1
|
Petrovic A, Samuelsen VM, Davies R, Aarebrot AK, Holmes T, Sarkar I, Bergum B, Jonsson R, Sandvik LF, Solberg SM, Appel S. Immune cell activity during anti-TNF treatment in patients with psoriasis and psoriatic arthritis. Clin Exp Immunol 2024; 218:329-340. [PMID: 39121030 PMCID: PMC11557139 DOI: 10.1093/cei/uxae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 08/11/2024] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease characterized by a dysregulated immune response and systemic inflammation. Up to one-third of patients with psoriasis have psoriatic arthritis (PsA). Targeted treatment with antibodies neutralizing tumor necrosis factor can ameliorate both diseases. We here explored the impact of long-term infliximab treatment on the composition and activity status of circulating immune cells involved in chronic skin and joint inflammation. Immune cells were analyzed by multicolor flow cytometry. We measured markers of immune activation in peripheral blood mononuclear cell populations in 24 infliximab-treated patients with psoriasis/PsA compared to 32 healthy controls. We observed a significant decrease in the frequency of both peripheral natural killer (NK) cells and their subset CD56dimCD16+ NK cells in PsA compared to healthy controls and patients with psoriasis. The latter had a strong-positive correlation with psoriasis area severity index (PASI) in these patients, while CD56brightCD16- NK cells were negatively correlated with PASI. In addition, we observed an upregulation of CD69+ intermediate CD14+CD16+ and CD69+ classical CD14+CD16- monocytes in PsA and increased activity of CD38+ intermediate CD14+CD16+ monocytes in patients with psoriasis. Compared to healthy controls, psoriasis patients demonstrated shifts of the three B-cell subsets with a decrease in transitional CD27-CD38high B cells. Our exploratory study indicates a preserved pathophysiological process including continuous systemic inflammation despite clinical stability of the patients treated with infliximab.
Collapse
Affiliation(s)
- Aleksandra Petrovic
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Victoria Marie Samuelsen
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders K Aarebrot
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Timothy Holmes
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Irene Sarkar
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brith Bergum
- Flow Cytometry Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lene F Sandvik
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Silje M Solberg
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Kläsener K, Herrmann N, Håversen L, Sundell T, Sundqvist M, Lundqvist C, Manna PT, Jonsson CA, Visentini M, Ljung Sass D, McGrath S, Grimstad K, Aranburu A, Mellgren K, Fogelstrand L, Forsman H, Ekwall O, Borén J, Gjertsson I, Reth M, Mårtensson I, Camponeschi A. Targeting CD38 with monoclonal antibodies disrupts key survival pathways in paediatric Burkitt's lymphoma malignant B cells. Clin Transl Immunology 2024; 13:e70011. [PMID: 39364393 PMCID: PMC11447455 DOI: 10.1002/cti2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Objectives Paediatric Burkitt's lymphoma (pBL) is the most common childhood non-Hodgkin B-cell lymphoma. Despite the encouraging survival rates for most children, treating cases with relapse/resistance to current therapies remains challenging. CD38 is a transmembrane protein highly expressed in pBL. This study investigates the effectiveness of CD38-targeting monoclonal antibodies (mAbs), daratumumab and isatuximab, in impairing crucial cellular processes and survival pathways in pBL malignant cells. Methods In silico analyses of patient samples, combined with in vitro experiments using the Ramos cell line, were conducted to assess the impact of daratumumab and isatuximab on cellular proliferation, apoptosis and the phosphoinositide 3-kinase (PI3K) pathway. Results Isatuximab was found to be more effective than daratumumab in disrupting B-cell receptor signalling, reducing cellular proliferation and inducing apoptosis. Additionally, isatuximab caused a significant impairment of the PI3K pathway and induced metabolic reprogramming in pBL cells. The study also revealed a correlation between CD38 and MYC expression levels in pBL patient samples, suggesting CD38 involvement in key oncogenic processes. Conclusion The study emphasises the therapeutic potential of CD38-targeting mAbs, particularly isatuximab, in pBL.
Collapse
Affiliation(s)
- Kathrin Kläsener
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Nadja Herrmann
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Timothy Sundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Paul T Manna
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcella Visentini
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Diana Ljung Sass
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and AdolescentsUniversity of GothenburgGothenburgSweden
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kristoffer Grimstad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- School of BioscienceUniversity of SkövdeSkövdeSweden
| | - Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Karin Mellgren
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and AdolescentsUniversity of GothenburgGothenburgSweden
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Rheumatology, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Michael Reth
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Inga‐Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
3
|
Rabelink TJ, de Vries APJ. CD38 - a new target in renal immune disease. Nat Rev Nephrol 2024; 20:641-642. [PMID: 39044006 DOI: 10.1038/s41581-024-00874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
- Ton J Rabelink
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands.
