1
|
Yin M, Smith JA, Chou M, Chan J, Jittayasothorn Y, Gould DB, Caspi RR, Anderson MS, DeFranco AL. Tracking the role of Aire in immune tolerance to the eye with a TCR transgenic mouse model. Proc Natl Acad Sci U S A 2024; 121:e2311487121. [PMID: 38261611 PMCID: PMC10835137 DOI: 10.1073/pnas.2311487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
Roughly one-half of mice with partial defects in two immune tolerance pathways (AireGW/+Lyn-/- mice) spontaneously develop severe damage to their retinas due to T cell reactivity to Aire-regulated interphotoreceptor retinoid-binding protein (IRBP). Single-cell T cell receptor (TCR) sequencing of CD4+ T cells specific for a predominate epitope of IRBP showed a remarkable diversity of autoantigen-specific TCRs with greater clonal expansions in mice with disease. TCR transgenic mice made with an expanded IRBP-specific TCR (P2.U2) of intermediate affinity exhibited strong but incomplete negative selection of thymocytes. This negative selection was absent in IRBP-/- mice and greatly defective in AireGW/+ mice. Most P2.U2+/- mice and all P2.U.2+/-AireGW/+ mice rapidly developed inflammation of the retina and adjacent uvea (uveitis). Aire-dependent IRBP expression in the thymus also promoted Treg differentiation, but the niche for this fate determination was small, suggesting differences in antigen presentation leading to negative selection vs. thymic Treg differentiation and a stronger role for negative selection in preventing autoimmune disease in the retina.
Collapse
Affiliation(s)
- Mianmian Yin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Jennifer A. Smith
- Diabetes Center, University of California, San Francisco, San Francisco, CA94143
| | - Marissa Chou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Jackie Chan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | | | - Douglas B. Gould
- Department of Ophthalmology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA94143
- Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA94143
| | - Rachel R. Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD20892-1857
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA94143
- Department of Medicine, University of California, San Francisco, San Francisco, CA94143
| | - Anthony L. DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| |
Collapse
|
2
|
Lee V, Rodriguez DM, Ganci NK, Zeng S, Ai J, Chao JL, Walker MT, Miller CH, Klawon DEJ, Schoenbach MH, Kennedy DE, Maienschein-Cline M, Socci ND, Clark MR, Savage PA. The endogenous repertoire harbors self-reactive CD4 + T cell clones that adopt a follicular helper T cell-like phenotype at steady state. Nat Immunol 2023; 24:487-500. [PMID: 36759711 PMCID: PMC9992328 DOI: 10.1038/s41590-023-01425-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.
Collapse
Affiliation(s)
- Victoria Lee
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Donald M Rodriguez
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Nicole K Ganci
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sharon Zeng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Junting Ai
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jaime L Chao
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Matthew T Walker
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Christine H Miller
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - David E J Klawon
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Domenick E Kennedy
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
- Drug Discovery Science and Technology, AbbVie, North Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marcus R Clark
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Yi J, Miller AT, Archambault AS, Jones AJ, Bradstreet TR, Bandla S, Hsu YS, Edelson BT, Zhou YW, Fremont DH, Egawa T, Singh N, Wu GF, Hsieh CS. Antigen-specific depletion of CD4 + T cells by CAR T cells reveals distinct roles of higher- and lower-affinity TCRs during autoimmunity. Sci Immunol 2022; 7:eabo0777. [PMID: 36206355 PMCID: PMC9867937 DOI: 10.1126/sciimmunol.abo0777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Both higher- and lower-affinity self-reactive CD4+ T cells are expanded in autoimmunity; however, their individual contribution to disease remains unclear. We addressed this question using peptide-MHCII chimeric antigen receptor (pMHCII-CAR) T cells to specifically deplete peptide-reactive T cells in mice. Integration of improvements in CAR engineering with TCR repertoire analysis was critical for interrogating in vivo the role of TCR affinity in autoimmunity. Our original MOG35-55 pMHCII-CAR, which targeted only higher-affinity TCRs, could prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, pMHCII-CAR enhancements to pMHCII stability, as well as increased survivability via overexpression of a dominant-negative Fas, were required to target lower-affinity MOG-specific T cells and reverse ongoing clinical EAE. Thus, these data suggest a model in which higher-affinity autoreactive T cells are required to provide the "activation energy" for initiating neuroinflammatory injury, but lower-affinity cells are sufficient to maintain ongoing disease.
