1
|
Niizuma K, Morikawa S, Gars E, Xiang J, Matsubara-Takahashi T, Saito R, Takematsu E, Wang Y, Xu H, Wakimoto A, Tan TK, Kubota Y, Chan CKF, Weissman IL, Nakagawa T, Wilkinson AC, Nakauchi H, Yamamoto R. Elevated hematopoietic stem cell frequency in mouse alveolar bone marrow. Stem Cell Reports 2025; 20:102374. [PMID: 39672154 DOI: 10.1016/j.stemcr.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are crucial for maintaining hematopoietic homeostasis and are localized within distinct bone marrow (BM) niches. While BM niches are often considered similar across different skeletal sites, we discovered that the alveolar BM (al-BM) in the mandible harbors the highest frequency of immunophenotypic HSCs in nine different skeletal sites. Transplantation assays revealed significantly increased engraftment from al-BM compared to femur, tibia, or pelvis BM, likely due to a higher proportion of alveolar HSCs. Moreover, hematopoietic progenitor cells (c-Kit+ Sca-1+ Lin-) in al-BM exhibited increased quiescence and reduced apoptosis, indicating superior maintenance and survival characteristics. We also observed an enrichment of mesenchymal stromal cells and skeletal stem cells in al-BM, suggesting a more supportive microenvironment. These findings indicate that al-BM provides a unique microenvironment conducive to higher frequency of HSCs, offering new insights into site-specific hematopoiesis.
Collapse
Affiliation(s)
- Kouta Niizuma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Satoru Morikawa
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eric Gars
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinyi Xiang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Rei Saito
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Eri Takematsu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, US
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, US
| | - Haojun Xu
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arata Wakimoto
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Tze Kai Tan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, US
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Kambe R, Mitomo K, Ikarashi T, Haketa M, Tashiro K, Furusawa M, Muramatsu T. Localization of Both CD31- and Endomucin-Expressing Vessels in Mouse Dental Pulp. Acta Histochem Cytochem 2024; 57:157-163. [PMID: 39552934 PMCID: PMC11565222 DOI: 10.1267/ahc.24-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/03/2024] [Indexed: 11/19/2024] Open
Abstract
We investigated the localization of both CD31- and endomucin-expressing vessels in mouse dental pulp to elucidate their relationship with dentin formation. The maxillae of C57BL/6 male mice (1, 4, 8, 12, and 56 weeks old) were fixed with 4% paraformaldehyde solution, and cryosections (12-μm-thick) were prepared. Immunofluorescence was performed using anti-CD31 and anti-endomucin antibodies, and calcein labeling was conducted to elucidate relationships with dentin formation. At 1 week, many CD31-expressing (CD31 (+)) and endomucin-expressing (endomucin (+)) vessels were observed throughout the dental papilla. At 4 weeks, CD31 (+) and endomucin (+) vessels decreased in the crown and increased in the root of dental pulp. At 12 weeks, CD31 (+) and endomucin (+) vessels were detected at the root apex, but not in coronal pulp. At 56 weeks, few CD31 (+) and endomucin (+) vessels were observed in dental pulp. Both CD31(+) and endomucin (+) vessels were detected directly beneath calcein-labeled dentin at all sites. These results suggest the presence of CD31 (+) and endomucin (+) vessels in dental pulp and their contribution to dentin formation.