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
| | - Aiko P J de Vries
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Vervoordeldonk MYL, Hengeveld PJ, Levin MD, Langerak AW. B cell receptor signaling proteins as biomarkers for progression of CLL requiring first-line therapy. Leuk Lymphoma 2024; 65:1031-1043. [PMID: 38619476 DOI: 10.1080/10428194.2024.2341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The molecular landscape of chronic lymphocytic leukemia (CLL) has been extensively characterized, and various potent prognostic biomarkers were discovered. The genetic composition of the B-cell receptor (BCR) immunoglobulin (IG) was shown to be especially powerful for discerning indolent from aggressive disease at diagnosis. Classification based on the IG heavy chain variable gene (IGHV) somatic hypermutation status is routinely applied. Additionally, BCR IGH stereotypy has been implicated to improve risk stratification, through characterization of subsets with consistent clinical profiles. Despite these advances, it remains challenging to predict when CLL progresses to requiring first-line therapy, thus emphasizing the need for further refinement of prognostic indicators. Signaling pathways downstream of the BCR are essential in CLL pathogenesis, and dysregulated components within these pathways impact disease progression. Considering not only genomics but the entirety of factors shaping BCR signaling activity, this review offers insights in the disease for better prognostic assessment of CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Disease Progression
- Biomarkers, Tumor/genetics
- Prognosis
Collapse
Affiliation(s)
- Mischa Y L Vervoordeldonk
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Paul J Hengeveld
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Hildenbrand A, Cramer P, Bertolotti M, Kaiser NS, Kläsener K, Nickel CM, Reth M, Heim A, Hengel H, Burgert HG, Ruzsics Z. Inhibition of B cell receptor signaling induced by the human adenovirus species D E3/49K protein. Front Immunol 2024; 15:1432226. [PMID: 39139562 PMCID: PMC11321000 DOI: 10.3389/fimmu.2024.1432226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells. Methods Considering that E3/49K represents the most polymorphic viral protein among species D HAdVs, we demonstrate here that all tested E3/49K orthologs bind to the immunologically important regulator CD45. Thus, this feature is conserved regardless of the pathological associations of the respective HAdV types. Results It appeared that modulation of CD45 is a unique property restricted to HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR) signaling and impaired BCR signal phenotypes. The latter were highly comparable to B cells having defects in the expression of CD45, suggesting E3/49K as a potential tool to investigate CD45 specific functions. Conclusion We identified B cells as new direct target of E3/49K-mediated immune modulation, representing a novel viral immunosubversive mechanism.
Collapse
Affiliation(s)
- Andreas Hildenbrand
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Precious Cramer
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Milena Bertolotti
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Nathalie Sophia Kaiser
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clara Muriel Nickel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Heim
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Lemal R, Blandin L, Uro-Coste C, Philipponnet C, Geoffroy E, Heng AE, Garrouste C, Rouzaire P. Daratumumab treatment in six highly sensitised solid organ transplant recipients: A case series and literature review. HLA 2024; 103:e15458. [PMID: 38597238 DOI: 10.1111/tan.15458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
We report data on six kidney or heart recipients who were administered daratumumab to treat or prevent antibody-mediated rejection (ABMR). To date, data are scarce concerning the use of daratumumab in solid organ transplantation and most reports show a decrease in donor-specific antigen (DSA) levels and an improvement in ABMR using a multiple myeloma daratumumab administration scheme, that is, with sequential systematic administration. Here, we report on the efficacy of daratumumab 1/ in reducing the histological signs of ABMR, 2/ in reducing the ability of DSA to bind to donor cells in vitro through negativation of flow cytometry crossmatching, 3/ in preferentially being directed towards antibodies sharing epitopes, suggesting that daratumumab may specifically target activated plasma cells, 4/ and when administered as a single dose. This last point suggests, for the first time, that, as for rituximab in auto-immune diseases, the scheme for daratumumab administration could be different for targeting DSA-producing plasma cells than for tumour cells.
