1
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Huang Z, Zhang G, Lyon CJ, Hu TY, Lu S. Outlook for CRISPR-based tuberculosis assays now in their infancy. Front Immunol 2023; 14:1172035. [PMID: 37600797 PMCID: PMC10436990 DOI: 10.3389/fimmu.2023.1172035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Tuberculosis (TB) remains a major underdiagnosed public health threat worldwide, being responsible for more than 10 million cases and one million deaths annually. TB diagnosis has become more rapid with the development and adoption of molecular tests, but remains challenging with traditional TB diagnosis, but there has not been a critical review of this area. Here, we systematically review these approaches to assess their diagnostic potential and issues with the development and clinical evaluation of proposed CRISPR-based TB assays. Based on these observations, we propose constructive suggestions to improve sample pretreatment, method development, clinical validation, and accessibility of these assays to streamline future assay development and validation studies.
Collapse
Affiliation(s)
- Zhen Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tony Y. Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Mass Spectrometry-Based Proteomic and Metabolomic Profiling of Serum Samples for Discovery and Validation of Tuberculosis Diagnostic Biomarker Signature. Int J Mol Sci 2022; 23:ijms232213733. [PMID: 36430211 PMCID: PMC9694769 DOI: 10.3390/ijms232213733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Tuberculosis (TB) is a transmissible disease listed as one of the 10 leading causes of death worldwide (10 million infected in 2019). A swift and precise diagnosis is essential to forestall its transmission, for which the discovery of effective diagnostic biomarkers is crucial. In this study, we aimed to discover molecular biomarkers for the early diagnosis of tuberculosis. Two independent cohorts comprising 29 and 34 subjects were assayed by proteomics, and 49 were included for metabolomic analysis. All subjects were arranged into three experimental groups—healthy controls (controls), latent TB infection (LTBI), and TB patients. LC-MS/MS blood serum protein and metabolite levels were submitted to univariate, multivariate, and ROC analysis. From the 149 proteins quantified in the discovery set, 25 were found to be differentially abundant between controls and TB patients. The AUC, specificity, and sensitivity, determined by ROC statistical analysis of the model composed of four of these proteins considering both proteomic sets, were 0.96, 93%, and 91%, respectively. The five metabolites (9-methyluric acid, indole-3-lactic acid, trans-3-indoleacrylic acid, hexanoylglycine, and N-acetyl-L-leucine) that better discriminate the control and TB patient groups (VIP > 1.75) from a total of 92 metabolites quantified in both ionization modes were submitted to ROC analysis. An AUC = 1 was determined, with all samples being correctly assigned to the respective experimental group. An integrated ROC analysis enrolling one protein and four metabolites was also performed for the common control and TB patients in the proteomic and metabolomic groups. This combined signature correctly assigned the 12 controls and 12 patients used only for prediction (AUC = 1, specificity = 100%, and sensitivity = 100%). This multiomics approach revealed a biomarker signature for tuberculosis diagnosis that could be potentially used for developing a point-of-care diagnosis clinical test.
Collapse
|
4
|
Alebouyeh S, Weinrick B, Achkar JM, García MJ, Prados-Rosales R. Feasibility of novel approaches to detect viable Mycobacterium tuberculosis within the spectrum of the tuberculosis disease. Front Med (Lausanne) 2022; 9:965359. [PMID: 36072954 PMCID: PMC9441758 DOI: 10.3389/fmed.2022.965359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a global disease caused by Mycobacterium tuberculosis (Mtb) and is manifested as a continuum spectrum of infectious states. Both, the most common and clinically asymptomatic latent tuberculosis infection (LTBI), and the symptomatic disease, active tuberculosis (TB), are at opposite ends of the spectrum. Such binary classification is insufficient to describe the existing clinical heterogeneity, which includes incipient and subclinical TB. The absence of clinically TB-related symptoms and the extremely low bacterial burden are features shared by LTBI, incipient and subclinical TB states. In addition, diagnosis relies on cytokine release after antigenic T cell stimulation, yet several studies have shown that a high proportion of individuals with immunoreactivity never developed disease, suggesting that they were no longer infected. LTBI is estimated to affect to approximately one fourth of the human population and, according to WHO data, reactivation of LTBI is the main responsible of TB cases in developed countries. Assuming the drawbacks associated to the current diagnostic tests at this part of the disease spectrum, properly assessing individuals at real risk of developing TB is a major need. Further, it would help to efficiently design preventive treatment. This quest would be achievable if information about bacterial viability during human silent Mtb infection could be determined. Here, we have evaluated the feasibility of new approaches to detect viable bacilli across the full spectrum of TB disease. We focused on methods that specifically can measure host-independent parameters relying on the viability of Mtb either by its direct or indirect detection.
Collapse
Affiliation(s)
- Sogol Alebouyeh
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | | | - Jacqueline M. Achkar
- Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria J. García
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
- *Correspondence: Maria J. García,
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
- Rafael Prados-Rosales,
| |
Collapse
|
5
|
Huang Z, LaCourse SM, Kay AW, Stern J, Escudero JN, Youngquist BM, Zheng W, Vambe D, Dlamini M, Mtetwa G, Cranmer LM, Njuguna I, Wamalwa DC, Maleche-Obimbo E, Catanzaro DG, Lyon CJ, John-Stewart G, DiNardo A, Mandalakas AM, Ning B, Hu TY. CRISPR detection of circulating cell-free Mycobacterium tuberculosis DNA in adults and children, including children with HIV: a molecular diagnostics study. THE LANCET. MICROBE 2022; 3:e482-e492. [PMID: 35659882 PMCID: PMC9300929 DOI: 10.1016/s2666-5247(22)00087-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tuberculosis remains a leading cause of global mortality, especially for adults and children living with HIV (CLHIV) underdiagnosed by sputum-based assays. Non-sputum-based assays are needed to improve tuberculosis diagnosis and tuberculosis treatment monitoring. Our aim in this study was to determine whether ultrasensitive detection of Mycobacterium tuberculosis cell-free DNA (Mtb-cfDNA) in blood can diagnose tuberculosis and evaluate tuberculosis treatment responses. METHODS In this molecular diagnostics study we analysed archived serum from two patient populations evaluated for tuberculosis in Eswatini and Kenya to detect Mtb-cfDNA, analysing serum from all individuals who had both sufficient serum volumes and clear diagnostic results. An optimised CRISPR-mediated tuberculosis (CRISPR-TB) assay was used to detect Mtb-cfDNA in serum at enrolment from adults and children with presumptive tuberculosis and their asymptomatic household contacts, and at enrolment and during tuberculosis treatment from a cohort of symptomatic CLHIV at high risk for tuberculosis, who provided longitudinal serum at enrolment and during tuberculosis treatment. FINDINGS CRISPR-TB identified microbiologically and clinically confirmed tuberculosis cases in the predominantly HIV-negative Eswatini adult cohort with 96% sensitivity (27 [96%] of 28, 95% CI 80-100) and 94% specificity (16 [94%] of 17, 71-100), and with 83% sensitivity (5 [83%] of 6, 36-100) and 95% specificity (21 [95%] of 22, 77-100) in the paediatric cohort, including all six cases of extrapulmonary tuberculosis. In the Kenyan CLHIV cohort, CRISPR-TB detected all (13 [100%] of 13, 75-100) confirmed tuberculosis cases and 85% (39 [85%] of 46, 71-94) of unconfirmed tuberculosis cases diagnosed by non-microbiological clinical findings. CLHIV who were CRISPR-TB positive at enrolment had a 2·4-times higher risk of mortality by 6 months after enrolment. Mtb-cfDNA signal decreased after tuberculosis treatment initiation, with near or complete Mtb-cfDNA clearance by 6 months after tuberculosis treatment initiation. INTERPRETATION CRISPR-mediated detection of circulating Mtb-cfDNA shows promise to increase the identification of paediatric tuberculosis and HIV-associated tuberculosis, and potential for early diagnosis and rapid monitoring of tuberculosis treatment responses. FUNDING US Department of Defense, National Institute of Child Health and Human Development, National Institute of Allergy and Infectious Diseases, University of Washington Center for AIDS Research, and the Weatherhead Presidential Endowment fund.