Collapse
Affiliation(s)
- Ryo Kambe
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | - Keisuke Mitomo
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Takatoshi Ikarashi
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Mayuka Haketa
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Tashiro
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | | | - Takashi Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
3
|
Leinonen S, Vuola P, Rice DP, Heliövaara A. Vascular Anomalies and Congenital Infiltrating Lipomatosis May Affect Dental Maturation and Development - a Case Control Study. Cleft Palate Craniofac J 2024:10556656241284761. [PMID: 39267377 DOI: 10.1177/10556656241284761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE Vascular anomalies are often associated with hypertrophy and asymmetry of soft tissues and bony structures. The aim of this retrospective cross-sectional radiographic study was to evaluate dental maturation and development in patients with facial vascular anomalies and congenital infiltrating lipomatosis. DESIGN A sample of 342 patients with different vascular anomalies or congenital infiltrating lipomatosis involving the head and neck area was narrowed down to 31 patients with dental panoramic radiographs taken in the mixed dentition. A control group of 172 age-matched healthy subjects was used. Individual permanent teeth were given a maturation score from 1 to 12 and alveolar eruption stage according to Haavikko et al. 1970. The laterality of the anomaly was noted if applicable. Differences in dental development between affected and unaffected sides were recorded. RESULTS The study data included both syndromic and non-syndromic vascular anomalies as well as congenital infiltrating lipomatosis and segmental odontomaxillary dysplasia. Teeth on the side of the anomaly were more developed and the eruption of teeth was accelerated with canines, premolars and second molars being most affected. Interestingly all the patients with Sturge-Weber syndrome (n = 4) and infiltrating lipomatosis (n = 2) showed accelerated dental maturation of multiple permanent teeth on the side of the anomaly. Hypodontia, dental root resorption and macrodontia were also found. CONCLUSIONS Accelerated development and eruption of permanent teeth unilaterally in patients with vascular anomalies and congenital infiltrating lipomatosis may have a significant impact on the developing occlusion and should be thus followed by an orthodontist.
Collapse
Affiliation(s)
- Sami Leinonen
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pia Vuola
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Vascular Anomaly Team, Helsinki University Hospital, Helsinki, Finland
- Reference Center, European Reference Network ERN-VASCERN, Helsinki, Finland
| | - David P Rice
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arja Heliövaara
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Li A, Sasaki JI, Huang H, Abe GL, Inubushi T, Takahashi Y, Hayashi M, Imazato S. Effect of Heparan Sulfate on Vasculogenesis and Dentinogenesis of Dental Pulp Stem Cells. J Endod 2024; 50:1108-1116. [PMID: 38719089 DOI: 10.1016/j.joen.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both in vitro and in vivo. METHODS Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 101-102 μg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro-computed tomography imaging. RESULTS HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the in vivo pulp capping study induced formation of capillaries and reparative dentin. CONCLUSIONS Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs in vitro and induced reparative dentin formation in vivo, highlighting its therapeutic potential for pulp capping treatment.
Collapse
Affiliation(s)
- Aonan Li
- Department of Endodontics, Shandong First Medical University School of Dentistry, Shandong, China; Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hailing Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gabriela L Abe
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yusuke Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan; Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
5
|
Ganapathy A, Narayanan K, Chen Y, Villani C, George A. Dentin matrix protein 1 and HUVEC-ECM scaffold promote the differentiation of human dental pulp stem cells into endothelial lineage: implications in regenerative medicine. Front Physiol 2024; 15:1429247. [PMID: 39040080 PMCID: PMC11260688 DOI: 10.3389/fphys.2024.1429247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Reprograming of the dental pulp somatic cells to endothelial cells is an attractive strategy for generation of new blood vessels. For tissue regeneration, vascularization of engineered constructs is crucial to improve repair mechanisms. In this study, we show that dentin matrix protein 1 (DMP1) and HUVEC-ECM scaffold enhances the differentiation potential of dental pulp stem cells (DPSCs) to an endothelial phenotype. Our results show that the differentiated DPSCs expressed endothelial markers CD31 and VE-Cadherin (CD144) at 7 and 14 days. Expression of CD31 and VE-Cadherin (CD144) were also confirmed by immunofluorescence. Furthermore, flow cytometry analysis revealed a steady increase in CD31 and VE-Cadherin (CD144) positive cells with DMP1 treatment when compared with control. In addition, integrins specific for endothelial cells were highly expressed during the differentiation process. The endothelial cell signature of differentiated DPSCs were additionally characterized for key endothelial cell markers using gene expression by RT-PCR, Western blotting, immunostaining, and RNA-seq analysis. Furthermore, the angiogenic phenotype was confirmed by tubule and capillary sprout formation. Overall, stimulation of DPSCs by DMP1 and use of HUVEC-ECM scaffold promoted their differentiation into phenotypically, transcriptionally, and functionally differentiated bonafide endothelial cells. This study is novel, physiologically relevant and different from conventional strategies.