Collapse
Affiliation(s)
- Richard Lemal
- Service d'Histocompatibilité et Immunogénétique, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
- EA 7453 CHELTER, Université Clermont Auvergne UCA, Clermont-Ferrand, France
| | - Lucie Blandin
- Service d'Histocompatibilité et Immunogénétique, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Charlotte Uro-Coste
- Service de Néphrologie, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Carole Philipponnet
- Service de Néphrologie, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Etienne Geoffroy
- Service de Cardiologie, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Anne-Elisabeth Heng
- Service de Néphrologie, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Cyril Garrouste
- EA 7453 CHELTER, Université Clermont Auvergne UCA, Clermont-Ferrand, France
- Service de Néphrologie, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Paul Rouzaire
- Service d'Histocompatibilité et Immunogénétique, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
- EA 7453 CHELTER, Université Clermont Auvergne UCA, Clermont-Ferrand, France
| |
Collapse
|
7
|
Wu J, Han K, Sack MN. Targeting NAD+ Metabolism to Modulate Autoimmunity and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1043-1050. [PMID: 38498807 PMCID: PMC10954088 DOI: 10.4049/jimmunol.2300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 03/20/2024]
Abstract
NAD+ biology is involved in controlling redox balance, functioning as a coenzyme in numerous enzymatic reactions, and is a cofactor for Sirtuin enzymes and a substrate for multiple regulatory enzyme reactions within and outside the cell. At the same time, NAD+ levels are diminished with aging and are consumed during the development of inflammatory and autoimmune diseases linked to aberrant immune activation. Direct NAD+ augmentation via the NAD+ salvage and Priess-Handler pathways is being investigated as a putative therapeutic intervention to improve the healthspan in inflammation-linked diseases. In this review, we survey NAD+ biology and its pivotal roles in the regulation of immunity and inflammation. Furthermore, we discuss emerging studies evaluate NAD+ boosting in murine models and in human diseases, and we highlight areas of research that remain unresolved in understanding the mechanisms of action of these nutritional supplementation strategies.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Tawfik A, Kawaguchi T, Takahashi M, Setoh K, Yamaguchi I, Tabara Y, Van Steen K, Sakuntabhai A, Matsuda F. Transcriptomic Analysis Reveals Sixteen Potential Genes Associated with the Successful Differentiation of Antibody-Secreting Cells through the Utilization of Unfolded Protein Response Mechanisms in Robust Responders to the Influenza Vaccine. Vaccines (Basel) 2024; 12:136. [PMID: 38400120 PMCID: PMC10892001 DOI: 10.3390/vaccines12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The seasonal influenza vaccine remains one of the vital recommended infection control measures for the elderly with chronic illnesses. We investigated the immunogenicity of a single dose of influenza vaccine in 123 seronegative participants and classified them into four distinct groups, determined by the promptness of vaccine response, the longevity of humoral immunity, and the likelihood of exhibiting cross-reactivity. Subsequently, we used transcriptional profiling and differential gene expression analysis to identify potential genes directly associated with the robust response to the vaccine. The group of exemplary vaccine responders differentially expressed 16 genes, namely: MZB1, MYDGF, TXNDC5, TXNDC11, HSP90B1, FKBP11, PDIA5, PRDX4, CD38, SDC1, TNFRSF17, TNFRSF13B, PAX5, POU2AF1, IRF4, and XBP1. Our findings point out a list of expressed proteins that are related to B cell proliferation, unfolded protein response, and cellular haemostasis, as well as a linkage of these expressions to the survival of long-lived plasma cells.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France;
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Meiko Takahashi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Kazuya Setoh
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| | - Kristel Van Steen
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, 4000 Liège, Belgium
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Leuven, 3000 Leuven, Belgium
| | - Anavaj Sakuntabhai
- Pasteur International Unit at Center for Genomic Medicine, Kyoto University, Kyoto 606-8507, Japan
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan (I.Y.)
