1
|
Wen X, Yin B, Lin L, Liu L, Weng S, Xu H, Zhang Y, Deng J, Liao R, Fan C. The T cell-mediated tumor killing patterns revealed tumor heterogeneous and proposed treatment recommendation in ovary cancer. Discov Oncol 2024; 15:753. [PMID: 39638927 PMCID: PMC11621272 DOI: 10.1007/s12672-024-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment, but the role of genes related to T cell-mediated tumor killing (TTK) sensitivity in ovarian cancer (OV) is unclear. METHODS This study analyzed 1367 OV patients and 11 independent cohorts. The unsupervised clustering was conducted to identify three tumor subtypes based on genes that regulate tumor cell sensitivity to TTK (GSTTKs). The biological characteristics, genetic variations, immunological landscape, and therapeutic evaluation for each subtype were further explored. RESULTS Patients were divided into three reproducible subtypes based on 61 GSTKKs associated with prognosis. C1 was likely to be an invasive subtype with the worst prognosis and highly unstable genome. C2 might be an immune-active subtype with the best prognosis, high immune infiltration and preferable response to immunotherapy. C3 might be a metabolic subtype, resistant to immunotherapy, but sensitive to drug therapy. Following an extensive exploration into a variety of distinct molecular features between the three subtypes, the results suggested that C2 patients were considered to derive significant efficacy from immunotherapy. For C1 and C3 patients, chemotherapy might be an ideal treatment strategy. CONCLUSIONS In this study, three GSTKKs-based subtypes were identified by assessing TTK patterns in OV. These new insights further improved our understanding of GSTTKs and might refine clinical treatment strategies for OV patients.
Collapse
Affiliation(s)
- Xinglin Wen
- Ganzhou Institute of Medical Imaging, Ganzhou Key Laboratory of Medical Imaging and Artificial Intelligence, Medical Imaging Center, Ganzhou People's Hospital, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China
| | - Beining Yin
- Department of Reproduction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Li Lin
- Department of Nuclear Medicine, Ganzhou People's Hospital, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China
| | - Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Ruiying Liao
- Department of Minimal Invasive Intervention Radiology of Ganzhou People's Hospital, Southern Medical University, Ganzhou, 341000, China.
| | - Cungeng Fan
- Ganzhou Institute of Medical Imaging, Ganzhou Key Laboratory of Medical Imaging and Artificial Intelligence, Medical Imaging Center, Ganzhou People's Hospital, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Yimin E, Lu C, Zhu K, Li W, Sun J, Ji P, Meng M, Liu Z, Yu C. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience 2024; 27:109350. [PMID: 38500820 PMCID: PMC10945197 DOI: 10.1016/j.isci.2024.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality, with metastasis being the primary determinant of poor prognosis in patients. Investigating the molecular mechanisms underlying CRC metastasis is currently a prominent and challenging area of research. Exosomes, as crucial intercellular communication mediators, facilitate the transfer of metabolic and genetic information from cells of origin to recipient cells. Their roles in mediating information exchange between CRC cells and immune cells, fibroblasts, and other cell types are pivotal in reshaping the tumor microenvironment, regulating key biological processes such as invasion, migration, and formation of pre-metastatic niche. This article comprehensively examines the communication function and mechanism of exosomes derived from different cells in cancer metastasis, while also presenting an outlook on current research advancements and future application prospects. The aim is to offer a distinctive perspective that contributes to accurate diagnosis and rational treatment strategies for CRC.
