T cell function. However, blockade of PD-1 and TIM-3 fails to restore the function of exhausted CD8+ T cells in the early clinical stages of CLL, indicating that the effects of TIM-3 blockade may be different in AML and other leukemias. Thus, further studies are required to evaluate the efficacy of TIM-3 inhibitors in different types and stages of leukemia. In this review, we summarize the biological functions of TIM-3 and its contribution as it relates to leukemias. We also discuss the effects of TIM-3 blockade in hematological malignancies and clinical trials of TIM-3 for leukemia therapy.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jiaxiong Tan
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Tian T, Li Z. Targeting Tim-3 in Cancer With Resistance to PD-1/PD-L1 Blockade. Front Oncol 2021; 11:731175. [PMID: 34631560 PMCID: PMC8492972 DOI: 10.3389/fonc.2021.731175] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed death receptor 1 (PD-1) or programmed death ligand 1 (PD-L1) blocking therapy has completely changed the treatment pattern of malignant tumors. It has been tested in a wide range of malignant tumors and achieved clinical success. It might be a promising cancer treatment strategy. However, one of the important disadvantages of PD-1/PD-L1 blocking therapy is that only a few patients have a positive response to it. In addition, primary or acquired drug resistance can also lead to cancer recurrence in patients with clinical response. Therefore, it is very important to overcome the resistance of PD-1/PD-L1 blocking therapy and improve the overall response rate of patients to the immunotherapy. T cell immunoglobulin and mucin domain molecule 3 (Tim-3) belongs to the co-inhibitory receptor family involved in immune checkpoint function. Due to adaptive resistance, the expression of Tim-3 is up-regulated in PD-1/PD-L1 blocking therapy resistant tumors. Therefore, blocking the immune checkpoint Tim-3 might antagonize the resistance of PD-1/PD-L1 blocking therapy. This review systematically introduces the preclinical and clinical data of combined blockade of Tim-3 and PD-1/PD-L1 in cancer immunotherapy, and discusses the prospect of overcoming the drug resistance of PD-1/PD-L1 blockade therapy through blockade of Tim-3.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Phosphatidylserine binding directly regulates TIM-3 function. Biochem J 2021; 478:3331-3349. [PMID: 34435619 PMCID: PMC8454703 DOI: 10.1042/bcj20210425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Co-signaling receptors for the T cell receptor (TCR) are important therapeutic targets, with blockade of co-inhibitory receptors such as PD-1 now central in immuno-oncology. Advancing additional therapeutic immune modulation approaches requires understanding ligand regulation of other co-signaling receptors. One poorly understood potential therapeutic target is TIM-3 (T cell immunoglobulin and mucin domain containing-3). Which of TIM-3's several proposed regulatory ligands is/are relevant for signaling is unclear, and different studies have reported TIM-3 as a co-inhibitory or co-stimulatory receptor in T cells. Here, we show that TIM-3 promotes NF-κB signaling and IL-2 secretion following TCR stimulation in Jurkat cells, and that this activity is regulated by binding to phosphatidylserine (PS). TIM-3 signaling is stimulated by PS exposed constitutively in cultured Jurkat cells, and can be blocked by mutating the PS-binding site or by occluding this site with an antibody. We also find that TIM-3 signaling alters CD28 phosphorylation. Our findings clarify the importance of PS as a functional TIM-3 ligand, and may inform the future exploitation of TIM-3 as a therapeutic target.