Collapse
Affiliation(s)
| | | | | | | | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Sunohara M, Morikawa S, Shimada K, Suzuki K. Spatiotemporal expression profiles of c-Mpl mRNA in the tooth germ: Comparative expression dynamics of vascularization-related genes. Ann Anat 2024; 253:152227. [PMID: 38336176 DOI: 10.1016/j.aanat.2024.152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Vascularization is an essential event for both embryonic organ development and tissue repair in adults. During mouse tooth development, endothelial cells migrate into dental papilla during the cap stage, and form blood vessels through angiogenesis. Megakaryocytes and/or platelets, as other hematopoietic cells, express angiogenic molecules and can promote angiogenesis in adult tissues. However, it remains unknown which cells are responsible for attracting and leading blood vessels through the dental papilla during tooth development. METHODS Here we analyzed the spatiotemporal expression of c-Mpl mRNA in developing molar teeth of fetal mice. Expression patterns were then compared with those of several markers of hematopoietic cells as well as of angiogenic elements including CD41, erythropoietin receptor, CD34, angiopoietin-1 (Ang-1), Tie-2, and vascular endothelial growth factor receptor2 (VEGFR2) through in situ hybridization or immunohistochemistry. RESULTS Cells expressing c-Mpl mRNA was found in several parts of the developing tooth germ, including the peridental mesenchyme, dental papilla, enamel organ, and dental lamina. This expression occurred in a spatiotemporally controlled fashion. CD41-expressing cells were not detected during tooth development. The spatiotemporal expression pattern of c-Mpl mRNA in the dental papilla was similar to that of Ang-1, which preceded invasion of endothelial cells. Eventually, at the early bell stage, the c-Mpl mRNA signal was detected in morphologically differentiating odontoblasts that accumulated in the periphery of the dental papilla along the inner enamel epithelium layer of the future cusp region. CONCLUSION During tooth development, several kinds of cells express c-Mpl mRNA in a spatiotemporally controlled fashion, including differentiating odontoblasts. We hypothesize that c-Mpl-expressing cells appearing in the forming dental papilla at the cap stage are odontoblast progenitor cells that migrate to the site of odontoblast differentiation. There they attract vascular endothelial cells into the forming dental papilla and lead cells toward the inner enamel epithelium layer through production of angiogenic molecules (e.g., Ang-1) during migration to the site of differentiation. C-Mpl may regulate apoptosis and/or proliferation of expressing cells in order to execute normal development of the tooth.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuto Shimada
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Kingo Suzuki
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Bryniarska-Kubiak N, Basta-Kaim A, Kubiak A. Mechanobiology of Dental Pulp Cells. Cells 2024; 13:375. [PMID: 38474339 PMCID: PMC10931140 DOI: 10.3390/cells13050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel. This physical heterogeneity and complexity plays a key role in tooth physiology and in turn, is a great target for a variety of therapeutic approaches. First of all, physical mechanisms are crucial for the pain propagation process from the tooth surface to the nerves inside the dental pulp. On the other hand, the modulation of the physical environment affects the functioning of dental pulp cells and thus is important for regenerative medicine. In the present review, we describe the physiological significance of biomechanical processes in the physiology and pathology of dental pulp. Moreover, we couple those phenomena with recent advances in the fields of bioengineering and pharmacology aiming to control the functioning of dental pulp cells, reduce pain, and enhance the differentiation of dental cells into desired lineages. The reviewed literature shows great progress in the topic of bioengineering of dental pulp-although mainly in vitro. Apart from a few positions, it leaves a gap for necessary filling with studies providing the mechanisms of the mechanical control of dental pulp functioning in vivo.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland;
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland;
| | - Andrzej Kubiak
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
8
|