Collapse
Affiliation(s)
- Yimin E
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Kuixuan Zhu
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650100, Yunan, China
| | - Wenyuan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Jing Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Pengcheng Ji
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Minjie Meng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| |
Collapse
|
3
|
Sancho-Albero M, Sebastian V, Perez-Lopez AM, Martin-Duque P, Unciti-Broceta A, Santamaria J. Extracellular Vesicles-Mediated Bio-Orthogonal Catalysis in Growing Tumors. Cells 2024; 13:691. [PMID: 38667306 PMCID: PMC11048864 DOI: 10.3390/cells13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Several studies have reported the successful use of bio-orthogonal catalyst nanoparticles (NPs) for cancer therapy. However, the delivery of the catalysts to the target tissues in vivo remains an unsolved challenge. The combination of catalytic NPs with extracellular vesicles (EVs) has been proposed as a promising approach to improve the delivery of therapeutic nanomaterials to the desired organs. In this study, we have developed a nanoscale bio-hybrid vector using a CO-mediated reduction at low temperature to generate ultrathin catalytic Pd nanosheets (PdNSs) as catalysts directly inside cancer-derived EVs. We have also compared their biodistribution with that of PEGylated PdNSs delivered by the EPR effect. Our results indicate that the accumulation of PdNSs in the tumour tissue was significantly higher when they were administered within the EVs compared to the PEGylated PdNSs. Conversely, the amount of Pd found in non-target organs (i.e., liver) was lowered. Once the Pd-based catalytic EVs were accumulated in the tumours, they enabled the activation of a paclitaxel prodrug demonstrating their ability to carry out bio-orthogonal uncaging chemistries in vivo for cancer therapy.
Collapse
Affiliation(s)
- Maria Sancho-Albero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Enviromental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Victor Sebastian
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Enviromental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Ana M. Perez-Lopez
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (A.M.P.-L.); (A.U.-B.)
| | - Pilar Martin-Duque
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (A.M.P.-L.); (A.U.-B.)
| | - Jesus Santamaria
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain; (V.S.); (J.S.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Enviromental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Ni Y, Liang Y, Li M, Lin Y, Zou X, Han F, Cao J, Li L. The updates on metastatic mechanism and treatment of colorectal cancer. Pathol Res Pract 2023; 251:154837. [PMID: 37806170 DOI: 10.1016/j.prp.2023.154837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is a main cause of cancer death worldwide. Metastasis is a major cause of cancer-related death in CRC. The treatment of metastatic CRC has progressed minimally. However, the potential molecular mechanisms involved in CRC metastasis have remained to be comprehensively clarified. An improved understanding of the CRC mechanistic determinants is needed to better prevent and treat metastatic cancer. In this review, based on evidence from a growing body of research in metastatic cancers, we discuss the cellular and molecular mechanisms involved in CRC metastasis. This review reveals both the molecular mechanisms of metastases and identifies new opportunities for developing more effective strategies to target metastatic relapse and improve CRC patient outcomes.
Collapse
Affiliation(s)
- Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Wu Q, He X, Liu J, Ou C, Li Y, Fu X. Integrative evaluation and experimental validation of the immune-modulating potential of dysregulated extracellular matrix genes in high-grade serous ovarian cancer prognosis. Cancer Cell Int 2023; 23:223. [PMID: 37777759 PMCID: PMC10543838 DOI: 10.1186/s12935-023-03061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a challenging malignancy characterized by complex interactions between tumor cells and the surrounding microenvironment. Understanding the immune landscape of HGSOC, particularly the role of the extracellular matrix (ECM), is crucial for improving prognosis and guiding therapeutic interventions. METHODS AND RESULTS Using univariate Cox regression analysis, we identified 71 ECM genes associated with prognosis in seven HGSOC populations. The ECMscore signature, consisting of 14 genes, was validated using Cox proportional hazards regression with a lasso penalty. Cox regression analyses demonstrated that ECMscore is an excellent indicator for prognostic classification in prevalent malignancies, including HGSOC. Moreover, patients with higher ECMscores exhibited more active stromal and carcinogenic activation pathways, including apical surface signaling, Notch signaling, apical junctions, Wnt signaling, epithelial-mesenchymal transition, TGF-beta signaling, and angiogenesis. In contrast, patients with relatively low ECMscores showed more active immune-related pathways, such as interferon alpha response, interferon-gamma response, and inflammatory response. The relationship between the ECMscore and genomic anomalies was further examined. Additionally, the correlation between ECMscore and immune microenvironment components and signals in HGSOC was examined in greater detail. Moreover, the expression of MGP, COL8A2, and PAPPA and its correlation with FAP were validated using qRT-PCR on samples from HGSOC. The utility of ECMscore in predicting the prospective clinical success of immunotherapy and its potential in guiding the selection of chemotherapeutic agents were also explored. Similar results were obtained from pan-cancer research. CONCLUSION The comprehensive evaluation of the ECM may help identify immune activation and assist patients in HGSOC and even pan-cancer in receiving proper therapy.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Xiaoyun He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Ruijin Er Road, Huangpu District, Shanghai, 200025, China.