Collapse
Affiliation(s)
- Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Sylvia M LaCourse
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Alexander W Kay
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Baylor Children's Foundation-Eswatini, Mbabane, Eswatini
| | - Joshua Stern
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jaclyn N Escudero
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Brady M Youngquist
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Debrah Vambe
- Eswatini National Tuberculosis Control Programme, Ministry of Health, Manzini, Eswatini
| | - Muyalo Dlamini
- National TB Reference Laboratory, Eswatini Health Laboratory Services, Ministry of Health, Mbabane, Eswatini
| | - Godwin Mtetwa
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Baylor Children's Foundation-Eswatini, Mbabane, Eswatini
| | - Lisa M Cranmer
- Department of Pediatrics, Division of Infectious Diseases, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA; Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Irene Njuguna
- Department of Global Health, University of Washington, Seattle, WA, USA; Research and Programmes, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton C Wamalwa
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Elizabeth Maleche-Obimbo
- Department of Global Health, University of Washington, Seattle, WA, USA; Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Donald G Catanzaro
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Grace John-Stewart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Andrew DiNardo
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Anna M Mandalakas
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
6
|
Yerlikaya S, Owusu EDA, Frimpong A, DeLisle RK, Ding XC. A Dual, Systematic Approach to Malaria Diagnostic Biomarker Discovery. Clin Infect Dis 2021; 74:40-51. [PMID: 34718455 PMCID: PMC8752250 DOI: 10.1093/cid/ciab251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/15/2022] Open
Abstract
Background The emergence and spread of Plasmodium falciparum parasites that lack HRP2/3 proteins and the resulting decreased utility of HRP2-based malaria rapid diagnostic tests (RDTs) prompted the World Health Organization and other global health stakeholders to prioritize the discovery of novel diagnostic biomarkers for malaria. Methods To address this pressing need, we adopted a dual, systematic approach by conducting a systematic review of the literature for publications on diagnostic biomarkers for uncomplicated malaria and a systematic in silico analysis of P. falciparum proteomics data for Plasmodium proteins with favorable diagnostic features. Results Our complementary analyses led us to 2 novel malaria diagnostic biomarkers compatible for use in an RDT format: glyceraldehyde 3-phosphate dehydrogenase and dihydrofolate reductase-thymidylate synthase. Conclusions Overall, our results pave the way for the development of next-generation malaria RDTs based on new antigens by identifying 2 lead candidates with favorable diagnostic features and partially de-risked product development prospects.
Collapse
Affiliation(s)
- Seda Yerlikaya
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Ewurama D A Owusu
- Foundation for Innovative New Diagnostics, Geneva, Switzerland.,Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Augustina Frimpong
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.,Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Accra, Ghana
| | | | - Xavier C Ding
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| |
Collapse
|
7
|
Chan LW. Advances in activity-based diagnostics for infectious disease and microbiome health. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100296. [PMID: 34179594 PMCID: PMC8224833 DOI: 10.1016/j.cobme.2021.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the human body, pathogens and the endogenous microbiome produce enzymes that aid in replication and survival. The activity from these enzymes as well as energy-dependent transport processes can be used as functional biomarkers for pathogen identification, antimicrobial treatment monitoring, and surveillance of microbiome health. To produce visual and/or quantifiable readouts from this activity, concepts from chemical biology and nanomedicine have been utilized to develop signal-producing probes for patient samples or for direct administration in vivo. In the context of infection, activity-based diagnostics offer several potential advantages over current diagnostics including the ability to differentiate between active infection and sterile inflammation, which is made possible by targeting microbial enzymes with orthogonal activity to that of the host. In this review, we discuss new developments in the making of activity-based infection diagnostics and the beginnings of microbiome activity-based diagnostics.
Collapse
Affiliation(s)
- Leslie W. Chan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
8
|
Conde R, Laires R, Gonçalves LG, Rizvi A, Barroso C, Villar M, Macedo R, Simões MJ, Gaddam S, Lamosa P, Puchades-Carrasco L, Pineda-Lucena A, Patel AB, Mande SC, Barnejee S, Matzapetakis M, Coelho AV. Discovery of serum biomarkers for diagnosis of tuberculosis by NMR metabolomics including cross-validation with a second cohort. Biomed J 2021; 45:654-664. [PMID: 34314900 PMCID: PMC9486122 DOI: 10.1016/j.bj.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tuberculosis (TB) is a disease with worldwide presence and a major cause of death in several developing countries. Current diagnostic methodologies often lack specificity and sensitivity, whereas a long time is needed to obtain a conclusive result. Methods In an effort to develop better diagnostic methods, this study aimed at the discovery of a biomarker signature for TB diagnosis using a Nuclear Magnetic Resonance based metabolomics approach. In this study, we acquired 1H NMR spectra of blood serum samples of groups of healthy subjects, individuals with latent TB and of patients with pulmonary and extra-pulmonary TB. The resulting data were treated with uni- and multivariate statistical analysis. Results Six metabolites (inosine, hypoxanthine, mannose, asparagine, aspartate and glutamate) were validated by an independent cohort, all of them related with metabolic processes described as associated with TB infection. Conclusion The findings of the study are according with the WHO Target Product Profile recommendations for a triage test to rule-out active TB.
Collapse
Affiliation(s)
- R Conde
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - R Laires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - L G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - A Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | - C Barroso
- CDP Almada-Seixal, ARSLVT, Portugal.
| | - M Villar
- CDP Venda Nova, ARSLVT, Portugal.
| | | | | | - S Gaddam
- Department of Immunology, Bhagwan Mahavir Medical Research Center, Hyderabad, India; Department of Genetics, Osmania University, Hyderabad, India.
| | - P Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - L Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - A Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain.
| | - A B Patel
- CSIR- Centre for Cellular Molecular Biology, Hyderabad, India.
| | - S C Mande
- National Centre For Cell Science, Pune, India; Present address: Council of Scientific and Industrial Research, New Delhi, India.
| | - S Barnejee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | - M Matzapetakis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - A V Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| |
Collapse
|
9
|
Silveira-Mattos PS, Barreto-Duarte B, Vasconcelos B, Fukutani KF, Vinhaes CL, Oliveira-De-Souza D, Ibegbu CC, Figueiredo MC, Sterling TR, Rengarajan J, Andrade BB. Differential Expression of Activation Markers by Mycobacterium tuberculosis-specific CD4+ T Cell Distinguishes Extrapulmonary From Pulmonary Tuberculosis and Latent Infection. Clin Infect Dis 2021; 71:1905-1911. [PMID: 31665254 DOI: 10.1093/cid/ciz1070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diagnosis of active tuberculosis (ATB) currently relies on detection of Mycobacterium tuberculosis (Mtb). Identifying patients with extrapulmonary TB (EPTB) remains challenging because microbiological confirmation is often not possible. Highly accurate blood-based tests could improve diagnosis of both EPTB and pulmonary TB (PTB) and timely initiation of anti-TB therapy. METHODS A case-control study was performed using discriminant analyses to validate an approach using Mtb-specific CD4+T-cell activation markers in blood to discriminate PTB and EPTB from latent TB infection (LTBI) as well as EPTB from PTB in 270 Brazilian individuals. We further tested the effect of human immunodeficiency virus (HIV) coinfection on diagnostic performance. Frequencies of interferon-γ +CD4+T cells expressing CD38, HLADR, and/or Ki67 were assessed by flow cytometry. RESULTS EPTB and PTB were associated with higher frequencies of CD4+T cells expressing CD38, HLADR, or Ki67 compared with LTBI (all P values < .001). Moreover, frequencies of HLADR+ (P = .03) or Ki67+ (P < .001) cells accurately distinguished EPTB from PTB. HIV infection did not affect the capacity of these markers to distinguish ATB from LTBI or EPTB from PTB. CONCLUSIONS Cell activation markers in Mtb-specific CD4+T cells distinguished ATB from LTBI and EPTB from PTB, regardless of HIV infection status. These parameters provide an attractive approach for developing blood-based diagnostic tests for both active and latent TB.
