1
|
Koch F, Albrecht D, Albrecht E, Hansen C, Kuhla B. Novel Perspective on Molecular and Cellular Adaptations of the Mammary Gland-Regulating Milk Constituents and Immunity of Heat-Stressed Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20286-20298. [PMID: 39226405 PMCID: PMC11421017 DOI: 10.1021/acs.jafc.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate change with increasing ambient temperatures negatively influences the biology of dairy cows and their milk production in the mammary gland (MG). This study aimed to elucidate the MG proteome, differences in milk composition, and ruminal short-chain fatty acid concentrations of dairy cows experiencing 7 days of heat stress [HS, 28 °C, temperature humidity index (THI) = 76], pair-feeding (PF), or ad libitum feeding (CON) at thermoneutrality (16 °C, THI = 60). Ruminal acetate, acetate/propionate ratio, and milk urea concentrations were greater, whereas milk protein and lactose were lower in HS than in control cows. Proteome analysis revealed an induced bacterial invasion of epithelial cells, leukocyte transendothelial migration, reduction of the pyruvate and carbon metabolism, and platelet activation in the MG of HS compared to CON or PF cows. These results highlight adaptive metabolic and immune responses to mitigate the negative effects of ambient heat in the MG.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, Dummerstorf 18196, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
2
|
von Borstel A, Reinwald S, Aui PM, McKenzie CI, Varese N, Hogarth PM, Hew M, O'Hehir RE, van Zelm MC. Expansion of phenotypically modified type 2 memory B cells after allergen immunotherapy. Allergy 2024. [PMID: 39268605 DOI: 10.1111/all.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Anouk von Borstel
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simone Reinwald
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
| | - Pei M Aui
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Craig I McKenzie
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nirupama Varese
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
| | - Robyn E O'Hehir
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
| | - Menno C van Zelm
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
4
|
van Zelm MC, O'Hehir RE, McKenzie CI. A recent patent in allergy & immunology: Biomarkers on allergen-specific memory B cells to predict allergen immunotherapy outcome. Allergy 2024. [PMID: 38979794 DOI: 10.1111/all.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Menno C van Zelm
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Robyn E O'Hehir
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Victoria, Australia
| | - Craig I McKenzie
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
von Borstel A, O'Hehir RE, van Zelm MC. IgE in allergy: It takes two. Sci Transl Med 2024; 16:eadl1202. [PMID: 38324640 DOI: 10.1126/scitranslmed.adl1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
A type 2 memory B cell subset is poised to differentiate into IgE-producing plasma cells in individuals with allergies (Ota et al. and Koenig et al.).
Collapse
Affiliation(s)
- Anouk von Borstel
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Robyn E O'Hehir
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Menno C van Zelm
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, Netherlands
| |
Collapse
|
6
|
Layhadi JA, Lalioti A, Palmer E, van Zelm MC, Wambre E, Shamji MH. Mechanisms and Predictive Biomarkers of Allergen Immunotherapy in the Clinic. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:59-66. [PMID: 37996041 DOI: 10.1016/j.jaip.2023.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Allergen immunotherapy (AIT) remains to be the only disease-modifying treatment for IgE-mediated allergic diseases such as allergic rhinitis. It can provide long-term clinical benefits when given for 3 years or longer. Mechanisms of immune tolerance induction by AIT are underscored by the modulation of several compartments within the immune system. These include repair of disruption in epithelial barrier integrity, modulation of the innate immune compartment that includes regulatory dendritic cells and innate lymphoid cells, and adaptive immune compartments such as induction of regulatory T and B cells. Altogether, these are also associated with the dampening of allergen-specific TH2 and T follicular helper cell responses and subsequent generation of blocking antibodies. Although AIT is effective in modifying the immune response, there is a lack of validated and clinically relevant biomarkers that can be used to monitor desensitization, efficacy, and the likelihood of response, all of which can contribute to accelerating personalized medication and increasing patient care. Candidate biomarkers comprise humoral, cellular, metabolic, and in vivo biomarkers; however, these are primarily studied in small trials and require further validation. In this review, we evaluate the current candidates of biomarkers of AIT and how we can implement changes in future studies to help us identify clinically relevant biomarkers of safety, compliance, and efficacy.
Collapse
Affiliation(s)
- Janice A Layhadi
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anastasia Lalioti
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Elizabeth Palmer
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Menno C van Zelm
- Department of Immunology, Monash University and Alfred Health, Melbourne, Victoria, Australia; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Erik Wambre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Wang L, Cui Z, Li N, Liang G, Zhang X, Wang Y, Li D, Li X, Zhang S, Zhang L. Comparative proteomics reveals Cryptosporidium parvum infection disrupts cellular barriers. J Proteomics 2023; 287:104969. [PMID: 37463621 DOI: 10.1016/j.jprot.2023.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Cryptosporidium is a protozoan parasite capable of infecting humans and animals and is a leading cause of diarrheal disease and early childhood mortality. The molecular mechanisms underlying invasive infection and its pathogenesis remain largely unknown. To better understand the molecular mechanism of the interaction between C. parvum and host cells, we profiled the changes of host cells membrane proteins extracted using native membrane protein extraction kit between C. parvum-infected HCT-8 cells and the control group after C. parvum infected 6 h combined with quantitative Tandem Mass Tags (TMT) liquid chromatography-dual mass spectrometry proteomic analysis. Among the 4844 quantifiable proteins identified, the expression levels of 625 were upregulated, and those of 116 were downregulated at 6 h post-infection compared with controls (1.5-fold difference in abundance, p < 0.05). Enrichment analysis of the function, protein domain and Kyoto Encyclopedia of Genes and Genomes pathway of the differentially expressed proteins revealed that the differentially expressed proteins were mainly related to biological functions related to the cytoskeleton and cytoplasmic matrix. We also found that infection with C. parvum may destroy HCT-8 intercellular space adhesion. Six proteins were further verified using quantitative real-time reverse transcription polymerase chain reaction and western blotting. Through systematic analysis of proteomics related to HCT-8 cell membranes infected by C. parvum, we found many host membrane proteins that can serve as potential receptors in C. parvum adhesion or invasion. C. parvum infection destroyed host cell barrier function and caused extensive changes in host cytoskeleton proteins, providing a deeper understanding of the molecules and their functions involved in the host-C. parvum interaction. SIGNIFICANCE: There is a lack of systematic research on the molecular mechanisms underlying the interaction of C. parvum with host cells. Changes of host cell membrane proteins after C. parvum infection may be used to examine the host cell receptors for parasite adhesion and invasion, and how the parasite interacts with these receptors. It is of great significance that host cells undergo membrane fusion to mediate invasion. Through proteomic studies on the host cell membrane after infection with HCT-8 cells by C. parvum, we observed disruption of the host cell cellular barrier function and widespread alteration of host cytoskeletal proteins caused by C. parvum infection, providing a deeper understanding of the molecules and their functions involved in host-C. parvum interaction.
Collapse
Affiliation(s)
- Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Na Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Guanda Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Xiaotian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Yuexin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Dongfang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China.; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|