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
6
|
Khashei Varnamkhasti K, Moghanibashi M, Naeimi S. Genes whose expressions in the primary lung squamous cell carcinoma are able to accurately predict the progression of metastasis through lymphatic system, inferred from a bioinformatics analyses. Sci Rep 2023; 13:6733. [PMID: 37185598 PMCID: PMC10130036 DOI: 10.1038/s41598-023-33897-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Lymph node metastasis is the most important prognostic factor in patients with lung squamous cell carcinoma. The current findings show that lymph node metastatic tumor cells can arise by programming metastasis in primary tumor cells. Thereby, the genetic alterations responsible for the metastasis could be detected in the primary tumors. This bioinformatic study aimed to determine novel potential prognostic biomarkers shared between primary lung squamous cell tumors (without lymph node metastasis) and lymphatic metastasis, using the Cancer Genome Atlas database. Differentially expressed genes were screened by limma statistical package in R environment. Gene ontology and biological pathways analyses were performed using Enrichr for up-regulated and down-regulated genes. Also, we selected lymph node metastasis related genes among DEGs using correlation analysis between DEGs and suitable references genes for metastasis. Receiver operating characteristic curves was applied using pROC and R package ggplot2 to evaluate diagnostic value of differentially expressed genes. In addition, survival and drug resistance analyses were performed for differentially expressed genes. The miRNA-mRNA interaction networks were predicted by miRwalk and TargetScan databases and expression levels analysis of the miRNAs which were mainly targeting mRNAs was performed using UALCAN database. Protein-protein interaction network analysis and hub genes identification were performed using FunRich and Cytoscape plugin cytoHubba. In this study, a total of 397 genes were differentially expressed not only with a significant difference between N + vs. normal and N0 vs. normal but also with significant difference between N + vs. N0. Identified GO terms and biological pathways were consistent with DEGs role in the lung squamous cell carcinoma and lymph node metastasis. A significant correlation between 56 genes out of 397 differentially expressed genes with reference genes prompted them being considered for identifying lymph node metastasis of lung squamous cell carcinoma. In addition, SLC46A2, ZNF367, AC107214.1 and NCBP1 genes were identified as survival-related genes of patients with lung squamous cell carcinoma. Moreover, NEDD9, MRPL21, SNRPF, and SCLT1 genes were identified to be involved in lung squamous cell carcinoma drug sensitivity/resistance. We have identified several numbers of miRNAs and their related target genes which could emerge as potential diagnostic biomarkers. Finally, CDK1, PLK1, PCNA, ZWINT and NDC80 identified as hub genes for underlying molecular mechanisms of lung squamous cell carcinoma and lymphatic metastasis. Our study highlights new target genes according to their relation to lymph node metastasis, whose expressions in the primary lung squamous cell carcinoma are able to accurately assess the presence of lymphatic metastasis.
Collapse
Affiliation(s)
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Islamic Azad University, Kazerun branch, Kazerun, Iran.