Collapse
Affiliation(s)
- Paulo S Silveira-Mattos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Bahia, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
| | - Beatriz Barreto-Duarte
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Bahia, Brazil.,Universidade Salvador, Laureate Universities, Salvador, Bahia, Brazil
| | - Beatriz Vasconcelos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Bahia, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Bahia, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
| | - Caian L Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Bahia, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
| | - Deivide Oliveira-De-Souza
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Bahia, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
| | - Chris C Ibegbu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.,Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marina C Figueiredo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.,Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Bahia, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil.,Universidade Salvador, Laureate Universities, Salvador, Bahia, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Sivakumaran D, Ritz C, Gjøen JE, Vaz M, Selvam S, Ottenhoff THM, Doherty TM, Jenum S, Grewal HMS. Host Blood RNA Transcript and Protein Signatures for Sputum-Independent Diagnostics of Tuberculosis in Adults. Front Immunol 2021; 11:626049. [PMID: 33613569 PMCID: PMC7891042 DOI: 10.3389/fimmu.2020.626049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
To achieve the ambitious targets for tuberculosis (TB) prevention, care, and control stated by the End TB Strategy, new health care strategies, diagnostic tools are warranted. Host-derived biosignatures are explored for their TB diagnostic potential in accordance with the WHO target product profiles (TPPs) for point-of-care (POC) testing. We aimed to identify sputum-independent TB diagnostic signatures in newly diagnosed adult pulmonary-TB (PTB) patients recruited in the context of a prospective household contact cohort study conducted in Andhra Pradesh, India. Whole-blood mRNA samples from 158 subjects (PTB, n = 109; age-matched household controls, n = 49) were examined by dual-color Reverse-Transcriptase Multiplex Ligation-dependent Probe-Amplification (dcRT-MLPA) for the expression of 198 pre-defined genes and a Mesoscale discovery assay for the concentration of 18 cytokines/chemokines in TB-antigen stimulated QuantiFERON supernatants. To identify signatures, we applied a two-step approach; in the first step, univariate filtering was used to identify and shortlist potentially predictive biomarkers; this step may be seen as removing redundant biomarkers. In the second step, a logistic regression approach was used such that group membership (PTB vs. household controls) became the binary response in a Lasso regression model. We identified an 11-gene signature that distinguished PTB from household controls with AUCs of ≥0.98 (95% CIs: 0.94–1.00), and a 4-protein signature (IFNγ, GMCSF, IL7 and IL15) that differentiated PTB from household controls with AUCs of ≥0.87 (95% CIs: 0.75–1.00), in our discovery cohort. Subsequently, we evaluated the performance of the 11-gene signature in two external validation data sets viz, an independent cohort at the Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK (GSE107994 data set), and the Catalysis treatment response cohort (GSE89403 data set) from South Africa. The 11-gene signature validated and distinguished PTB from healthy and asymptomatic M. tuberculosis infected household controls in the GSE107994 data set, with an AUC of 0.95 (95% CI: 0.91–0.98) and 0.94 (95% CI: 0.89–0.98). More interestingly in the GSE89403 data set, the 11-gene signature distinguished PTB from household controls and patients with other lung diseases with an AUC of 0.93 (95% CI: 0.87–0.99) and 0.73 (95% CI: 0.56–0.89). These criteria meet the WHO TTP benchmarks for a non–sputum-based triage test for TB diagnosis. We suggest that further validation is required before clinical implementation of the 11-gene signature we have identified markers will be possible.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Christian Ritz
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - John Espen Gjøen
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Mario Vaz
- Department of Physiology, St. John's Medical College and Division of Health and Humanities, St. John's Research Institute, Bangalore, India
| | - Sumithra Selvam
- Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Harleen M S Grewal
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Riou C, Du Bruyn E, Ruzive S, Goliath RT, Lindestam Arlehamn CS, Sette A, Sher A, Barber DL, Wilkinson RJ. Disease extent and anti-tubercular treatment response correlates with Mycobacterium tuberculosis-specific CD4 T-cell phenotype regardless of HIV-1 status. Clin Transl Immunology 2020; 9:e1176. [PMID: 33005414 PMCID: PMC7520805 DOI: 10.1002/cti2.1176] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives The development of non‐sputum‐based assays for tuberculosis (TB) diagnosis and treatment monitoring is a key priority. Recent data indicate that whole blood‐based assays to assess the phenotype of Mycobacterium tuberculosis (Mtb)‐specific CD4 T cells hold promise for this purpose and require further investigation in well‐characterised TB cohorts. In this study, we investigated the relationship between the phenotypic signature of Mtb‐specific CD4 responses, TB disease extent and treatment response. Methods Using flow cytometry, we measured the expression of phenotypic and functional markers (HLA‐DR, CD27, CD153, KLRG1, IL‐2, MIP‐1β, TNF‐α and IFN‐γ) on Mtb‐specific CD4 T‐cells in whole blood from 161 participants of varying TB and HIV status. TB disease extent was graded as a continuum using the Xpertct value, C‐reactive protein, Timika radiographic score and monocyte/lymphocyte ratio. Results The phenotypic profile of Mtb‐specific CD4 T cells pre‐anti‐tubercular treatment (ATT) strongly correlated with disease extent, irrespective of HIV status. ATT associated with major changes in the phenotype of Mtb‐specific CD4 T cells, with decreased expression of HLA‐DR and increased CD27 and CD153 expression. Principal component analysis showed an almost complete separation between latent TB infection (LTBI) and active TB (aTB) pre‐ATT groups, whereas the profile of the aTB post‐ATT group overlapped with the LTBI group. However, in patients experiencing treatment failure or relapse, no significant changes were observed in Mtb‐specific CD4 T‐cell phenotype pre‐ and post‐ATT. Conclusion Whole blood‐based assays of Mtb‐specific CD4 T‐cell activation and maturation markers can be used as non‐sputum‐based biomarkers of disease extent and treatment monitoring in TB, regardless of HIV‐1 status.