Kong L, Li J, Bai Y, Xu S, Zhang L, Chen W, Gao L, Wang F. Inhibition of soluble epoxide hydrolase enhances the dentin-pulp complex regeneration mediated by crosstalk between vascular endothelial cells and dental pulp stem cells. J Transl Med 2024; 22:61. [PMID: 38229161 PMCID: PMC10790489 DOI: 10.1186/s12967-024-04863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Revascularization and restoration of normal pulp-dentin complex are important for tissue-engineered pulp regeneration. Recently, a unique periodontal tip-like endothelial cells subtype (POTCs) specialized to dentinogenesis was identified. We have confirmed that TPPU, a soluble epoxide hydrolase (sEH) inhibitor targeting epoxyeicosatrienoic acids (EETs) metabolism, promotes bone growth and regeneration by angiogenesis and osteogenesis coupling. We hypothesized that TPPU could also promote revascularization and induce POTCs to contribute to pulp-dentin complex regeneration. Here, we in vitro and in vivo characterized the potential effect of TPPU on the coupling of angiogenesis and odontogenesis and investigated the relevant mechanism, providing new ideas for pulp-dentin regeneration by targeting sEH. METHODS In vitro effects of TPPU on the proliferation, migration, and angiogenesis of dental pulp stem cells (DPSCs), human umbilical vein endothelial cells (HUVECs) and cocultured DPSCs and HUVECs were detected using cell counting kit 8 (CCK8) assay, wound healing, transwell, tube formation and RT-qPCR. In vivo, Matrigel plug assay was performed to outline the roles of TPPU in revascularization and survival of grafts. Then we characterized the VEGFR2 + POTCs around odontoblast layer in the molar of pups from C57BL/6 female mice gavaged with TPPU. Finally, the root segments with DPSCs mixed with Matrigel were implanted subcutaneously in BALB/c nude mice treated with TPPU and the root grafts were isolated for histological staining. RESULTS In vitro, TPPU significantly promoted the migration and tube formation capability of cocultured DPSCs and HUVECs. ALP and ARS staining and RT-qPCR showed that TPPU promoted the osteogenic and odontogenic differentiation of cultured cells, treatment with an anti-TGF-β blocking antibody abrogated this effect. Knockdown of HIF-1α in HUVECs significantly reversed the effect of TPPU on the expression of angiogenesis, osteogenesis and odontogenesis-related genes in cocultured cells. Matrigel plug assay showed that TPPU increased VEGF/VEGFR2-expressed cells in transplanted grafts. TPPU contributed to angiogenic-odontogenic coupling featured by increased VEGFR2 + POTCs and odontoblast maturation during early dentinogenesis in molar of newborn pups from C57BL/6 female mice gavaged with TPPU. TPPU induced more dental pulp-like tissue with more vessels and collagen fibers in transplanted root segment. CONCLUSIONS TPPU promotes revascularization of dental pulp regeneration by enhancing migration and angiogenesis of HUVECs, and improves odontogenic differentiation of DPSCs by TGF-β. TPPU boosts the angiogenic-odontogenic coupling by enhancing VEGFR2 + POTCs meditated odontoblast maturation partly via upregulating HIF-1α, which contributes to increasing pulp-dentin complex for tissue-engineered pulp regeneration.
Collapse
Affiliation(s)
- Lingwenyao Kong
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yuwen Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Shaoyang Xu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Lin Zhang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Sun H, Meng S, Xu Z, Cai H, Pei X, Wan Q, Chen J. Vascular and lymphatic heterogeneity and age-related variations of dental pulps. J Dent 2023; 138:104695. [PMID: 37714450 DOI: 10.1016/j.jdent.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVES Dental pulp tissue is highly vascularized. However, age-related vascular changes of the dental pulp in mice and humans remain poorly understood. We modified a novel tissue clearing method, mapped the vasculature, pericytes, and perivascular matrix in the dental pulp via high-resolution 3D imaging. METHODS We isolated young and aged pulps from mouse teeth, and mapped vasculature through a high-resolution thick frozen sections imaging method and a modified tissue clearing method. Human dental pulps were also mapped for vasculature studying. Furthermore, young and aged human dental pulps were collected and were compared with mouse pulps through RNA- sequencing. RESULTS Five vascular subtypes of blood vessels were found in the mouse dental pulp, which constituted the arterioles-capillaries-venules network. The density of capillaries and venules of molars declined obviously in aged mice. Among the age-dependent changes in the perivascular pulp matrix, the perivascular macrophages remarkably increased, lymphatic capillaries increased, while the nerves and extracellular matrix remained unchanged. Furthermore, the vascular patterns of human formed a complex vascular network. Both mouse and human dental pulps exhibited an inflammaging state. TNF pathway and Rap1 pathway might become promising targets for combating inflammaging and promoting angiogenesis. CONCLUSIONS Five subtypes of blood vessels were identified within the dental pulp of mice. Notably, the density of capillaries and venules in pulps of aged mice was reduced. Furthermore, partial similarities were observed in the vascular patterns between the dental pulps of humans and mice. RNA-sequencing analysis revealed that both mouse and human dental pulps exhibit indications of an inflammaging state. CLINICAL SIGNIFICANCE This study may contribute to unraveling potential therapeutic targets in the pulp regeneration and treatment of relevant diseases in the elderly.