| | - Sirous Naeimi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| |
Collapse
|
7
|
Tyagi T, Jain K, Yarovinsky TO, Chiorazzi M, Du J, Castro C, Griffin J, Korde A, Martin KA, Takyar SS, Flavell RA, Patel AA, Hwa J. Platelet-derived TLT-1 promotes tumor progression by suppressing CD8+ T cells. J Exp Med 2023; 220:e20212218. [PMID: 36305874 DOI: 10.1084/jem.20212218] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/25/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2023] Open
Abstract
Current understanding of tumor immunosuppressive mechanisms forms the basis for modern day immunotherapies. Immunoregulatory role of platelets in cancer remains largely elusive. Platelets from non-small cell lung cancer (NSCLC) patients revealed a distinct activation phenotype. TREM-like transcript 1 (TLT-1), a platelet protein, was increased along with enhanced extracellular release from NSCLC platelets. The increased platelet TLT-1 was also evident in humanized mice with patient-derived tumors. In immunocompetent mice with syngeneic tumors, TLT-1 binding to T cells, in vivo, led to suppression of CD8 T cells, promoting tumor growth. We identified direct interaction between TLT-1 and CD3ε on T cells, implicating the NF-κB pathway in CD8 T cell suppression. Anti-TLT-1 antibody rescued patients' T cells from platelet-induced suppression ex vivo and reduced tumors in mice in vivo. Clinically, higher TLT-1 correlated with reduced survival of NSCLC patients. Our findings thus identify TLT-1 as a platelet-derived immunosuppressor that suppresses CD8 T cells and demonstrate its therapeutic and prognostic significance in cancer.
Collapse
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Kanika Jain
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Timur O Yarovinsky
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Michael Chiorazzi
- Department of Immunobiology, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Jing Du
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Cecilia Castro
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Jules Griffin
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Asawari Korde
- Pulmonary Critical Care, Yale Internal Medicine, New Haven, CT
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Shervin S Takyar
- Pulmonary Critical Care, Yale Internal Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Richard A Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Abhijit A Patel
- Yale Therapeutic Radiology, Yale Cancer Center, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - John Hwa
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| |
Collapse
|
8
|
Broadwater D, C. D. Medeiros H, Bates M, Roshanzadeh A, Thing Teoh S, P. Ogrodzinski M, Borhan B, Lunt RR, Lunt SY. Counterion Tuning of Near-Infrared Organic Salts Dictates Phototoxicity to Inhibit Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53511-53522. [PMID: 36408853 PMCID: PMC9743086 DOI: 10.1021/acsami.2c16252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) has the potential to improve cancer treatment by providing dual selectivity through the use of both photoactive agent and light, with the goal of minimal harmful effects from either the agent or light alone. However, current PDT is limited by insufficient photosensitizers (PSs) that can suffer from low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), or undesirable cytotoxicity (toxicity without light irradiation). Recently, we reported a platform for decoupling optical and electronic properties with counterions that modulate frontier molecular orbital levels of a photoactive ion. Here, we demonstrate the utility of this platform in vivo by pairing near-infrared (NIR) photoactive heptamethine cyanine cation (Cy+), which has enhanced optical properties for deep tissue penetration, with counterions that make it cytotoxic, phototoxic, or nontoxic in a mouse model of breast cancer. We find that pairing Cy+ with weakly coordinating anion FPhB- results in a selectively phototoxic PS (CyFPhB) that stops tumor growth in vivo with minimal side effects. This work provides proof of concept that our counterion pairing platform can be used to generate improved cancer PSs that are selectively phototoxic to tumors and nontoxic to normal healthy tissues.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Hyllana C. D. Medeiros
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Matthew Bates
- Department
of Chemical Engineering and Materials Science, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Amir Roshanzadeh
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shao Thing Teoh
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Martin P. Ogrodzinski
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Richard R. Lunt
- Department
of Chemical Engineering and Materials Science, Michigan State University, East
Lansing, Michigan 48824, United States
- Department
of Physics and Astronomy, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Sophia Y. Lunt