Collapse
Affiliation(s)
- Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa Institute of Infectious Disease and Molecular Medicine University of Cape Town Observatory South Africa.,Division of Immunology Department of Pathology University of Cape Town Observatory South Africa
| | - Elsa Du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa Institute of Infectious Disease and Molecular Medicine University of Cape Town Observatory South Africa
| | - Sheena Ruzive
- Wellcome Centre for Infectious Disease Research in Africa Institute of Infectious Disease and Molecular Medicine University of Cape Town Observatory South Africa
| | - Rene T Goliath
- Wellcome Centre for Infectious Disease Research in Africa Institute of Infectious Disease and Molecular Medicine University of Cape Town Observatory South Africa
| | | | - Alessandro Sette
- Division of Vaccine Discovery La Jolla Institute for Immunology La Jolla CA USA.,Department of Medicine University of California San Diego La Jolla CA USA
| | - Alan Sher
- Immunobiology Section Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health Bethesda MD USA
| | - Daniel L Barber
- T Lymphocyte Biology Section Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health Bethesda MD USA
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa Institute of Infectious Disease and Molecular Medicine University of Cape Town Observatory South Africa.,Department of Infectious Diseases Imperial College London London UK.,Department of Medicine University of Cape Town Observatory South Africa.,The Francis Crick Institute London UK
| |
Collapse
|
12
|
Pandita A, Madhuripan N, Pandita S, Hurtado RM. Challenges and controversies in the treatment of spinal tuberculosis. J Clin Tuberc Other Mycobact Dis 2020; 19:100151. [PMID: 32154388 PMCID: PMC7058908 DOI: 10.1016/j.jctube.2020.100151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current guidelines regarding management of spinal TB are mostly extrapolated from trials on pulmonary disease. Since the British Medical Research Council (BMRC) trials in the 1970s, there are not many good quality studies that substantiate best practice guidelines for the management of this entity. Tuberculous infection of the spine behaves much differently from bacterial osteomyelitis and limited data leads to ambiguity in many cases. Although a few studies have been conducted in patients with spinal TB, most were in the era preceding short course chemotherapy and prior to current radiological and surgical advances. While spinal TB is primarily managed medically, surgical intervention may be needed in certain cases. We discuss areas of uncertainty and challenges that exist with regards to medical treatment, diagnosis, therapeutic endpoints, and a few surgical considerations. Substantial delay in diagnosis continues to be common with this disease even in the developed nations, leading to substantial morbidity. In light of limited evidence, there is an emerging recognition of the need to individualize various aspects of its treatment such as duration, frequency and acknowledging the limitations of various diagnostic and radiological modalities. We aim to consolidate potential areas of research in the diagnosis and management of spinal TB and to revisit the latest published evidence on its redressal.
Collapse
Affiliation(s)
- Aakriti Pandita
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Nikhil Madhuripan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Saptak Pandita
- Division of Medicine, Hind Institute of Medical Sciences, India
| | - Rocio M. Hurtado
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Duffy FJ, Thompson EG, Scriba TJ, Zak DE. Multinomial modelling of TB/HIV co-infection yields a robust predictive signature and generates hypotheses about the HIV+TB+ disease state. PLoS One 2019; 14:e0219322. [PMID: 31306460 PMCID: PMC6629068 DOI: 10.1371/journal.pone.0219322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Current diagnostics are inadequate to meet the challenges presented by co-infection with Mycobacterium tuberculosis (Mtb) and HIV, the leading cause of death for HIV-infected individuals. Improved characterization of Mtb/HIV coinfection as a distinct disease state may lead to better identification and treatment of affected individuals. METHODS Four previously-published TB and HIV co-infection related datasets were used to train and validate multinomial machine learning classifiers that simultaneously predict TB and HIV status. Classifier predictive performance was measured using leave-one-out cross validation on the training set and blind predictive performance on multiple test sets using area under the ROC curve (AUC) as the performance metric. Linear modelling of signature gene expression was applied to systematically classify genes as TB-only, HIV-only or combined TB/HIV. RESULTS The optimal signature discovered was a 10-gene random forest multinomial signature that robustly discriminated active tuberculosis (TB) from other non-TB disease states with improved performance compared with previously published signatures (AUC: 0.87), and specifically discriminated active TB/HIV co-infection from all other conditions (AUC: 0.88). Signature genes exhibited a variety of transcriptional patterns including both TB-only and HIV-only response genes and genes with expression patterns driven by interactions between HIV and TB infection states, including the CD8+ T-cell receptor LAG3 and the apoptosis-related gene CERKL. CONCLUSIONS By explicitly including distinct disease states within the machine learning analysis framework, we developed a compact and highly diagnostic signature that simultaneously discriminates multiple disease states associated with Mtb/HIV co-infection. Examination of the expression patterns of signature genes suggests mechanisms underlying the unique inflammatory conditions associated with active TB in the presence of HIV. In particular, we observed that dysregulation of CD8+ effector T-cell and NK-cell associated genes may be an important feature of Mtb/HIV co-infection.
Collapse
Affiliation(s)
- Fergal J. Duffy
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA, United States of America
| | - Ethan G. Thompson
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA, United States of America
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Daniel E. Zak
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA, United States of America
| |
Collapse
|
14
|
Reid MJA, Arinaminpathy N, Bloom A, Bloom BR, Boehme C, Chaisson R, Chin DP, Churchyard G, Cox H, Ditiu L, Dybul M, Farrar J, Fauci AS, Fekadu E, Fujiwara PI, Hallett TB, Hanson CL, Harrington M, Herbert N, Hopewell PC, Ikeda C, Jamison DT, Khan AJ, Koek I, Krishnan N, Motsoaledi A, Pai M, Raviglione MC, Sharman A, Small PM, Swaminathan S, Temesgen Z, Vassall A, Venkatesan N, van Weezenbeek K, Yamey G, Agins BD, Alexandru S, Andrews JR, Beyeler N, Bivol S, Brigden G, Cattamanchi A, Cazabon D, Crudu V, Daftary A, Dewan P, Doepel LK, Eisinger RW, Fan V, Fewer S, Furin J, Goldhaber-Fiebert JD, Gomez GB, Graham SM, Gupta D, Kamene M, Khaparde S, Mailu EW, Masini EO, McHugh L, Mitchell E, Moon S, Osberg M, Pande T, Prince L, Rade K, Rao R, Remme M, Seddon JA, Selwyn C, Shete P, Sachdeva KS, Stallworthy G, Vesga JF, Vilc V, Goosby EP. Building a tuberculosis-free world: The Lancet Commission on tuberculosis. Lancet 2019; 393:1331-1384. [PMID: 30904263 DOI: 10.1016/s0140-6736(19)30024-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/22/2022]
Affiliation(s)
- Michael J A Reid
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA.