Collapse
Affiliation(s)
- Haiyang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhuai Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - He Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Iga T, Kobayashi H, Kusumoto D, Sanosaka T, Fujita N, Tai-Nagara I, Ando T, Takahashi T, Matsuo K, Hozumi K, Ito K, Ema M, Miyamoto T, Matsumoto M, Nakamura M, Okano H, Shibata S, Kohyama J, Kim KK, Takubo K, Kubota Y. Spatial heterogeneity of bone marrow endothelial cells unveils a distinct subtype in the epiphysis. Nat Cell Biol 2023; 25:1415-1425. [PMID: 37798545 PMCID: PMC10567563 DOI: 10.1038/s41556-023-01240-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/28/2023] [Indexed: 10/07/2023]
Abstract
Bone marrow endothelial cells (BMECs) play a key role in bone formation and haematopoiesis. Although recent studies uncovered the cellular taxonomy of stromal compartments in the bone marrow (BM), the complexity of BMECs is not fully characterized. In the present study, using single-cell RNA sequencing, we defined a spatial heterogeneity of BMECs and identified a capillary subtype, termed type S (secondary ossification) endothelial cells (ECs), exclusively existing in the epiphysis. Type S ECs possessed unique phenotypic characteristics in terms of structure, plasticity and gene expression profiles. Genetic experiments showed that type S ECs atypically contributed to the acquisition of bone strength by secreting type I collagen, the most abundant bone matrix component. Moreover, these cells formed a distinct reservoir for haematopoietic stem cells. These findings provide the landscape for the cellular architecture in the BM vasculature and underscore the importance of epiphyseal ECs during bone and haematopoietic development.
Collapse
Affiliation(s)
- Takahito Iga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Ikue Tai-Nagara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Ando
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Takahashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanawaga, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
12
|
Kim JS, Lee BN, Chang HS, Hwang IN, Oh WM, Hwang YC. Effects of CTHRC1 on odontogenic differentiation and angiogenesis in human dental pulp stem cells. Restor Dent Endod 2023; 48:e18. [PMID: 37284346 PMCID: PMC10240092 DOI: 10.5395/rde.2023.48.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 06/08/2023] Open
Abstract
Objectives This study aimed to determine whether collagen triple helix repeat containing-1 (CTHRC1), which is involved in vascular remodeling and bone formation, can stimulate odontogenic differentiation and angiogenesis when administered to human dental pulp stem cells (hDPSCs). Materials and Methods The viability of hDPSCs upon exposure to CTHRC1 was assessed with the WST-1 assay. CTHRC1 doses of 5, 10, and 20 µg/mL were administered to hDPSCs. Reverse-transcription polymerase reaction was used to detect dentin sialophosphoprotein, dentin matrix protein 1, vascular endothelial growth factor, and fibroblast growth factor 2. The formation of mineralization nodules was evaluated using Alizarin red. A scratch wound assay was conducted to evaluate the effect of CTHRC1 on cell migration. Data were analyzed using 1-way analysis of variance followed by the Tukey post hoc test. The threshold for statistical significance was set at p < 0.05. Results CTHRC1 doses of 5, 10, and 20 µg/mL had no significant effect on the viability of hDPSCs. Mineralized nodules were formed and odontogenic markers were upregulated, indicating that CTHRC1 promoted odontogenic differentiation. Scratch wound assays demonstrated that CTHRC1 significantly enhanced the migration of hDPSCs. Conclusions CTHRC1 promoted odontogenic differentiation and mineralization in hDPSCs.