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Chemical Engineering and Materials Science, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Gonzalez-Avila G, Sommer B, García-Hernandez AA, Ramos C, Flores-Soto E. Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Front Mol Biosci 2022; 9:918789. [PMID: 35720130 PMCID: PMC9198274 DOI: 10.3389/fmolb.2022.918789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide. This great mortality is due to its late diagnosis when the disease is already at advanced stages. Although the efforts made to develop more effective treatments, around 90% of cancer deaths are due to metastasis that confers a systemic character to the disease. Likewise, matrix metalloproteinases (MMPs) are endopeptidases that participate in all the events of the metastatic process. MMPs’ augmented concentrations and an increased enzymatic activity have been considered bad prognosis markers of the disease. Therefore, synthetic inhibitors have been created to block MMPs’ enzymatic activity. However, they have been ineffective in addition to causing considerable side effects. On the other hand, nanotechnology offers the opportunity to formulate therapeutic agents that can act directly on a target cell, avoiding side effects and improving the diagnosis, follow-up, and treatment of cancer. The goal of the present review is to discuss novel nanotechnological strategies in which MMPs are used with theranostic purposes and as therapeutic targets to control cancer progression.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Georgina Gonzalez-Avila,
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - A. Armando García-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Carlos Ramos
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
10
|
Chen Z, Jiang W, Li Z, Zong Y, Deng G. Immune-and Metabolism-Associated Molecular Classification of Ovarian Cancer. Front Oncol 2022; 12:877369. [PMID: 35646692 PMCID: PMC9133421 DOI: 10.3389/fonc.2022.877369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Ovarian cancer (OV) is a complex gynecological disease, and its molecular characteristics are not clear. In this study, the molecular characteristics of OV subtypes based on metabolic genes were explored through the comprehensive analysis of genomic data. A set of transcriptome data of 2752 known metabolic genes was used as a seed for performing non negative matrix factorization (NMF) clustering. Three subtypes of OV (C1, C2 and C3) were found in analysis. The proportion of various immune cells in C1 was higher than that in C2 and C3 subtypes. The expression level of immune checkpoint genes TNFRSF9 in C1 was higher than that of other subtypes. The activation scores of cell cycle, RTK-RAS, Wnt and angiogenesis pathway and ESTIMATE immune scores in C1 group were higher than those in C2 and C3 groups. In the validation set, grade was significantly correlated with OV subtype C1. Functional analysis showed that the extracellular matrix related items in C1 subtype were significantly different from other subtypes. Drug sensitivity analysis showed that C2 subtype was more sensitive to immunotherapy. Survival analysis of differential genes showed that the expression of PXDN and CXCL11 was significantly correlated with survival. The results of tissue microarray immunohistochemistry showed that the expression of PXDN was significantly correlated with tumor size and pathological grade. Based on the genomics of metabolic genes, a new OV typing method was developed, which improved our understanding of the molecular characteristics of human OV.
Collapse
Affiliation(s)
- Zhenyue Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaopi Deng
- Department Obstetrics and Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Nicoś M, Krawczyk P. Genetic Clonality as the Hallmark Driving Evolution of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:1813. [PMID: 35406585 PMCID: PMC8998004 DOI: 10.3390/cancers14071813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Data indicate that many driver alterations from the primary tumor of non-small cell lung cancer (NSCLC) are predominantly shared across all metastases; however, disseminating cells may also acquire a new genetic landscape across their journey. By comparing the constituent subclonal mutations between pairs of primary and metastatic samples, it is possible to derive the ancestral relationships between tumor clones, rather than between tumor samples. Current treatment strategies mostly rely on the theory that metastases are genetically similar to the primary lesions from which they arise. However, intratumor heterogeneity (ITH) affects accurate diagnosis and treatment decisions and it is considered the main hallmark of anticancer therapy failure. Understanding the genetic changes that drive the metastatic process is critical for improving the treatment strategies of this deadly condition. Application of next generation sequencing (NGS) techniques has already created knowledge about tumorigenesis and cancer evolution; however, further NGS implementation may also allow to reconstruct phylogenetic clonal lineages and clonal expansion. In this review, we discuss how the clonality of genetic alterations influence the seeding of primary and metastatic lesions of NSCLC. We highlight that wide genetic analyses may reveal the phylogenetic trajectories of NSCLC evolution, and may pave the way to better management of follow-up and treatment.
Collapse
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland;
| | | |
Collapse
|
12
|
Bolik J, Krause F, Stevanovic M, Gandraß M, Thomsen I, Schacht SS, Rieser E, Müller M, Schumacher N, Fritsch J, Wichert R, Galun E, Bergmann J, Röder C, Schafmayer C, Egberts JH, Becker-Pauly C, Saftig P, Lucius R, Schneider-Brachert W, Barikbin R, Adam D, Voss M, Hitzl W, Krüger A, Strilic B, Sagi I, Walczak H, Rose-John S, Schmidt-Arras D. Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis. J Exp Med 2022; 219:212921. [PMID: 34919140 PMCID: PMC8689681 DOI: 10.1084/jem.20201039] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023] Open
Abstract
Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.
