1
|
Oprea L, Desjardins N, Jiang X, Sareen K, Zheng JQ, Khadra A. Characterizing spontaneous Ca 2+ local transients in OPCs using computational modeling. Biophys J 2022; 121:4419-4432. [PMID: 36352783 PMCID: PMC9748374 DOI: 10.1016/j.bpj.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Spontaneous Ca2+ local transients (SCaLTs) in isolated oligodendrocyte precursor cells are largely regulated by the following fluxes: store-operated Ca2+ entry (SOCE), Na+/Ca2+ exchange, Ca2+ pumping through Ca2+-ATPases, and Ca2+-induced Ca2+-release through ryanodine receptors and inositol-trisphosphate receptors. However, the relative contributions of these fluxes in mediating fast spiking and the slow baseline oscillations seen in SCaLTs remain incompletely understood. Here, we developed a stochastic spatiotemporal computational model to simulate SCaLTs in a homogeneous medium with ionic flow between the extracellular, cytoplasmic, and endoplasmic-reticulum compartments. By simulating the model and plotting both the histograms of SCaLTs obtained experimentally and from the model as well as the standard deviation of inter-SCaLT intervals against inter-SCaLT interval averages of multiple model and experimental realizations, we revealed the following: (1) SCaLTs exhibit very similar characteristics between the two data sets, (2) they are mostly random, (3) they encode information in their frequency, and (4) their slow baseline oscillations could be due to the stochastic slow clustering of inositol-trisphosphate receptors (modeled as an Ornstein-Uhlenbeck noise process). Bifurcation analysis of a deterministic temporal version of the model showed that the contribution of fluxes to SCaLTs depends on the parameter regime and that the combination of excitability, stochasticity, and mixed-mode oscillations are responsible for irregular spiking and doublets in SCaLTs. Additionally, our results demonstrated that blocking each flux reduces SCaLTs' frequency and that the reverse (forward) mode of Na+/Ca2+ exchange decreases (increases) SCaLTs. Taken together, these results provide a quantitative framework for SCaLT formation in oligodendrocyte precursor cells.
Collapse
Affiliation(s)
- Lawrence Oprea
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | - Xiaoyu Jiang
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Kushagra Sareen
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - James Q Zheng
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Anmar Khadra
- Department of Physiology, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
2
|
Quantal Ca 2+ release mediated by very few IP 3 receptors that rapidly inactivate allows graded responses to IP 3. Cell Rep 2021; 37:109932. [PMID: 34731613 PMCID: PMC8578705 DOI: 10.1016/j.celrep.2021.109932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that link extracellular stimuli to Ca2+ signals. Ca2+ release from intracellular stores is "quantal": low IP3 concentrations rapidly release a fraction of the stores. Ca2+ release then slows or terminates without compromising responses to further IP3 additions. The mechanisms are unresolved. Here, we synthesize a high-affinity partial agonist of IP3Rs and use it to demonstrate that quantal responses do not require heterogenous Ca2+ stores. IP3Rs respond incrementally to IP3 and close after the initial response to low IP3 concentrations. Comparing functional responses with IP3 binding shows that only a tiny fraction of a cell's IP3Rs mediate incremental Ca2+ release; inactivation does not therefore affect most IP3Rs. We conclude, and test by simulations, that Ca2+ signals evoked by IP3 pulses arise from rapid activation and then inactivation of very few IP3Rs. This allows IP3Rs to behave as increment detectors mediating graded Ca2+ release.
Collapse
|
3
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Abstract
Of the established Ca2+-mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations, and its receptors undergo dramatic desensitization. Recent studies have identified a new class of calcium-release channel, the two-pore channels (TPCs), as the likely targets for NAADP regulation, even though the effect may be indirect. These channels localized at endolysosomes, where they mediate local Ca2+ release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca2+ mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca2+ release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca2+-induced Ca2+-release (CICR) channels at lysosomal-endoplasmic reticulum (ER) junctions. The third is to regulate plasma membrane excitability by the targeting of Ca2+ release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca2+-activated channels. In this review, I discuss the role of nicotinic acid adenine nucleotide diphosphate (NAADP)-mediated Ca2+ release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca2+ signaling.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
5
|
Potapenko E, Negrão NW, Huang G, Docampo R. The acidocalcisome inositol-1,4,5-trisphosphate receptor of Trypanosoma brucei is stimulated by luminal polyphosphate hydrolysis products. J Biol Chem 2019; 294:10628-10637. [PMID: 31138655 DOI: 10.1074/jbc.ra119.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acidocalcisomes are acidic calcium stores rich in polyphosphate (polyP) and are present in trypanosomes and also in a diverse range of other organisms. Ca2+ is released from these organelles through a channel, inositol 1,4,5-trisphosphate receptor (TbIP3R), which is essential for growth and infectivity of the parasite Trypanosoma brucei However, the mechanism by which TbIP3R controls Ca2+ release is unclear. In this work, we expressed TbIP3R in a chicken B lymphocyte cell line in which the genes for all three vertebrate IP3Rs were stably ablated (DT40-3KO). We show that IP3-mediated Ca2+ release depends on Ca2+ but not on ATP concentration and is inhibited by heparin, caffeine, and 2-aminomethoxydiphenyl borate (2-APB). Excised patch clamp recordings from nuclear membranes of DT40 cells expressing only TbIP3R disclosed that luminal inorganic orthophosphate (Pi) or pyrophosphate (PPi), and neutral or alkaline pH can stimulate IP3-generated currents. In contrast, polyP or acidic pH did not induce these currents, and nuclear membranes obtained from cells expressing rat IP3R were unresponsive to polyP or its hydrolysis products. Our results are consistent with the notion that polyP hydrolysis products within acidocalcisomes or alkalinization of their luminal pH activate TbIP3R and Ca2+ release. We conclude that TbIP3R is well-adapted to its role as the major Ca2+ release channel of acidocalcisomes in T. brucei.