Collapse
|
37
|
Banerjee H, Nieves-Rosado H, Kulkarni A, Murter B, McGrath KV, Chandran UR, Chang A, Szymczak-Workman AL, Vujanovic L, Delgoffe GM, Ferris RL, Kane LP. Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Rep 2021; 36:109699. [PMID: 34525351 PMCID: PMC8482289 DOI: 10.1016/j.celrep.2021.109699] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/29/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Treg cells) are critical mediators of self-tolerance, but they can also limit effective anti-tumor immunity. Although under homeostasis a small fraction of Treg cells in lymphoid organs express the putative checkpoint molecule Tim-3, this protein is expressed by a much larger proportion of tumor-infiltrating Treg cells. Using a mouse model that drives cell-type-specific inducible Tim-3 expression, we show that expression of Tim-3 by Treg cells is sufficient to drive Treg cells to a more effector-like phenotype, resulting in increases in suppressive activity, effector T cell exhaustion, and tumor growth. We also show that T-reg-cell-specific inducible deletion of Tim-3 enhances anti-tumor immunity. Enhancement of Treg cell function by Tim-3 is strongly correlated with increased expression of interleukin-10 (IL-10) and a shift to a more glycolytic metabolic phenotype. Our data demonstrate that Tim-3+ Treg cells may be a relevant therapeutic target cell type for the treatment of cancer.
Collapse
Affiliation(s)
- Hridesh Banerjee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hector Nieves-Rosado
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aditi Kulkarni
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Benjamin Murter
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kyle V McGrath
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Lazar Vujanovic
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
38
|
Dong S, Shah NK, He J, Han S, Xie M, Wang Y, Cheng T, Liu Z, Shu C. The abnormal expression of Tim-3 is involved in the regulation of myeloid-derived suppressor cells and its correlation with preeclampsia. Placenta 2021; 114:108-114. [PMID: 34509865 DOI: 10.1016/j.placenta.2021.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Maternal immune system tolerance to the semi-allogeneic fetus is critical to a successful pregnancy. We previously reported that myeloid-derived suppressor cells (MDSC) was associated with maternal immune imbalance. T cell immunoglobulin and mucin-containing protein 3 (Tim-3)/Galectin-9 (Gal-9) pathway modulates function of various immune cells in maternal-fetal interface. However, the regulatory effects of Tim-3/Gal-9 signaling on MDSCs and its role in preeclampsia (PE) remain unclear. METHODS In the current study we investigated the expression of Tim-3 on MDSC in preeclampsia (PE) patients to further explore the pathogenesis of PE. RESULTS The proportion of Tim-3+ M-MDSC (monocytic MDSC) cells was higher in PE patients than in healthy control. Meanwhile, the protein expression of Gal-9, as the ligand of Tim-3, was increased in placenta of PE patients. M-MDSC also expressed a higher level of interferon-γ (IFN-γ) and a lower level of transforming growth factor-β (TGF-β) in PE. Furthermore, our study suggested that blocking Tim-3 could attenuate the inhibitory function of MDSC. DISCUSSION The abnormal expression of Tim-3 on MDSC might be involved in the pathogenesis of PE, and could be a marker to evaluate the immune function in PE.
Collapse
Affiliation(s)
- Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Neelam Kumari Shah
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Shumei Han
- Department of Medical Administration, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China
| | - Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Ying Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Tingting Cheng
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China
| | - Zitao Liu
- Hope Fertility Center, New York, NY10019, USA
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
39
|
Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y. Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers (Basel) 2021; 13:cancers13184573. [PMID: 34572799 PMCID: PMC8468441 DOI: 10.3390/cancers13184573] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.