Collapse
Affiliation(s)
- Julia Bolik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Freia Krause
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Marija Stevanovic
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Monja Gandraß
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ilka Thomsen
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Eva Rieser
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom.,Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Miryam Müller
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Neele Schumacher
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Rielana Wichert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eithan Galun
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Juri Bergmann
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Röder
- Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Clemens Schafmayer
- Department of General Surgery and Thoracic Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General Surgery and Thoracic Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Hitzl
- Research Office (Biostatistics), Paracelsus Medical University, Salzburg, Austria.,Research Program for Experimental Ophthalmology and Glaucoma, Paracelsus Medical University, Salzburg, Austria.,Department of Ophthalmology and Optometry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Achim Krüger
- Institutes for Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Boris Strilic
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom.,Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| |
Collapse
|
13
|
Waters SB, Dominguez JR, Cho HD, Sarich NA, Malik AB, Yamada KH. KIF13B-mediated VEGFR2 trafficking is essential for vascular leakage and metastasis in vivo. Life Sci Alliance 2022; 5:e202101170. [PMID: 34670814 PMCID: PMC8548263 DOI: 10.26508/lsa.202101170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
VEGF-A induces vascular leakage and angiogenesis via activating the cell surface localized receptor VEGF receptor 2 (VEGFR2). The amount of available VEGFR2 at the cell surface is however tightly regulated by trafficking of VEGFR2 by kinesin family 13 B (KIF13B), a plus-end kinesin motor, to the plasma membrane of endothelial cells (ECs). Competitive inhibition of interaction between VEGFR2 and KIF13B by a peptide kinesin-derived angiogenesis inhibitor (KAI) prevented pathological angiogenesis in models of cancer and eye disease associated with defective angiogenesis. Here, we show the protective effects of KAI in VEGF-A-induced vascular leakage and cancer metastasis. Using an EC-specific KIF13B knockout (Kif13b iECKO ) mouse model, we demonstrated the function of EC expressed KIF13B in mediating VEGF-A-induced vascular leakage, angiogenesis, tumor growth, and cancer metastasis. Thus, KIF13B-mediated trafficking of VEGFR2 to the endothelial surface has an essential role in pathological angiogenesis induced by VEGF-A, and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Stephen B Waters
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Joseph R Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Singhal M, Gengenbacher N, Pari AAA, Kamiyama M, Hai L, Kuhn BJ, Kallenberg DM, Kulkarni SR, Camilli C, Preuß SF, Leuchs B, Mogler C, Espinet E, Besemfelder E, Heide D, Heikenwalder M, Sprick MR, Trumpp A, Krijgsveld J, Schlesner M, Hu J, Moss SE, Greenwood J, Augustin HG. Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis. Sci Transl Med 2021; 13:eabe6805. [PMID: 34516824 PMCID: PMC7614902 DOI: 10.1126/scitranslmed.abe6805] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis is the primary cause of cancer-related mortality. Tumor cell interactions with cells of the vessel wall are decisive and potentially rate-limiting for metastasis. The molecular nature of this cross-talk is, beyond candidate gene approaches, hitherto poorly understood. Using endothelial cell (EC) bulk and single-cell transcriptomics in combination with serum proteomics, we traced the evolution of the metastatic vascular niche in surgical models of lung metastasis. Temporal multiomics revealed that primary tumors systemically reprogram the body’s vascular endothelium to perturb homeostasis and to precondition the vascular niche for metastatic growth. The vasculature with its enormous surface thereby serves as amplifier of tumor-induced instructive signals. Comparative analysis of lung EC gene expression and secretome identified the transforming growth factor–β (TGFβ) pathway specifier LRG1, leucine-rich alpha-2-glycoprotein 1, as an early instructor of metastasis. In the presence of a primary tumor, ECs systemically up-regulated LRG1 in a signal transducer and activator of transcription 3 (STAT3)–dependent manner. A meta-analysis of retrospective clinical studies revealed a corresponding up-regulation of LRG1 concentrations in the serum of patients with cancer. Functionally, systemic up-regulation of LRG1 promoted metastasis in mice by increasing the number of prometastatic neural/glial antigen 2 (NG2)+ perivascular cells. In turn, genetic deletion of Lrg1 hampered growth of lung metastasis. Postsurgical adjuvant administration of an LRG1-neutralizing antibody delayed metastatic growth and increased overall survival. This study has established a systems map of early primary tumor-induced vascular changes and identified LRG1 as a therapeutic target for metastasis.