Collapse
Affiliation(s)
- Jong-soon Kim
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hoon-Sang Chang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - In-Nam Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Won-Mann Oh
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
13
|
Wu Y, Liu M, Zhou H, He X, Shi W, Yuan Q, Zuo Y, Li B, Hu Q, Xie Y. COX-2/PGE 2/VEGF signaling promotes ERK-mediated BMSCs osteogenic differentiation under hypoxia by the paracrine action of ECs. Cytokine 2023; 161:156058. [PMID: 36209650 DOI: 10.1016/j.cyto.2022.156058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022]
Abstract
Understanding the crosstalk between endothelial cells (ECs) and bone-marrow mesenchymal stem cells (BMSCs) in response to hypoxic environments and deciphering of the underlying mechanisms are of great relevance for better application of BMSCs in tissue engineering. Here, we demonstrated that hypoxia promoted BMSCs proliferation, colony formation, osteogenic markers expression, mineralization, and extracellular signal-regulated protein kinase (ERK) phosphorylation, and that PD98059 (ERK inhibitor) blocked hypoxia-induced osteogenic differentiation. Hypoxia enhanced ECs migration, cyclooxygenase 2 (COX-2) and integrin αvβ3 expression, and prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) secretion. NS398 (selective COX-2 inhibitor) and LM609 (integrin αvβ3 specific inhibitor) impaired the ECs response to hypoxia, and exogenous PGE2 partially reversed the effects of NS398. BMSCs: ECs co-culture under hypoxia upregulated BMSCs osteogenesis and ERK phosphorylation, as well as ECs migration, integrin αvβ3 expression, and PGE2 and VEGF secretion. NS398 (pretreated ECs) lessened PGE2, VEGF concentrations of the co-culture system. NS398-treated ECs and AH6809 (combined EP1/2 antagonist)/L-798106 (selective EP3 antagonist)/L-161982 (selective EP4 antagonist)/SU5416 [VEGF receptor (VEGFR) inhibitor]-treated BMSCs impaired the co-cultured ECs-induced enhancement of BMSCs osteogenic differentiation. In conclusion, hypoxia enhances BMSCs proliferation and ERK-mediated osteogenic differentiation, and augments the COX-2-dependent PGE2 and VEGF release, integrin αvβ3 expression, and migration of ECs. COX-2/PGE2/VEGF signaling is involved in intercellular BMSCs: ECs communication under hypoxia.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wei Shi
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qianghua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
14
|
Asrar H, Tucker AS. Endothelial cells during craniofacial development: Populating and patterning the head. Front Bioeng Biotechnol 2022; 10:962040. [PMID: 36105604 PMCID: PMC9465086 DOI: 10.3389/fbioe.2022.962040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Major organs and tissues require close association with the vasculature during development and for later function. Blood vessels are essential for efficient gas exchange and for providing metabolic sustenance to individual cells, with endothelial cells forming the basic unit of this complex vascular framework. Recent research has revealed novel roles for endothelial cells in mediating tissue morphogenesis and differentiation during development, providing an instructive role to shape the tissues as they form. This highlights the importance of providing a vasculature when constructing tissues and organs for tissue engineering. Studies in various organ systems have identified important signalling pathways crucial for regulating the cross talk between endothelial cells and their environment. This review will focus on the origin and migration of craniofacial endothelial cells and how these cells influence the development of craniofacial tissues. For this we will look at research on the interaction with the cranial neural crest, and individual organs such as the salivary glands, teeth, and jaw. Additionally, we will investigate the methods used to understand and manipulate endothelial networks during the development of craniofacial tissues, highlighting recent advances in this area.
Collapse
|
15
|
Koh GY. Apelin drives maintenance and expansion of the vascular niche in intestinal crypts. NATURE CARDIOVASCULAR RESEARCH 2022; 1:410-412. [PMID: 39195944 DOI: 10.1038/s44161-022-00071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|