| |
Collapse
|
9
|
Flores-Gonzalez J, Urbán-Solano A, Ramón-Luing LA, Cancino-Diaz JC, Contreras-Rodriguez A, Curiel-Quesada E, Hernández-Pando R, Chavez-Galan L. Active tuberculosis patients have high systemic IgG levels and B-cell fingerprinting, characterized by a reduced capacity to produce IFN-γ or IL-10 as a response to M.tb antigens. Front Immunol 2023; 14:1263458. [PMID: 38022616 PMCID: PMC10643169 DOI: 10.3389/fimmu.2023.1263458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (M.tb). B cells are the central mediator of the humoral response; they are responsible for producing antibodies in addition to mediating other functions. The role of the cellular response during the TB spectrum by B cells is still controversial. Methods In this study, we evaluated the distribution of the circulating B cell subsets in patients with active and latent TB (ATB and LTB, respectively) and how they respond to stimuli of protein or lipid from M.tb. Results Here, we show that ATB patients show an immune fingerprinting. However, patients with drug-sensitive- (DS-TB) or drug-resistant- (DR-TB) TB have altered frequencies of circulating B cells. DS-TB and DR-TB display a unique profile characterized by high systemic levels of IFN-γ, IL-10, IgG, IgG/IgM ratio, and total B cells. Moreover, B cells from DR-TB are less efficient in producing IL-10, and both DS-TB and DR-TB produce less IFN-γ in response to M.tb antigens. Conclusion These results provide new insights into the population dynamics of the cellular immune response by B cells against M.tb and suggest a fingerprinting to characterize the B-cell response on DR-TB.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Araceli Contreras-Rodriguez
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Department of Pathology, Section of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
10
|
Vitallé J, Zenarruzabeitia O, Merino-Pérez A, Terrén I, Orrantia A, Pacho de Lucas A, Iribarren JA, García-Fraile LJ, Balsalobre L, Amo L, de Andrés B, Borrego F. Human IgM hiCD300a + B Cells Are Circulating Marginal Zone Memory B Cells That Respond to Pneumococcal Polysaccharides and Their Frequency Is Decreased in People Living with HIV. Int J Mol Sci 2023; 24:13754. [PMID: 37762055 PMCID: PMC10530418 DOI: 10.3390/ijms241813754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
CD300a is differentially expressed among B cell subsets, although its expression in immunoglobulin (Ig)M+ B cells is not well known. We identified a B cell subset expressing CD300a and high levels of IgM (IgMhiCD300a+). The results showed that IgMhiCD300a+ B cells were CD10-CD27+CD25+IgDloCD21hiCD23-CD38loCD1chi, suggesting that they are circulating marginal zone (MZ) IgM memory B cells. Regarding the immunoglobulin repertoire, IgMhiCD300a+ B cells exhibited a higher mutation rate and usage of the IgH-VDJ genes than the IgM+CD300a- counterpart. Moreover, the shorter complementarity-determining region 3 (CDR3) amino acid (AA) length from IgMhiCD300a+ B cells together with the predicted antigen experience repertoire indicates that this B cell subset has a memory phenotype. IgM memory B cells are important in T cell-independent responses. Accordingly, we demonstrate that this particular subset secretes higher amounts of IgM after stimulation with pneumococcal polysaccharides or a toll-like receptor 9 (TLR9) agonist than IgM+CD300a- cells. Finally, the frequency of IgMhiCD300a+ B cells was lower in people living with HIV-1 (PLWH) and it was inversely correlated with the years with HIV infection. Altogether, these data help to identify a memory B cell subset that contributes to T cell-independent responses to pneumococcal infections and may explain the increase in severe pneumococcal infections and the impaired responses to pneumococcal vaccination in PLWH.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Aitana Merino-Pérez
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Arantza Pacho de Lucas
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Immunology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - José A. Iribarren
- Department of Infectious Diseases, Donostia University Hospital, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
| | - Lucio J. García-Fraile
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Internal Medicine, La Princesa University Hospital, 28006 Madrid, Spain
| | - Luz Balsalobre
- Laboratory of Microbiology, UR Salud, Infanta Sofía University Hospital, 28702 Madrid, Spain;
| | - Laura Amo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Madrid, Spain;
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
11
|
Verhoeven D, Grinwis L, Marsman C, Jansen MH, Van Leeuwen EM, Kuijpers TW. B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses. Life Sci Alliance 2023; 6:e202302214. [PMID: 37419630 PMCID: PMC10331639 DOI: 10.26508/lsa.202302214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.