| | - Nimalan Arinaminpathy
- School of Public Health, Imperial College London, London, UK; Faculty of Medicine, Imperial College London, London, UK
| | - Amy Bloom
- Tuberculosis Division, United States Agency for International Development, Washington, DC, USA
| | - Barry R Bloom
- Department of Global Health and Population, Harvard University, Cambridge, MA, USA
| | | | - Richard Chaisson
- Departments of Medicine, Epidemiology, and International Health, Johns Hopkins School of Medicine, Baltimore, MA, USA
| | | | | | - Helen Cox
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Mark Dybul
- Department of Medicine, Centre for Global Health and Quality, Georgetown University, Washington, DC, USA
| | | | - Anthony S Fauci
- National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Maryland, MA, USA
| | | | - Paula I Fujiwara
- Department of Tuberculosis and HIV, The International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Timothy B Hallett
- School of Public Health, Imperial College London, London, UK; Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Nick Herbert
- Global TB Caucus, Houses of Parliament, London, UK
| | - Philip C Hopewell
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chieko Ikeda
- Department of GLobal Health, Ministry of Heath, Labor and Welfare, Tokyo, Japan
| | - Dean T Jamison
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Aamir J Khan
- Interactive Research & Development, Karachi, Pakistan
| | - Irene Koek
- Global Health Bureau, United States Agency for International Development, Washington, DC, USA
| | - Nalini Krishnan
- Resource Group for Education and Advocacy for Community Health, Chennai, India
| | - Aaron Motsoaledi
- South African National Department of Health, Pretoria, South Africa
| | - Madhukar Pai
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada; McGill International TB Center, McGill University, Montreal, QC, Canada
| | - Mario C Raviglione
- University of Milan, Milan, Italy; Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Almaz Sharman
- Academy of Preventive Medicine of Kazakhstan, Almaty, Kazakhstan
| | - Peter M Small
- Global Health Institute, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | - Zelalem Temesgen
- Department of Infectious Diseases, Mayo Clinic, Rochester, MI, USA
| | - Anna Vassall
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK; Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Gavin Yamey
- Center for Policy Impact in Global Health, Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Bruce D Agins
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Sofia Alexandru
- Institutul de Ftiziopneumologie Chiril Draganiuc, Chisinau, Moldova
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Naomi Beyeler
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Stela Bivol
- Center for Health Policies and Studies, Chisinau, Moldova
| | - Grania Brigden
- Department of Tuberculosis and HIV, The International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Adithya Cattamanchi
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Cazabon
- McGill International TB Center, McGill University, Montreal, QC, Canada
| | - Valeriu Crudu
- Center for Health Policies and Studies, Chisinau, Moldova
| | - Amrita Daftary
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada; McGill International TB Center, McGill University, Montreal, QC, Canada
| | - Puneet Dewan
- Bill & Melinda Gates Foundation, New Delhi, India
| | - Laurie K Doepel
- National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Maryland, MA, USA
| | - Robert W Eisinger
- National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Maryland, MA, USA
| | - Victoria Fan
- T H Chan School of Public Health, Harvard University, Cambridge, MA, USA; Office of Public Health Studies, University of Hawaii, Mānoa, HI, USA
| | - Sara Fewer
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Furin
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jeremy D Goldhaber-Fiebert
- Centers for Health Policy and Primary Care and Outcomes Research, Stanford University, Stanford, CA, USA
| | - Gabriela B Gomez
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Stephen M Graham
- Department of Tuberculosis and HIV, The International Union Against Tuberculosis and Lung Disease, Paris, France; Department of Paediatrics, Center for International Child Health, University of Melbourne, Melbourne, VIC, Australia; Burnet Institute, Melbourne, VIC, Australia
| | - Devesh Gupta
- Revised National TB Control Program, New Delhi, India
| | - Maureen Kamene
- National Tuberculosis, Leprosy and Lung Disease Program, Ministry of Health, Nairobi, Kenya
| | | | - Eunice W Mailu
- National Tuberculosis, Leprosy and Lung Disease Program, Ministry of Health, Nairobi, Kenya
| | | | - Lorrie McHugh
- Office of the Secretary-General's Special Envoy on Tuberculosis, United Nations, Geneva, Switzerland
| | - Ellen Mitchell
- International Institute of Social Studies, Erasmus University Rotterdam, The Hague, Netherland
| | - Suerie Moon
- Department of Global Health and Population, Harvard University, Cambridge, MA, USA; Global Health Centre, The Graduate Institute Geneva, Geneva, Switzerland
| | | | - Tripti Pande
- McGill International TB Center, McGill University, Montreal, QC, Canada
| | - Lea Prince
- Centers for Health Policy and Primary Care and Outcomes Research, Stanford University, Stanford, CA, USA
| | | | - Raghuram Rao
- Ministry of Health and Family Welfare, New Delhi, India
| | - Michelle Remme
- International Institute for Global Health, United Nations University, Kuala Lumpur, Malaysia
| | - James A Seddon
- Department of Medicine, Imperial College London, London, UK; Faculty of Medicine, Imperial College London, London, UK; Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Casey Selwyn
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Priya Shete
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Juan F Vesga
- School of Public Health, Imperial College London, London, UK; Faculty of Medicine, Imperial College London, London, UK
| | | | - Eric P Goosby
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Toward the Development of a Circulating Free DNA-Based In Vitro Diagnostic Test for Infectious Diseases: a Review of Evidence for Tuberculosis. J Clin Microbiol 2019; 57:JCM.01234-18. [PMID: 30404942 PMCID: PMC6440766 DOI: 10.1128/jcm.01234-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The detection of circulating free DNA (cfDNA) has transformed the field of oncology and prenatal diagnostics. Clinical application of cfDNA for disease diagnosis and monitoring, however, is relatively recent in the field of infectious disease. The detection of circulating free DNA (cfDNA) has transformed the field of oncology and prenatal diagnostics. Clinical application of cfDNA for disease diagnosis and monitoring, however, is relatively recent in the field of infectious disease. The potential of cfDNA as a noninvasive diagnostic and monitoring tool is especially promising for tuberculosis (TB), as it enables the detection of both pulmonary and extrapulmonary TB from easily accessible urine and/or blood samples from any age group. However, despite the potential of cfDNA detection to identify TB, very few studies are described in the literature to date. A comprehensive search of the literature identified 15 studies that report detecting Mycobacterium tuberculosis DNA in the blood and urine of TB patients with nongenitourinary disease, but in only six of them were the methodological steps considered suitable for cfDNA isolation and detection. The sensitivities and specificities for the diagnosis of pulmonary and extrapulmonary TB cases reported in these six studies are highly variable, falling in the range of 29% to 79% and 67% to 100%, respectively. While most studies could not meet the performance requirements of the high-priority target product profiles (TPP) published by the World Health Organization (WHO), the study results nonetheless show promise for a point-of-care detection assay. Better designed prospective studies, using appropriate samples, will be required to validate cfDNA as a TB biomarker.
Collapse
|
16
|
Basu Roy R, Sambou B, Uhía I, Roetynck S, Robertson BD, Kampmann B. An Auto-luminescent Fluorescent BCG Whole Blood Assay to Enable Evaluation of Paediatric Mycobacterial Responses Using Minimal Blood Volumes. Front Pediatr 2019; 7:151. [PMID: 31114771 PMCID: PMC6503113 DOI: 10.3389/fped.2019.00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction: Understanding protective human immunity against mycobacteria is critical to developing and evaluating new vaccines against tuberculosis. Children are the most susceptible population to infection, disease, and death from tuberculosis, but also have the strongest evidence of BCG-inducible protection. Limited amounts of blood can be obtained for research purposes in paediatrics and therefore there is a need for high-yield, low-volume, human immunology assays. Methods: We transformed BCG Danish with plasmids encoding luciferase full operon derived from Photorhabdus luminescens together with Green Fluorescent Protein and antibiotic selection markers. We characterised the luminescent and fluorescent properties of this recombinant BCG strain (BCG-GFP-LuxFO) using a luminometer and flow cytometry and developed a paediatric whole blood in vitro infection model. Results: Luminescence of BCG-GFP-LuxFO correlated with optical density (Spearman Rank Correlation coefficient r = 0.985, p < 0.0001) and colony forming units (CFUs) in liquid culture medium (r = 0.971, p < 0.0001). Fluorescence of BCG-GFP-LuxFO in paediatric whole blood was confirmed by flow cytometry in granulocytes and monocytes 1 h following infection. Luminescence of BCG-GFP-LuxFO in whole blood corresponded with CFUs (r = 0.7123, p < 0.0001). Conclusion: The BCG-GFP-LuxFO assay requires 225 μL whole blood per sample, from which serial luminescence measurements can be obtained, together with biochemical analysis of supernatants and cellular assay applications using its fluorescent properties. This offers the opportunity to study human-mycobacterial interactions using multiple experimental modalities with only minimal blood volumes. It is therefore a valuable method for investigating paediatric immunity to tuberculosis.