Collapse
Affiliation(s)
- Céline Pisibon
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Amira Ouertani
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Corine Bertolotto
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Robert Ballotti
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Yann Cheli
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
- Correspondence:
| |
Collapse
|
40
|
Wang J, Yang L, Dao FT, Wang YZ, Chang Y, Xu N, Chen WM, Jiang Q, Jiang H, Liu YR, Qin YZ. Prognostic significance of TIM-3 expression pattern at diagnosis in patients with t(8;21) acute myeloid leukemia. Leuk Lymphoma 2021; 63:152-161. [PMID: 34405769 DOI: 10.1080/10428194.2021.1966785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acute myeloid leukemia (AML) with t(8;21) is a heterogeneous disease and needs to be stratified. Both, cancer cells and immune cells participate in tumor initiation, growth and progression and might affect clinical outcomes. TIM-3 (T cell immunoglobulin and mucin domain-containing protein 3), an immune checkpoint molecule, is expressed not only on immune cells but also on leukemic stem cells (LSCs) in AML. This prompted us to investigate the prognostic significance of TIM-3 in t(8;21) AML. A total of 47 t(8;21) AML patients were tested for TIM-3 expression by multi-parameter flow cytometry at diagnosis. 35 of these, who received chemotherapy alone or along with allogeneic hematopoietic stem cell transplantation were followed up. The expression pattern of TIM-3 on T-cells and NK (natural killer) cells as a whole (T + NK) and LSCs were evaluated independently. High percentage of T + NK - TIM-3+ and CD34+CD38-TIM-3+ cells were significantly associated with a high 2-year cumulative incidence of relapse (CIR) (p = 0.028, 0.016). Further, concurrent high frequencies of T + NK-TIM-3+ and CD34+CD38-TIM-3+ cells at diagnosis were significantly associated with a high 2-year CIR (p < 0.0001) and this together with c-KIT D816 mutation were the independent adverse prognostic factors for relapse (hazard ratio (HR)=2.5, [95% confidence interval (CI), 1.1-6.0], p = 0.04; HR = 46.5, [95% CI, 2.7-811.5], p = 0.009). In conclusion, the expression pattern of TIM-3 on both T and NK cells and LSCs at diagnosis had prognostic significance in t (8;21) AML.
Collapse
Affiliation(s)
- Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lu Yang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feng-Ting Dao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Nan Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
41
|
Lu X. Structure and functions of T-cell immunoglobulin-domain and mucin- domain protein 3 in cancer. Curr Med Chem 2021; 29:1851-1865. [PMID: 34365943 DOI: 10.2174/0929867328666210806120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling. METHODS This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types, and the rationale for TIM-3-targeted cancer immunotherapy. RESULTS TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models. CONCLUSION TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR. United Kingdom
| |
Collapse
|
42
|
Kikushige Y. TIM-3 in normal and malignant hematopoiesis: Structure, function, and signaling pathways. Cancer Sci 2021; 112:3419-3426. [PMID: 34159709 PMCID: PMC8409405 DOI: 10.1111/cas.15042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is hierarchically organized by self-renewing leukemic stem cells (LSCs). LSCs originate from hematopoietic stem cells (HSCs) by acquiring multistep leukemogenic events. To specifically eradicate LSCs, while keeping normal HSCs intact, the discrimination of LSCs from HSCs is important. We have identified T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) as an LSC-specific surface molecule in human myeloid malignancies and demonstrated its essential function in maintaining the self-renewal ability of LSCs. TIM-3 has been intensively investigated as a "coinhibitory" or "immune checkpoint" molecule of T cells. However, little is known about its distinct function in T cells and myeloid malignancies. In this review, we discuss the structure of TIM-3 and its function in normal blood cells and LSCs, emphasizing the specific signaling pathways involved, as well as the therapeutic applications of TIM-3 molecules in human myeloid malignancies.
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan.,Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
43
|
Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions. Cancers (Basel) 2021; 13:cancers13143524. [PMID: 34298735 PMCID: PMC8306848 DOI: 10.3390/cancers13143524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Communication signals and signaling pathways are often studied in different physiological systems. However, it has become abundantly clear that the immune system is not self-regulated, but functions in close association with the nervous system. The neural-immune interface is complex; its balance determines cancer progression, as well as autoimmune disorders. Immunotherapy remains a promising approach in the context of glioblastoma multiforme (GBM). The primary obstacle to finding effective therapies is the potent immunosuppression induced by GBM. Anti-inflammatory cytokines, induction of regulatory T cells, and the expression of immune checkpoint molecules are the key mediators for immunosuppression in the tumor microenvironment. Immune checkpoint molecules are ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. In the past decade, they have been extensively studied in preclinical and clinical trials in diseases such as cancer or autoimmune diseases in which the immune system has failed to maintain homeostasis. In this review, we will discuss promising immune-modulatory targets that are in the focus of current clinical research in glioblastoma, but are also in the precarious position of potentially becoming starting points for the development of autoimmune diseases like multiple sclerosis.