Collapse
Affiliation(s)
- Dorit Verhoeven
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lucas Grinwis
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Casper Marsman
- Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Department of Immunopathology, Amsterdam, The Netherlands
| | - Machiel H Jansen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ester Mm Van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bauvois B, Chapiro E, Quiney C, Maloum K, Susin SA, Nguyen-Khac F. The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target? Biomedicines 2023; 11:2335. [PMID: 37760777 PMCID: PMC10525793 DOI: 10.3390/biomedicines11092335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic B lymphocytes that escape death, and correlates with the expression of negative prognostic markers such as the CD38 antigen. Although certain new drugs approved by the US Food and Drug Administration improve the clinical outcome of CLL patients, drug resistance and disease relapse still occur. Like CD38, neutrophil gelatinase-associated lipocalin receptor (NGAL-R) is frequently overexpressed in CLL cells. Here, we evaluated the concomitant surface expression of NGAL-R and CD38 in leukemic blood cells from 52 CLL patients (37 untreated, 8 in clinical remission, and 7 relapsed). We provide evidence of a positive correlation between NGAL-R and CD38 levels both in the interpatient cohorts (p < 0.0001) and in individual patients, indicating a constitutive association of NGAL-R and CD38 at the cell level. Patients with progressing CLL showed a time-dependent increase in NGAL-R/CD38 levels. In treated CLL patients who achieved clinical remission, NGAL-R/CD38 levels were decreased, and were significantly lower than in the untreated and relapsed groups (p < 0.02). As NGAL-R and CD38 participate in CLL cell survival, envisioning their simultaneous inhibition with bispecific NGAL-R/CD38 antibodies capable of inducing leukemic cell death might provide therapeutic benefit for CLL patients.
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Claire Quiney
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Karim Maloum
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| | - Santos A. Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (E.C.); (K.M.); (S.A.S.); (F.N.-K.)
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d’Hématologie Biologique, F-75013 Paris, France;
| |
Collapse
|
13
|
Le Coz C, Oldridge DA, Herati RS, De Luna N, Garifallou J, Cruz Cabrera E, Belman JP, Pueschl D, Silva LV, Knox AVC, Reid W, Yoon S, Zur KB, Handler SD, Hakonarson H, Wherry EJ, Gonzalez M, Romberg N. Human T follicular helper clones seed the germinal center-resident regulatory pool. Sci Immunol 2023; 8:eade8162. [PMID: 37027481 PMCID: PMC10329285 DOI: 10.1126/sciimmunol.ade8162] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
The mechanisms by which FOXP3+ T follicular regulatory (Tfr) cells simultaneously steer antibody formation toward microbe or vaccine recognition and away from self-reactivity remain incompletely understood. To explore underappreciated heterogeneity in human Tfr cell development, function, and localization, we used paired TCRVA/TCRVB sequencing to distinguish tonsillar Tfr cells that are clonally related to natural regulatory T cells (nTfr) from those likely induced from T follicular helper (Tfh) cells (iTfr). The proteins iTfr and nTfr cells differentially expressed were used to pinpoint their in situ locations via multiplex microscopy and establish their divergent functional roles. In silico analyses and in vitro tonsil organoid tracking models corroborated the existence of separate Treg-to-nTfr and Tfh-to-iTfr developmental trajectories. Our results identify human iTfr cells as a distinct CD38+, germinal center-resident, Tfh-descended subset that gains suppressive function while retaining the capacity to help B cells, whereas CD38- nTfr cells are elite suppressors primarily localized in follicular mantles. Interventions differentially targeting specific Tfr cell subsets may provide therapeutic opportunities to boost immunity or more precisely treat autoimmune diseases.
Collapse
Affiliation(s)
- Carole Le Coz
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Derek A. Oldridge
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Ramin S. Herati
- Department of Medicine, NYU Grossman School of Medicine, New York, NY
| | - Nina De Luna
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James Garifallou
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Emylette Cruz Cabrera
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan P Belman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana Pueschl
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luisa V. Silva
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ainsley V. C. Knox
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Whitney Reid
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Samuel Yoon
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Karen B. Zur
- Pediatric Otolaryngology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Otolaryngology: Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Steven D. Handler
- Pediatric Otolaryngology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Otolaryngology: Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Gonzalez
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Neil Romberg
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
14
|
Huard A, Wilmes C, Kiprina A, Netzer C, Palmer G, Brüne B, Weigert A. Cell Intrinsic IL-38 Affects B Cell Differentiation and Antibody Production. Int J Mol Sci 2023; 24:ijms24065676. [PMID: 36982750 PMCID: PMC10053218 DOI: 10.3390/ijms24065676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
IL-38 is an IL-1 family receptor antagonist with an emerging role in chronic inflammatory diseases. IL-38 expression has been mainly observed not only in epithelia, but also in cells of the immune system, including macrophages and B cells. Given the association of both IL-38 and B cells with chronic inflammation, we explored if IL-38 affects B cell biology. IL-38-deficient mice showed higher amounts of plasma cells (PC) in lymphoid organs but, conversely, lower levels of plasmatic antibody titers. Exploring underlying mechanisms in human B cells revealed that exogenously added IL-38 did not significantly affect early B cell activation or differentiation into plasma cells, even though IL-38 suppressed upregulation of CD38. Instead, IL-38 mRNA expression was transiently upregulated during the differentiation of human B cells to plasma cells in vitro, and knocking down IL-38 during early B cell differentiation increased plasma cell generation, while reducing antibody production, thus reproducing the murine phenotype. Although this endogenous role of IL-38 in B cell differentiation and antibody production did not align with an immunosuppressive function, autoantibody production induced in mice by repeated IL-18 injections was enhanced in an IL-38-deficient background. Taken together, our data suggest that cell-intrinsic IL-38 promotes antibody production at baseline but suppresses the production of autoantibodies in an inflammatory context, which may partially explain its protective role during chronic inflammation.