Collapse
Affiliation(s)
- Robindra Basu Roy
- Department of Paediatrics, Centre for International Child Health, Imperial College London, London, United Kingdom.,Vaccines & Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine (LSHTM), Banjul, The Gambia
| | - Basil Sambou
- Vaccines & Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine (LSHTM), Banjul, The Gambia
| | - Iria Uhía
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sophie Roetynck
- Vaccines & Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine (LSHTM), Banjul, The Gambia
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Beate Kampmann
- Department of Paediatrics, Centre for International Child Health, Imperial College London, London, United Kingdom.,Vaccines & Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine (LSHTM), Banjul, The Gambia.,Faculty of Infectious and Tropical Diseases, The Vaccine Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
17
|
Wilson D, Moosa MYS, Cohen T, Cudahy P, Aldous C, Maartens G. Evaluation of Tuberculosis Treatment Response With Serial C-Reactive Protein Measurements. Open Forum Infect Dis 2018; 5:ofy253. [PMID: 30474046 PMCID: PMC6240901 DOI: 10.1093/ofid/ofy253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Background Novel biomarkers are needed to assess response to antituberculosis therapy in smear-negative patients. Methods To evaluate the utility of C-reactive protein (CRP) in monitoring response to antituberculosis therapy, we conducted a post hoc analysis on a cohort of adults with symptoms of tuberculosis and negative sputum smears in a high–tuberculosis and HIV prevalence setting in KwaZulu-Natal, South Africa. Serial changes in CRP, weight, and hemoglobin were evaluated over 8 weeks. Results Four hundred twenty-one participants being evaluated for smear-negative tuberculosis were enrolled, and 33 were excluded. Two hundred ninety-five were treated for tuberculosis (137 confirmed, 158 possible), and 93 did not have tuberculosis. One hundred and eighty-three of 213 (86%) participants who agreed to HIV testing were HIV positive. At week 8, the on-treatment median CRP reduction in the tuberculosis group (interquartile range [IQR]) was 79.5% (25.4% to 91.7%), the median weight gain was 2.3% (−1.0% to 5.6%), and the median hemoglobin increase was 7.0% (0.8% to 18.9%); P < .0001 for baseline to week 8 comparison of absolute median values. Only CRP changed significantly at week 2 (median reduction [IQR], 75.1% [46.9% to 89.2%]) in the group with confirmed tuberculosis and in the possible tuberculosis group (median reduction [IQR], 49.0% [−0.4% to 80.9%]). Failure of CRP to reduce to ≤55% of the baseline value at week 2 predicted hospitalization or death in both tuberculosis groups, with 99% negative predictive value. Conclusions Change in CRP may have utility in early evaluation of response to antituberculosis treatment and to identify those at increased risk of adverse outcomes.
Collapse
Affiliation(s)
- Douglas Wilson
- Department of Internal Medicine, Edendale Hospital, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Mahomed-Yunus S Moosa
- Division of Medicine, Department of Infectious Diseases, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Patrick Cudahy
- Section of Infectious Disease, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Collen Aldous
- School of Clinical Medicine, Nelson R Mandela (NRMSM) Campus, University of Durban, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Druszczynska M, Wawrocki S, Szewczyk R, Rudnicka W. Mycobacteria-derived biomarkers for tuberculosis diagnosis. Indian J Med Res 2018; 146:700-707. [PMID: 29664027 PMCID: PMC5926340 DOI: 10.4103/ijmr.ijmr_1441_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis (TB) remains an escalating problem worldwide. The current diagnostic methods do not always guarantee reliable diagnosis. TB treatment is a time-consuming process that requires the use of several chemotherapeutics, to which mycobacteria are becoming increasingly resistant. This article focuses on the potential utility of biomarkers of mycobacterial origin with potential implications for TB diagnosis. Properly standardized indicators could become new diagnostic tools, improving and streamlining the identification of Mycobacterium tuberculosis infection and the implementation of appropriate therapy. These markers can also potentially provide a quick confirmation of effectiveness of new anti-mycobacterial drugs and TB vaccines, leading to a possible application in practice.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology & Infectious Biology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| | - Sebastian Wawrocki
- Department of Immunology & Infectious Biology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| | - Rafal Szewczyk
- Department of Industrial Microbiology & Biotechnology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| | - Wieslawa Rudnicka
- Department of Immunology & Infectious Biology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Wilkinson KA, Oni T, Gideon HP, Goliath R, Wilkinson RJ, Riou C. Activation Profile of Mycobacterium tuberculosis-Specific CD4(+) T Cells Reflects Disease Activity Irrespective of HIV Status. Am J Respir Crit Care Med 2017; 193:1307-10. [PMID: 27248590 DOI: 10.1164/rccm.201601-0116le] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Katalin A Wilkinson
- 1 University of Cape Town Cape Town, South Africa.,2 The Francis Crick Institute Mill Hill Laboratory London, United Kingdom and
| | - Tolu Oni
- 1 University of Cape Town Cape Town, South Africa
| | | | - Rene Goliath
- 1 University of Cape Town Cape Town, South Africa
| | - Robert J Wilkinson
- 1 University of Cape Town Cape Town, South Africa.,2 The Francis Crick Institute Mill Hill Laboratory London, United Kingdom and.,3 Imperial College London London, United Kingdom
| | | |
Collapse
|
20
|
Abstract
Rapid and accurate diagnosis is critical for timely initiation of anti-tuberculosis (TB) treatment, but many people with TB (or TB symptoms) do not have access to adequate initial diagnosis. In many countries, TB diagnosis is still reliant on sputum microscopy, a test with known limitations. However, new diagnostics are starting to change the landscape. Stimulated, in part, by the success and rollout of Xpert MTB/RIF, an automated, molecular test, there is now considerable interest in new technologies. The landscape looks promising with a pipeline of new tools, particularly molecular diagnostics, and well over 50 companies actively engaged in product development, and many tests have been reviewed by WHO for policy endorsement. However, new diagnostics are yet to reach scale, and there needs to be greater convergence between diagnostics development and the development of shorter TB drug regimens. Another concern is the relative absence of non-sputum-based diagnostics in the pipeline for children, and of biomarker tests for triage, cure, and latent TB progression. Increased investments are necessary to support biomarker discovery, validation, and translation into clinical tools. While transformative tools are being developed, high-burden countries will need to improve the efficiency of their health care delivery systems, ensure better uptake of new technologies, and achieve greater linkages across the TB and HIV care continuum. While we wait for next-generation technologies, national TB programs must scale up the best diagnostics currently available, and use implementation science to get the maximum impact.
Collapse
|
21
|
Abstract
The identification of individuals with latent tuberculosis infection (LTBI) is useful for both fundamental understanding of the pathogenesis of disease and for clinical and public health interventions (i.e., to prevent progression to disease). Basic research suggests there is a pathogenetic continuum from exposure to infection to disease, and individuals may advance or reverse positions within the spectrum, depending on changes in the host immunity. Unfortunately, there is no diagnostic test that resolves the various stages within the spectrum of Mycobacterium tuberculosis infection. Two main immune-based approaches are currently used for identification of LTBI: the tuberculin skin test (TST) and the interferon-gamma release assay (IGRA). TST can use either the conventional purified protein derivative or more specific antigens. Extensive research suggests that both TST and IGRA represent indirect markers of M. tuberculosis exposure and indicates a cellular immune response to M. tuberculosis. The imperfect concordance between these two tests suggests that neither test is perfect, presumably due to both technical and biological reasons. Neither test can accurately differentiate between LTBI and active TB. Both IGRA and TST have low sensitivity in a variety of immunocompromised populations. Cohort studies have shown that both TST and IGRA have low predictive value for progression from infection to active TB. For fundamental applications, basic research is necessary to identify those at highest risk of disease with a positive TST and/or IGRA. For clinical applications, the identification of such biomarkers can help prioritize efforts to interrupt progression to disease through preventive therapy.