Collapse
Affiliation(s)
| | - Núria W Negrão
- From the Center for Tropical and Emerging Global Diseases and.,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Guozhong Huang
- From the Center for Tropical and Emerging Global Diseases and
| | - Roberto Docampo
- From the Center for Tropical and Emerging Global Diseases and .,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
6
|
Cryo-EM reveals ligand induced allostery underlying InsP 3R channel gating. Cell Res 2018; 28:1158-1170. [PMID: 30470765 PMCID: PMC6274648 DOI: 10.1038/s41422-018-0108-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/02/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.
Collapse
|
7
|
IP 3 receptor signaling and endothelial barrier function. Cell Mol Life Sci 2017; 74:4189-4207. [PMID: 28803370 DOI: 10.1007/s00018-017-2624-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.
Collapse
|
8
|
Fedorenko YA. Conductance of Channels of IP3 Receptors of the Nuclear Envelope in Purkinje Neurons. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Chen Y, Qi H, Li X, Cai M, Chen X, Liu W, Shuai J. Suppressing effect of Ca^{2+} blips on puff amplitudes by inhibiting channels to prevent recovery. Phys Rev E 2016; 94:022411. [PMID: 27627339 DOI: 10.1103/physreve.94.022411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 11/07/2022]
Abstract
As local signals, calcium puffs arise from the concerted opening of a few nearby inositol 1,4,5-trisphospate receptor channels to release Ca^{2+} ions from the endoplasmic reticulum. Although Ca^{2+} puffs have been well studied, little is known about the modulation of cytosolic basal Ca^{2+} concentration ([Ca^{2+}]_{Basal}) on puff dynamics. In this paper we consider a puff model to study how the statistical properties of puffs are modulated by [Ca^{2+}]_{Basal}. The puff frequency and lifetime trivially increase with the increasing [Ca^{2+}]_{Basal}, but an unexpected result is that the puff amplitude and the maximum open-channel number of the puff show decreasing relationship with the increasing [Ca^{2+}]_{Basal}. The underlying dynamics is related not only to the increasing puff frequency which gives a shorter recovery time, but also to the increasing frequency of blips with only one channel open. We indicate that Ca^{2+} blips cause the channels to be inhibited and prevent their recovery during interpuff intervals, resulting in the suppressing effect on puff amplitudes. With increasing [Ca^{2+}]_{Basal}, more blips occur to cause more channels to be inhibited, leaving fewer channels available for puff events. This study shows that the blips may play relevant functions in global Ca^{2+} waves through modulating puff dynamics.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
| | - Xiang Li
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Meichun Cai
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xingqiang Chen
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wen Liu
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jianwei Shuai
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Yeste M, Jones C, Amdani SN, Patel S, Coward K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 2015; 22:23-47. [DOI: 10.1093/humupd/dmv040] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
|
11
|
Wieder N, Fink R, von Wegner F. Exact stochastic simulation of a calcium microdomain reveals the impact of Ca²⁺ fluctuations on IP₃R gating. Biophys J 2015; 108:557-67. [PMID: 25650923 PMCID: PMC4317541 DOI: 10.1016/j.bpj.2014.11.3458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/04/2014] [Accepted: 11/18/2014] [Indexed: 01/07/2023] Open
Abstract
In this study, we numerically analyzed the nonlinear Ca(2+)-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP₃R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca(2+) buffering, and Ca(2+) diffusion. The IP₃R is a ubiquitous intracellular Ca(2+) release channel that plays an important role in the formation of complex spatiotemporal Ca(2+) signals such as waves and oscillations. Dynamic subfemtoliter Ca(2+) microdomains reveal low copy numbers of Ca(2+) ions, buffer molecules, and IP₃Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca(2+) diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca(2+) noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP₃R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca(2+)] = 25 μM, τac = 0.082 ms, the IP₃R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca(2+) binding site of IP₃R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca(2+) noise autocorrelation times decrease the probability of Ca(2+) association and consequently increase IPvR activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP₃R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.