Collapse
|
44
|
Lee WHS, Ye Z, Cheung AMS, Goh YPS, Oh HLJ, Rajarethinam R, Yeo SP, Soh MK, Chan EHL, Tan LK, Tan SY, Chuah C, Chng WJ, Connolly JE, Wang CI. Effective Killing of Acute Myeloid Leukemia by TIM-3 Targeted Chimeric Antigen Receptor T Cells. Mol Cancer Ther 2021; 20:1702-1712. [PMID: 34158344 DOI: 10.1158/1535-7163.mct-20-0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/11/2020] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with poor outcomes, overwhelmingly due to relapse. Minimal residual disease (MRD), defined as the persistence of leukemic cells after chemotherapy treatment, is thought to be the major cause of relapse. The origins of relapse in AML have been traced to rare therapy-resistant leukemic stem cells (LSCs) that are already present at diagnosis. Effective treatment strategies for long-term remission are lacking, as it has been difficult to eliminate LSCs with conventional therapy. Here, we proposed a new approach based on the chimeric antigen receptor (CAR)-directed T lymphocytes, targeting T-cell immunoglobulin, and mucin domain 3 (TIM-3) to treat MRD in patients with AML. TIM-3 is selected as the target because it is highly expressed on AML blasts and LSCs in most subtypes regardless of the patient's genetic characteristics and treatment course. Moreover, it is absent in the normal hematopoietic stem cells, granulocytes, naïve lymphocytes, and most normal nonhematopoietic tissues. Using a naïve human Fab phage display library, we isolated an anti-human TIM-3 antibody and designed a second-generation anti-TIM-3. Our anti-TIM-3 CAR T cells exhibit potent antileukemic activity against AML cell lines and primary AML blasts, and in the mouse models. More importantly, we demonstrate efficient killing of the primary LSCs directly isolated from the patients. Hence, eradication of the LSCs present in the MRD by anti-TIM-3 CAR T-cell therapy following the first-line treatment may improve the clinical outcomes of patients with AML.
Collapse
Affiliation(s)
- Wen-Hsin Sandy Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Zhiyong Ye
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Alice M S Cheung
- Department of Haematology, Singapore General Hospital, Singapore
| | - Y P Sharon Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Hsueh Ling Janice Oh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Siok Ping Yeo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Mun Kuen Soh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health Systems, Singapore
| | - Lip Kun Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore
| | - Soo-Yong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Pathology, National University Hospital, National University Health System, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, Singapore
| | - Charles Chuah
- Department of Haematology, Singapore General Hospital, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Health Systems, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Institute of Biomedical Studies, Baylor University, Waco
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
45
|
Kataoka S, Manandhar P, Lee J, Workman CJ, Banerjee H, Szymczak-Workman AL, Kvorjak M, Lohmueller J, Kane LP. The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse. Sci Signal 2021; 14:eaba0717. [PMID: 34131021 PMCID: PMC9741863 DOI: 10.1126/scisignal.aba0717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic activation, including during chronic infection and in solid tumors. Thus, Tim-3 is generally thought of as an inhibitory protein. We and others previously reported that under some circumstances, Tim-3 exerts paradoxical costimulatory activity in T cells (and other cells), including enhancement of the phosphorylation of ribosomal S6 protein. Here, we examined the upstream signaling pathways that control Tim-3-mediated increases in phosphorylated S6 in T cells. We also defined the localization of Tim-3 relative to the T cell immune synapse and its effects on downstream signaling. Recruitment of Tim-3 to the immune synapse was mediated exclusively by the transmembrane domain, replacement of which impaired the ability of Tim-3 to costimulate T cell receptor (TCR)-dependent S6 phosphorylation. Furthermore, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in a chimeric antigen receptor still enabled T cell activation. Together, our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.