Collapse
Affiliation(s)
- Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Miki Kamiyama
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ling Hai
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bianca J. Kuhn
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Divison of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David M. Kallenberg
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Shubhada R. Kulkarni
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carlotta Camilli
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Stephanie F. Preuß
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- Vector Development & Production Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, 81675 Munich, Germany
| | - Elisa Espinet
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martin R. Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Divison of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Schlesner
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Augsburg University, 86159 Augsburg, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Stephen E. Moss
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - John Greenwood
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Is There One Key Step in the Metastatic Cascade? Cancers (Basel) 2021; 13:cancers13153693. [PMID: 34359593 PMCID: PMC8345184 DOI: 10.3390/cancers13153693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary To successfully metastasize, cancer cells must complete a sequence of obligatory steps called the metastatic cascade. To model the metastatic cascade, we used the framework of the Drake equation, initially created to describe the emergence of intelligent life in the Milky way, using a similar logic of a sequence of obligatory steps. Then within this framework, we used simulations on breast cancer to investigate the contribution of each step to the metastatic cascade. We show that the half-life of circulating tumor cells is one of the most important parameters in the cascade, suggesting that therapies reducing the survival of those cells in the vascular system could significantly reduce the risk of metastasis. Abstract The majority of cancer-related deaths are the result of metastases (i.e., dissemination and establishment of tumor cells at distant sites from the origin), which develop through a multi-step process classically termed the metastatic cascade. The respective contributions of each step to the metastatic process are well described but are also currently not completely understood. Is there, for example, a critical phase that disproportionately affects the probability of the development of metastases in individual patients? Here, we address this question using a modified Drake equation, initially formulated by the astrophysicist Frank Drake to estimate the probability of the emergence of intelligent civilizations in the Milky Way. Using simulations based on realistic parameter values obtained from the literature for breast cancer, we examine, under the linear progression hypothesis, the contribution of each component of the metastatic cascade. Simulations demonstrate that the most critical parameter governing the formation of clinical metastases is the survival duration of circulating tumor cells (CTCs).
Collapse
|
16
|
Jelgersma C, Vajkoczy P. How to Target Spinal Metastasis in Experimental Research: An Overview of Currently Used Experimental Mouse Models and Future Prospects. Int J Mol Sci 2021; 22:ijms22115420. [PMID: 34063821 PMCID: PMC8196562 DOI: 10.3390/ijms22115420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
The spine is one of the organs that is most affected by metastasis in cancer patients. Since the control of primary tumor is continuously improving, treatment of metastases is becoming one of the major challenges to prevent cancer-related death. Due to the anatomical proximity to the spinal cord, local spread of metastasis can directly cause neurological deficits, severely limiting the patient’s quality of life. To investigate the underlying mechanisms and to develop new therapies, preclinical models are required which represent the complexity of the multistep cascade of metastasis. Current research of metastasis focuses on the formation of the premetastatic niche, tumor cell dormancy and the influence and regulating function of the immune system. To unveil whether these influence the organotropism to the spine, spinal models are irreplaceable. Mouse models are one of the most suitable models in oncologic research. Therefore, this review provides an overview of currently used mouse models of spinal metastasis. Furthermore, it discusses technical aspects clarifying to what extend these models can picture key steps of the metastatic process. Finally, it addresses proposals to develop better mouse models in the future and could serve as both basis and stimulus for researchers and clinicians working in this field.
Collapse
|