Collapse
Affiliation(s)
- Nicolas Wieder
- Medical Biophysics Unit, Department of Physiology and Pathophysiology, Universität Heidelberg, Heidelberg, Germany.
| | - Rainer Fink
- Medical Biophysics Unit, Department of Physiology and Pathophysiology, Universität Heidelberg, Heidelberg, Germany
| | - Frederic von Wegner
- Medical Biophysics Unit, Department of Physiology and Pathophysiology, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Mak DOD, Foskett JK. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium 2014; 58:67-78. [PMID: 25555684 DOI: 10.1016/j.ceca.2014.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
As an intracellular Ca(2+) release channel at the endoplasmic reticulum membrane, the ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) plays a crucial role in the generation, propagation and regulation of intracellular Ca(2+) signals that regulate numerous physiological and pathophysiological processes. This review provides a concise account of the fundamental single-channel properties of the InsP3R channel: its conductance properties and its regulation by InsP3 and Ca(2+), its physiological ligands, studied using nuclear patch clamp electrophysiology.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
13
|
Qian F, Li T, Yang F, Liu L. Stoichiometry and novel gating mechanism within the cystic fibrosis transmembrane conductance regulator channel. Exp Physiol 2014; 99:1611-23. [DOI: 10.1113/expphysiol.2014.081034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Feng Qian
- Department of Medical Function; School of Medicine; Yangtze University; Jingzhou Hubei Province 434023 China
| | - Tao Li
- Department of Biology; College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua Zhejiang Province 321004 China
| | - Fei Yang
- Department of Medical Function; School of Medicine; Yangtze University; Jingzhou Hubei Province 434023 China
| | - Lian Liu
- Department of Medical Function; School of Medicine; Yangtze University; Jingzhou Hubei Province 434023 China
| |
Collapse
|
14
|
Jia C, Jiang D, Qian M. An allosteric model of the inositol trisphosphate receptor with nonequilibrium binding. Phys Biol 2014; 11:056001. [PMID: 25118617 DOI: 10.1088/1478-3975/11/5/056001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inositol trisphosphate receptor (IPR) is a crucial ion channel that regulates the Ca(2+) influx from the endoplasmic reticulum (ER) to the cytoplasm. A thorough study of the IPR channel contributes to a better understanding of calcium oscillations and waves. It has long been observed that the IPR channel is a typical biological system which performs adaptation. However, recent advances on the physical essence of adaptation show that adaptation systems with a negative feedback mechanism, such as the IPR channel, must break detailed balance and always operate out of equilibrium with energy dissipation. Almost all previous IPR models are equilibrium models assuming detailed balance and thus violate the dissipative nature of adaptation. In this article, we constructed a nonequilibrium allosteric model of single IPR channels based on the patch-clamp experimental data obtained from the IPR in the outer membranes of isolated nuclei of the Xenopus oocyte. It turns out that our model reproduces the patch-clamp experimental data reasonably well and produces both the correct steady-state and dynamic properties of the channel. Particularly, our model successfully describes the complicated bimodal [Ca(2+)] dependence of the mean open duration at high [IP3], a steady-state behavior which fails to be correctly described in previous IPR models. Finally, we used the patch-clamp experimental data to validate that the IPR channel indeed breaks detailed balance and thus is a nonequilibrium system which consumes energy.