Collapse
Affiliation(s)
- Shunsuke Kataoka
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Asahi Kasei Pharma Corporation, Shizuoka, Japan
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Judong Lee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hridesh Banerjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Michael Kvorjak
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jason Lohmueller
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
46
|
Yang L, Chen X, Wang Q, Zhu Y, Wu C, Ma X, Zuo D, He H, Huang L, Li J, Xia C, Hu S, Yang X, Feng M. Generation of TIM3 inhibitory single-domain antibodies to boost the antitumor activity of chimeric antigen receptor T cells. Oncol Lett 2021; 22:542. [PMID: 34079595 PMCID: PMC8157332 DOI: 10.3892/ol.2021.12803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
Targeting inhibitory immune checkpoint molecules has significantly altered cancer treatment regimens. T cell immunoglobulin and mucin domain 3 (TIM3) is one of the major inhibitory immune checkpoints expressed on T cells. Blocking the engagement of TIM3 and its inhibitory ligand galectin-9 may potentiate the effects of immunotherapy or overcome the adaptive resistance to the therapeutic blockade of programmed cell death protein 1, cytotoxic T-lymphocyte-associated protein 4, B- and T-lymphocyte attenuator and lymphocyte-activation gene 3, amongst others, as each of these immune checkpoints harbors unique properties that set it apart from the rest. Heavy chain variable fragment (VH)-derived single-domain antibodies (sdAbs) represent a class of expanding drug candidates. These sdAbs have unique advantages, including their minimal size in the antibody class, ease of expression, broad scope for modular structure design and re-engineering, and excellent tumor penetration. In the present study, two sdAbs, TIM3-R23 and TIM3-R53, were generated by immunizing rabbits with the recombinant extracellular domain of TIM3 and applying phage display technology. These sdAbs were easily expressed in mammalian cells. The purified sdAbs were able to bind to both recombinant and cell surface TIM3, and blocked it from binding to the ligand galectin-9. In vivo studies demonstrated that TIM3-R53 was able to potentiate the antitumor activity of chimeric antigen receptor T cells that targeted mesothelin. In conclusion, the results of the present study suggested that TIM3-R53 may be a novel and attractive immune checkpoint inhibitor against TIM3, which is worthy of further investigation.
Collapse
Affiliation(s)
- Liu Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Qian Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Yuankui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Changfa Wu
- Clinical Testing Branch, Hongshan District Chinese Medicine Hospital, Wuhan, Hubei 430000, P.R. China
| | - Xuqian Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Dianbao Zuo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Huixia He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Le Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Jingwen Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Chunjiao Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Sheng Hu
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Xiaoqing Yang
- Clinical Laboratory, Hospital of Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
47
|
de Mingo Pulido Á, Hänggi K, Celias DP, Gardner A, Li J, Batista-Bittencourt B, Mohamed E, Trillo-Tinoco J, Osunmakinde O, Peña R, Onimus A, Kaisho T, Kaufmann J, McEachern K, Soliman H, Luca VC, Rodriguez PC, Yu X, Ruffell B. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 2021; 54:1154-1167.e7. [PMID: 33979578 DOI: 10.1016/j.immuni.2021.04.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1+ classical dendritic cells (cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and Sting. TIM-3 blockade increased uptake of extracellular DNA by cDC1 through an endocytic process that resulted in cytoplasmic localization. DNA uptake and efficacy of TIM-3 blockade required DNA binding by HMGB1, while galectin-9-induced cell surface clustering of TIM-3 was necessary for its suppressive function. Human peripheral blood cDC1s also took up extracellular DNA upon TIM-3 blockade. Thus, TIM-3 regulates endocytosis of extracellular DNA and activation of the cytoplasmic DNA sensing cGAS-STING pathway in cDC1s, with implications for understanding the mechanisms underlying TIM-3 immunotherapy.