Collapse
|
22
|
Riou C, Berkowitz N, Goliath R, Burgers WA, Wilkinson RJ. Analysis of the Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells to Discriminate Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals. Front Immunol 2017; 8:968. [PMID: 28848561 PMCID: PMC5554366 DOI: 10.3389/fimmu.2017.00968] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
Several immune-based assays have been suggested to differentiate latent from active tuberculosis (TB). However, their relative performance as well as their efficacy in HIV-infected persons, a highly at-risk population, remains unclear. In a study of 81 individuals, divided into four groups based on their HIV-1 status and TB disease activity, we compared the differentiation (CD27 and KLRG1), activation (HLA-DR), homing potential (CCR4, CCR6, CXCR3, and CD161) and functional profiles (IFNγ, IL-2, and TNFα) of Mycobacterium tuberculosis (Mtb)-specific CD4+ T cells using flow cytometry. Active TB disease induced major changes within the Mtb-responding CD4+ T cell population, promoting memory maturation, elevated activation and increased inflammatory potential when compared to individuals with latent TB infection. Moreover, the functional profile of Mtb-specific CD4+ T cells appeared to be inherently related to their degree of differentiation. While these specific cell features were all capable of discriminating latent from active TB, irrespective of HIV status, HLA-DR expression showed the best performance for TB diagnosis [area-under-the-curve (AUC) = 0.92, 95% CI: 0.82–1.01, specificity: 82%, sensitivity: 84% for HIV− and AUC = 0.99, 95% CI: 0.98–1.01, specificity: 94%, sensitivity: 93% for HIV+]. In conclusion, these data support the idea that analysis of T cell phenotype can be diagnostically useful in TB.
Collapse
Affiliation(s)
- Catherine Riou
- Division of Medical Virology, Faculty of Health Sciences, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natacha Berkowitz
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rene Goliath
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Division of Medical Virology, Faculty of Health Sciences, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| |
Collapse
|
23
|
Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications. J Clin Microbiol 2017; 55:3072-3088. [PMID: 28794178 PMCID: PMC5625393 DOI: 10.1128/jcm.00469-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/11/2017] [Indexed: 01/12/2023] Open
Abstract
Direct pathogen detection in blood to diagnose active tuberculosis (TB) has been difficult due to low levels of circulating antigens or due to the lack of specific, high-affinity binding reagents and reliable assays with adequate sensitivity. We sought to determine whether slow off-rate modified aptamer (SOMAmer) reagents with subnanomolar affinity for Mycobacterium tuberculosis proteins (antigens 85A, 85B, 85C, GroES, GroEL2, DnaK, CFP10, KAD, CFP2, RplL, and Tpx) could be useful to diagnose tuberculosis. When incorporated into the multiplexed, array-based proteomic SOMAscan assay, limits of detection reached the subpicomolar range in 40% serum. Binding to native M. tuberculosis proteins was confirmed by using M. tuberculosis culture filtrate proteins and fractions from infected macrophages and via affinity capture assays and subsequent mass spectrometry. Comparison of serum from culture-positive pulmonary TB patients and TB suspects systematically ruled out for TB revealed small but statistically significant (P < 0.0001) differences in the median M. tuberculosis signals and in specific pathogen markers, such as antigen 85B. Samples where many M. tuberculosis aptamers produced high signals were rare exceptions. In concentrated, protein-normalized urine from TB patients and non-TB controls, the CFP10 (EsxB) SOMAmer yielded the most significant differential signals (P < 0.0276), particularly in TB patients with HIV coinfection. In conclusion, direct M. tuberculosis antigen detection proved difficult even with a sensitive method such as SOMAscan, likely due to their very low, subpicomolar abundance. The observed differences between cases and controls had limited diagnostic utility in serum and urine, but further evaluation of M. tuberculosis SOMAmers using other platforms and sample types is warranted.
Collapse
|
24
|
Discovery and Validation of a Six-Marker Serum Protein Signature for the Diagnosis of Active Pulmonary Tuberculosis. J Clin Microbiol 2017; 55:3057-3071. [PMID: 28794177 PMCID: PMC5625392 DOI: 10.1128/jcm.00467-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
New non-sputum biomarker tests for active tuberculosis (TB) diagnostics are of the highest priority for global TB control. We performed in-depth proteomic analysis using the 4,000-plex SOMAscan assay on 1,470 serum samples from seven countries where TB is endemic. All samples were from patients with symptoms and signs suggestive of active pulmonary TB that were systematically confirmed or ruled out for TB by culture and clinical follow-up. HIV coinfection was present in 34% of samples, and 25% were sputum smear negative. Serum protein biomarkers were identified by stability selection using L1-regularized logistic regression and by Kolmogorov-Smirnov (KS) statistics. A naive Bayes classifier using six host response markers (HR6 model), including SYWC, kallistatin, complement C9, gelsolin, testican-2, and aldolase C, performed well in a training set (area under the sensitivity-specificity curve [AUC] of 0.94) and in a blinded verification set (AUC of 0.92) to distinguish TB and non-TB samples. Differential expression was also highly significant (P < 10−20) for previously described TB markers, such as IP-10, LBP, FCG3B, and TSP4, and for many novel proteins not previously associated with TB. Proteins with the largest median fold changes were SAA (serum amyloid protein A), NPS-PLA2 (secreted phospholipase A2), and CA6 (carbonic anhydrase 6). Target product profiles (TPPs) for a non-sputum biomarker test to diagnose active TB for treatment initiation (TPP#1) and for a community-based triage or referral test (TPP#2) have been published by the WHO. With 90% sensitivity and 80% specificity, the HR6 model fell short of TPP#1 but reached TPP#2 performance criteria. In conclusion, we identified and validated a six-marker signature for active TB that warrants diagnostic development on a patient-near platform.
Collapse
|
25
|
Méndez-Samperio P. Diagnosis of Tuberculosis in HIV Co-infected Individuals: Current Status, Challenges and Opportunities for the Future. Scand J Immunol 2017; 86:76-82. [PMID: 28513865 DOI: 10.1111/sji.12567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/07/2017] [Indexed: 02/03/2023]
Abstract
Tuberculosis (TB) remains one of the most important causes of death among people co-infected with human immunodeficiency virus (HIV). The diagnosis of TB remains challenging in HIV co-infected individuals, due to a high frequency of smear-negative disease and high rates of extrapulmonary TB. Accurate, ease of use and rapid diagnosis of active TB are critical to the World Health Organization (WHO) End TB Strategy by 2050. Traditional laboratory techniques do not provide rapid and accurate results to effectively manage HIV co-infected patients. Over the last decade, molecular methods have provided significant steps in the fight against TB. However, many HIV co-infected patients do not have access to these molecular diagnostic tests. Given the costs closely related with confirming a TB diagnosis in HIV patients, an overtreatment for TB is used in this patient population. Nowadays, an estimated US $8 billion a year is required to provide TB treatment, which is very high compared with making an important strategy to improve the current diagnostic tests. This review focuses on current advances in diagnosing active TB with an emphasis on the diagnosis of HIV-associated TB. Also discussed are the main challenges that need to be overcome for improving an adequate initial diagnosis of active TB in HIV-positive patients.