Collapse
Affiliation(s)
- Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA,Co-first authors
| | - Aidan T. Miller
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA,Co-first authors
| | - Angela S. Archambault
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew J. Jones
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sravanthi Bandla
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yu-Sung Hsu
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - You W. Zhou
- Wugen Inc, 4340 Duncan Ave, St Louis MO 63110, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Singh
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Gregory F. Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA,Correspondence: and
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University of Medicine, St. Louis, MO 63110, USA,Correspondence: and
| |
Collapse
|
4
|
Harakal J, Qiao H, Wheeler K, Rival C, Paul AGA, Hardy DM, Cheng CY, Goldberg E, Tung KSK. Exposed and Sequestered Antigens in Testes and Their Protection by Regulatory T Cell-Dependent Systemic Tolerance. Front Immunol 2022; 13:809247. [PMID: 35693780 PMCID: PMC9179417 DOI: 10.3389/fimmu.2022.809247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
Continuous exposure of tissue antigen (Ag) to the autoantigen-specific regulatory T cells (Treg) is required to maintain Treg-dependent systemic tolerance. Thus, testis autoantigens, previously considered as sequestered, may not be protected by systemic tolerance. We now document that the complete testis antigen sequestration is not valid. The haploid sperm Ag lactate dehydrogenase 3 (LDH3) is continuously exposed and not sequestered. It enters the residual body (RB) to egress from the seminiferous tubules and interact with circulating antibody (Ab). Some LDH3 also remains inside the sperm cytoplasmic droplets (CD). Treg-depletion in the DEREG mice that express diphtheria toxin receptor on the Foxp3 promoter results in spontaneous experimental autoimmune orchitis (EAO) and Ab to LDH3. Unlike the wild-type male mice, mice deficient in LDH3 (wild-type female or LDH3 NULL males) respond vigorously to LDH3 immunization. However, partial Treg depletion elevated the wild-type male LDH3 responses to the level of normal females. In contrast to LDH3, zonadhesin (ZAN) in the sperm acrosome displays properties of a sequestered Ag. However, when ZAN and other sperm Ag are exposed by vasectomy, they rapidly induce testis Ag-specific tolerance, which is terminated by partial Treg-depletion, leading to bilateral EAO and ZAN Ab response. We conclude that some testis/sperm Ag are normally exposed because of the unique testicular anatomy and physiology. The exposed Ag: 1) maintain normal Treg-dependent systemic tolerance, and 2) are pathogenic and serve as target Ag to initiate EAO. Unexpectedly, the sequestered Ags, normally non-tolerogenic, can orchestrate de novo Treg-dependent, systemic tolerance when exposed in vasectomy.
Collapse
Affiliation(s)
- Jessica Harakal
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Hui Qiao
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Karen Wheeler
- Department of Microbiology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Claudia Rival
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Alberta G. A. Paul
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Daniel M. Hardy
- Cell Biology and Biochemistry Department, Texas Tech University Health Science Center (HSC), Lubbock, TX, United States
| | - C. Yan Cheng
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Erwin Goldberg
- Molecular Biochemistry Department, Northwestern University, Evanstan, IL, United States
| | - Kenneth S. K. Tung
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Kenneth S. K. Tung,
| |
Collapse
|
5
|
Abstract
A high diversity of αβ T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.
Collapse
Affiliation(s)
- Magali Irla
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France;
| |
Collapse
|
6
|
Anderson CC. The historical postulate is not the basis of self‐nonself discrimination: A response to Bretscher's proposal. Scand J Immunol 2021; 94:e13105. [DOI: 10.1111/sji.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Colin C. Anderson
- Departments of Surgery and Medical Microbiology and Immunology Alberta Diabetes and Transplant Institutes University of Alberta Edmonton Alberta Canada
| |
Collapse
|