Collapse
Affiliation(s)
- Álvaro de Mingo Pulido
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daiana P Celias
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Jie Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Bruna Batista-Bittencourt
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Eslam Mohamed
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jimena Trillo-Tinoco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olabisi Osunmakinde
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA; Department of Health Science and Technology, Aalborg University, Aalborg 29220, Denmark
| | - Reymi Peña
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alexis Onimus
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Molecular Medicine PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Tsuneyasu Kaisho
- Institute for Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Johanna Kaufmann
- Immuno-Oncology & Combinations Research Unit, GSK, Waltham, MA 02451, USA
| | | | - Hatem Soliman
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vincent C Luca
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
48
|
Hu M, Li Y, Lu Y, Wang M, Li Y, Wang C, Li Q, Zhao H. The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ 2021; 9:e11306. [PMID: 34012727 PMCID: PMC8109006 DOI: 10.7717/peerj.11306] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) influences the occurrence and progression of tumors, and hypoxia is an important characteristic of the TME. The expression of programmed death 1 (PD1)/programmed death-ligand 1 (PDL1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), and other immune checkpoints in hypoxic malignant tumors is often significantly increased, and is associated with poor prognosis. The application of immune checkpoint inhibitors (ICIs) for treating lung cancer, urothelial carcinoma, and gynecological tumors has achieved encouraging efficacy; however, the rate of efficacy of ICI single-drug treatment is only about 20%. In the present review, we discuss the possible mechanisms by which the hypoxic TME regulates immune checkpoints. By activating hypoxia-inducible factor-1α (HIF-1α), regulating the adenosine (Ado)-A2aR pathway, regulating the glycolytic pathway, and driving epithelial-mesenchymal transition (EMT) and other biological pathways, hypoxia regulates the expression levels of CTLA4, PD1, PDL1, CD47, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain 3 (TIM3), and other immune checkpoints, which interfere with the immune effector cell anti-tumor response and provide convenient conditions for tumors to escape immune surveillance. The combination of HIF-1α inhibitors, Ado-inhibiting tumor immune microenvironment regulatory drugs, and other drugs with ICIs has good efficacy in both preclinical studies and phase I-II clinical studies. Exploring the effects of TME hypoxia on the expression of immune checkpoints and the function of infiltrating immune cells has greatly clarified the relationship between the hypoxic TME and immune escape, which is of great significance for the development of new drugs and the search for predictive markers of the efficacy of immunotherapy for treating malignant tumors. In the future, combination therapy with hypoxia pathway inhibitors and ICIs may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Min Hu
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfu Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingrui Li
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Zhao
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
49
|
Wang Z, Chen J, Wang M, Zhang L, Yu L. One Stone, Two Birds: The Roles of Tim-3 in Acute Myeloid Leukemia. Front Immunol 2021; 12:618710. [PMID: 33868234 PMCID: PMC8047468 DOI: 10.3389/fimmu.2021.618710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
T cell immunoglobulin and mucin protein 3 (Tim-3) is an immune checkpoint and plays a vital role in immune responses during acute myeloid leukemia (AML). Targeting Tim-3 kills two birds with one stone by balancing the immune system and eliminating leukemia stem cells (LSCs) in AML. These functions make Tim-3 a potential target for curing AML. This review mainly discusses the roles of Tim-3 in the immune system in AML and as an AML LSC marker, which sheds new light on the role of Tim-3 in AML immunotherapy.
Collapse
Affiliation(s)
- Zhiding Wang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Jinghong Chen
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Mengzhen Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Linlin Zhang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
50
|
de Freitas E Silva R, von Stebut E. Unraveling the Role of Immune Checkpoints in Leishmaniasis. Front Immunol 2021; 12:620144. [PMID: 33776999 PMCID: PMC7990902 DOI: 10.3389/fimmu.2021.620144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis are Neglected Tropical Diseases affecting millions of people every year in at least 98 countries and is one of the major unsolved world health issues. Leishmania is a parasitic protozoa which are transmitted by infected sandflies and in the host they mainly infect macrophages. Immunity elicited against those parasites is complex and immune checkpoints play a key role regulating its function. T cell receptors and their respective ligands, such as PD-1, CTLA-4, CD200, CD40, OX40, HVEM, LIGHT, 2B4 and TIM-3 have been characterized for their role in regulating adaptive immunity against different pathogens. However, the exact role those receptors perform during Leishmania infections remains to be better determined. This article addresses the key role immune checkpoints play during Leishmania infections, the limiting factors and translational implications.
Collapse
Affiliation(s)
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|