Collapse
Affiliation(s)
- P Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, México, México
| |
Collapse
|
26
|
Wanzala SI, Palmer MV, Waters WR, Thacker TC, Carstensen M, Travis DA, Sreevatsan S. Evaluation of pathogen-specific biomarkers for the diagnosis of tuberculosis in white-tailed deer (Odocoileus virginianus). Am J Vet Res 2017; 78:729-734. [PMID: 28541150 DOI: 10.2460/ajvr.78.6.729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop a noninvasive biomarker-based detection system specific for Mycobacterium bovis for monitoring infection in wild animals. SAMPLE Serum samples from 8 experimentally infected yearling white-tailed deer (Odocoileus virginianus) and 3 age-matched control deer and from 393 Minnesota Department of Natural Resources hunter-harvested white-tailed deer in northwest Minnesota. PROCEDURES 8 yearling deer were inoculated with 2 × 108 CFUs of virulent M bovis strain 1315 (day 0), and sera were obtained on days 0, 19, 48, and 60; sera were obtained from 3 uninoculated control deer on those same days. Sera from these deer and 9 M bovis-positive hunter-harvested deer were tested for 3 Mycobacterium-specific biomarkers (MB1895c, MB2515c, and polyketide synthase 5) by use of an indirect ELISA. That same ELISA was used to test sera obtained from 384 exposed noninfected deer in northwest Minnesota from 2007 through 2010, concurrent with an outbreak of tuberculosis involving cattle and deer in that region. RESULTS ELISA results revealed that tuberculosis infection could be detected as early as 48 days after inoculation in experimentally infected deer. Results for 384 deer sera revealed that prevalence of tuberculosis decreased over the 4-year period. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the prevalence of tuberculosis in Minnesota deer decreased after 2009 but tuberculosis may have persisted (as subclinical disease) at extremely low levels, as indicated by the presence of low concentrations of circulating biomarkers. Biomarker-based diagnostic tests may offer a specific approach for early identification of M bovis infection.
Collapse
|
27
|
A tuberculosis biomarker database: the key to novel TB diagnostics. Int J Infect Dis 2017; 56:253-257. [PMID: 28159577 DOI: 10.1016/j.ijid.2017.01.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 11/20/2022] Open
Abstract
New diagnostic innovations for tuberculosis (TB), including point-of-care solutions, are critical to reach the goals of the End TB Strategy. However, despite decades of research, numerous reports on new biomarker candidates, and significant investment, no well-performing, simple and rapid TB diagnostic test is yet available on the market, and the search for accurate, non-DNA biomarkers remains a priority. To help overcome this 'biomarker pipeline problem', FIND and partners are working on the development of a well-curated and user-friendly TB biomarker database. The web-based database will enable the dynamic tracking of evidence surrounding biomarker candidates in relation to target product profiles (TPPs) for needed TB diagnostics. It will be able to accommodate raw datasets and facilitate the verification of promising biomarker candidates and the identification of novel biomarker combinations. As such, the database will simplify data and knowledge sharing, empower collaboration, help in the coordination of efforts and allocation of resources, streamline the verification and validation of biomarker candidates, and ultimately lead to an accelerated translation into clinically useful tools.
Collapse
|
28
|
Abstract
New and effective tuberculosis (TB) vaccines are urgently needed to control pulmonary TB, and in particular to prevent the spread of drug-resistant strains of Mycobacterium tuberculosis. These drug-resistant strains can range from those resistant to first-line drugs to those that are almost impossible to treat. To develop new and effective vaccines for HIV and malaria has been difficult and it is proving to be just as challenging for TB. TB is a complicated disease with a spectrum from apparently controlled latent infection to active clinical disease and so different types of preventive or post-exposure vaccine may be needed. Identifying the most promising vaccine candidates to move into clinical trials is difficult, as we lack biomarker signatures that can predict protective efficacy. There is a risk that the failure of the MVA-85A vaccine to show efficacy when given to previously BCG-vaccinated South African infants will impact on the resources available for the development and trials of other candidate TB vaccines. Continued support for the development of new TB vaccines should remain a priority as an effective vaccine would bring huge public health benefits.
Collapse
|
29
|
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by organisms of the Mycobacterium tuberculosis complex. Although primarily a pulmonary pathogen, M. tuberculosis can cause disease in almost any part of the body. Infection with M. tuberculosis can evolve from containment in the host, in which the bacteria are isolated within granulomas (latent TB infection), to a contagious state, in which the patient will show symptoms that can include cough, fever, night sweats and weight loss. Only active pulmonary TB is contagious. In many low-income and middle-income countries, TB continues to be a major cause of morbidity and mortality, and drug-resistant TB is a major concern in many settings. Although several new TB diagnostics have been developed, including rapid molecular tests, there is a need for simpler point-of-care tests. Treatment usually requires a prolonged course of multiple antimicrobials, stimulating efforts to develop shorter drug regimens. Although the Bacillus Calmette-Guérin (BCG) vaccine is used worldwide, mainly to prevent life-threatening TB in infants and young children, it has been ineffective in controlling the global TB epidemic. Thus, efforts are underway to develop newer vaccines with improved efficacy. New tools as well as improved programme implementation and financing are necessary to end the global TB epidemic by 2035.
Collapse
|
30
|
Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, de Lange W, van Soolingen D, Alffenaar JWC. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol 2016; 12:509-21. [DOI: 10.1517/17425255.2016.1162785] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marlanka A. Zuur
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathieu S. Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard Anthony
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Alice den Hertog
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Tridia van der Laan
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bob Wilffert
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pharmacy, section Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Wiel de Lange
- University of Groningen, University Medical Center Groningen, Tuberculosis Centre Beatrixoord, Haren, The Netherlands
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan-Willem C. Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
De P, Amin AG, Valli E, Perkins MD, McNeil M, Chatterjee D. Estimation of D-Arabinose by Gas Chromatography/Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannan in Human Urine. PLoS One 2015; 10:e0144088. [PMID: 26633829 PMCID: PMC4669150 DOI: 10.1371/journal.pone.0144088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022] Open
Abstract
Globally, tuberculosis is slowly declining each year and it is estimated that 37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment. Currently, diagnosis relies on demonstration of the bacteria, Mycobacterium tuberculosis (Mtb), in clinical specimens by serial sputum microscopy, culture and molecular testing. Commercial immunoassay lateral flow kits developed to detect Mtb lipoglycan lipoarabinomannan (LAM) in urine as a marker of active TB exhibit poor sensitivity, especially in immunocompetent individuals, perhaps due to low abundance of the analyte. Our present study was designed to develop methods to validate the presence of LAM in a quantitative fashion in human urine samples obtained from culture-confirmed TB patients. Herein we describe, a consolidated approach for isolating LAM from the urine and quantifying D-arabinose as a proxy for LAM, using Gas Chromatography/Mass Spectrometry. 298 urine samples obtained from a repository were rigorously analyzed and shown to contain varying amounts of LAM-equivalent ranging between ~10-40 ng/mL. To further substantiate that D-arabinose detected in the samples originated from LAM, tuberculostearic acid, the unique 10-methyloctadecanoic acid present at the phosphatidylinositol end of LAM was also analyzed in a set of samples and found to be present confirming that the D-arabinose was indeed derived from LAM. Among the 144 samples from culture-negative TB suspects, 30 showed presence of D-arabinose suggesting another source of the analyte, such as disseminated TB or from non-tuberculosis mycobacterium. Our work validates that LAM is present in the urine samples of culture-positive patients in small but readily detectable amounts. The study further substantiates LAM in urine as a powerful biomarker for active tuberculosis.
Collapse
Affiliation(s)
- Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado, 80523, United States of America
| | - Anita G. Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado, 80523, United States of America
| | - Eloise Valli
- Foundation for Innovative New Diagnostics (FIND), Chemin des Mines 9, 1202, Genève, Switzerland
| | - Mark D. Perkins
- Foundation for Innovative New Diagnostics (FIND), Chemin des Mines 9, 1202, Genève, Switzerland
| | - Michael McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado, 80523, United States of America
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado, 80523, United States of America
| |
Collapse
|