Collapse
Affiliation(s)
- Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Christian Wilmes
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Anastasiia Kiprina
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Christoph Netzer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-4593; Fax: +49-69-6301-420
| |
Collapse
|
15
|
Merino-Vico A, Frazzei G, van Hamburg JP, Tas SW. Targeting B cells and plasma cells in autoimmune diseases: From established treatments to novel therapeutic approaches. Eur J Immunol 2023; 53:e2149675. [PMID: 36314264 PMCID: PMC10099814 DOI: 10.1002/eji.202149675] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 02/02/2023]
Abstract
Autoimmune diseases are characterized by the recognition of self-antigens by the immune system, which leads to inflammation and tissue damage. B cells are directly and indirectly involved in the pathophysiology of autoimmunity, both via antigen-presentation to T cells and production of proinflammatory cytokines and/or autoantibodies. Consequently, B lineage cells have been identified as therapeutic targets in autoimmune diseases. B cell depleting strategies have proven beneficial in the treatment of rheumatoid arthritis (RA), systemic lupus erythematous (SLE), ANCA-associated vasculitis (AAV), multiple sclerosis (MS), and a wide range of other immune-mediated inflammatory diseases (IMIDs). However, not all patients respond to treatment or may not reach (drug-free) remission. Moreover, B cell depleting therapies do not always target all B cell subsets, such as short-lived and long-lived plasma cells. These cells play an active role in autoimmunity and in certain diseases their depletion would be beneficial to achieve disease remission. In the current review article, we provide an overview of novel strategies to target B lineage cells in autoimmune diseases, with the focus on rheumatic diseases. Both advanced therapies that have recently become available and more experimental treatments that may reach the clinic in the near future are discussed.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Giulia Frazzei
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| |
Collapse
|
16
|
McCaleb MR, Miranda AM, Ratliff KC, Torres RM, Pelanda R. CD19 Is Internalized Together with IgM in Proportion to B Cell Receptor Stimulation and Is Modulated by Phosphatidylinositol 3-Kinase in Bone Marrow Immature B Cells. Immunohorizons 2023; 7:49-63. [PMID: 36637517 PMCID: PMC10074640 DOI: 10.4049/immunohorizons.2200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Newly generated immature B cells that bind self-antigen with high avidity arrest in differentiation and undergo central tolerance via receptor editing and clonal deletion. These autoreactive immature B cells also express low surface levels of the coreceptor CD19, a key activator of the PI3K pathway. Signals emanating from both CD19 and PI3K are known to be critical for attenuating receptor editing and selecting immature B cells into the periphery. However, the mechanisms that modulate CD19 expression at this stage of B cell development have not yet been resolved. Using in vivo and in vitro models, we demonstrate that Cd19 de novo gene transcription and translation do not significantly contribute to the differences in CD19 surface expression in mouse autoreactive and nonautoreactive immature B cells. Instead, CD19 downregulation is induced by BCR stimulation in proportion to BCR engagement, and the remaining surface IgM and CD19 molecules promote intracellular PI3K-AKT activity in proportion to their level of expression. The internalized CD19 is degraded with IgM by the lysosome, but inhibiting lysosome-mediated protein degradation only slightly improves surface CD19. In fact, CD19 is restored only upon Ag removal. Our data also reveal that the PI3K-AKT pathway positively modulates CD19 surface expression in immature B cells via a mechanism that is independent of inhibition of FOXO1 and its role on Cd19 gene transcription while is dependent on mTORC1.
Collapse
Affiliation(s)
- Megan R. McCaleb
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Kaysie C. Ratliff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| |
Collapse
|