Collapse
Affiliation(s)
- Chen Jia
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China. Beijing International Center for Mathematical Research, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
15
|
Samanta K, Douglas S, Parekh AB. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS One 2014; 9:e101188. [PMID: 25004162 PMCID: PMC4086884 DOI: 10.1371/journal.pone.0101188] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022] Open
Abstract
Ca2+ flux into mitochondria is an important regulator of cytoplasmic Ca2+ signals, energy production and cell death pathways. Ca2+ uptake can occur through the recently discovered mitochondrial uniporter channel (MCU) but whether the MCU is involved in shaping Ca2+ signals and downstream responses to physiological levels of receptor stimulation is unknown. Here, we show that modest stimulation of leukotriene receptors with the pro-inflammatory signal LTC4 evokes a series of cytoplasmic Ca2+ oscillations that are rapidly and faithfully propagated into mitochondrial matrix. Knockdown of MCU or mitochondrial depolarisation, to reduce the driving force for Ca2+ entry into the matrix, prevents the mitochondrial Ca2+ rise and accelerates run down of the oscillations. The loss of cytoplasmic Ca2+ oscillations appeared to be a consequence of enhanced Ca2+-dependent inactivation of InsP3 receptors, which arose from the loss of mitochondrial Ca2+ buffering. Ca2+ dependent gene expression in response to leukotriene receptor activation was suppressed following knockdown of the MCU. In addition to buffering Ca2+ release, mitochondria also sequestrated Ca2+ entry through store-operated Ca2+ channels and this too was prevented following loss of MCU. MCU is therefore an important regulator of physiological pulses of cytoplasmic Ca2+.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Cytoplasm/metabolism
- Gene Expression Regulation
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Ion Transport
- Leukemia, Basophilic, Acute/genetics
- Leukemia, Basophilic, Acute/metabolism
- Leukemia, Basophilic, Acute/pathology
- Membrane Potential, Mitochondrial
- Mitochondria/metabolism
- RNA, Messenger/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Krishna Samanta
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sophie Douglas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anant B. Parekh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I. Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 2013; 739:39-48. [PMID: 24300389 DOI: 10.1016/j.ejphar.2013.10.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/28/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023]
Abstract
The inositol-1,4,5-trisphosphate receptors (InsP3Rs) are the major intracellular Ca(2+)-release channels in cells. Activity of InsP3Rs is essential for elementary and global Ca(2+) events in the cell. There are three InsP3Rs isoforms that are present in mammalian cells. In this review we will focus primarily on InsP3R type 1. The InsP3R1 is a predominant isoform in neurons and it is the most extensively studied isoform. Combination of biophysical and structural methods revealed key mechanisms of InsP3R function and modulation. Cell biological and biochemical studies lead to identification of a large number of InsP3R-binding proteins. InsP3Rs are involved in the regulation of numerous physiological processes, including learning and memory, proliferation, differentiation, development and cell death. Malfunction of InsP3R1 play a role in a number of neurodegenerative disorders and other disease states. InsP3Rs represent a potentially valuable drug target for treatment of these disorders and for modulating activity of neurons and other cells. Future studies will provide better understanding of physiological functions of InsP3Rs in health and disease.
Collapse
Affiliation(s)
- Olena A Fedorenko
- Department of Brain Physiology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine; State Key Laboratory of Molecular and Cellular Biology, 01024 Kiev, Ukraine
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Peter B Stathopulos
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Bezprozvanny I. Bilayer measurement of endoplasmic reticulum Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:2013/11/pdb.top066225. [PMID: 24184754 DOI: 10.1101/pdb.top066225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reconstitution of ion channels into planar lipid bilayers (also called black lipid membranes or BLM) is the most widely used method to conduct physiological studies of intracellular ion channels, including endoplasmic reticulum (ER) calcium (Ca(2+)) channels. The two main types of Ca(2+) release channels in the ER membrane are ryanodine receptors (RyanRs) and inositol(1,4,5)-trisphosphate receptors (InsP3Rs). Use of the BLM reconstitution technique enabled the initial description of the functional properties of InsP3R and RyanR at the single-channel level more than 20 years ago. Since then, BLM reconstitution methods have been used to study physiological modulation and to perform structure-function analysis of these channels, and to study pathological changes in the function of InsP3R and RyanR in various disease states. The BLM technique has also been useful for studies of other intracellular Ca(2+) channels, such as ER Ca(2+) leak presenilin channels and NAADP-gated lysosomal Ca(2+) channels encoded by TPC2. In this article, basic protocols used for BLM studies of ER Ca(2+) channels are introduced.
Collapse
Affiliation(s)
- Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
18
|
Schmeitz C, Hernandez-Vargas EA, Fliegert R, Guse AH, Meyer-Hermann M. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties. Front Immunol 2013; 4:277. [PMID: 24065966 PMCID: PMC3776162 DOI: 10.3389/fimmu.2013.00277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022] Open
Abstract
Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic, or initiates apoptosis depends on extracellular triggers and intracellular signaling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modeling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC) is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.
Collapse
Affiliation(s)
- Christine Schmeitz
- Department of Systems Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Mak DOD, Vais H, Cheung KH, Foskett JK. Patch-clamp electrophysiology of intracellular Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:787-97. [PMID: 24003191 DOI: 10.1101/pdb.top066217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The modulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) is a universal intracellular signaling pathway that regulates numerous cellular physiological processes. Ubiquitous intracellular Ca(2+)-release channels localized to the endoplasmic/sarcoplasmic reticulum-inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels-play a central role in [Ca(2+)]i signaling in all animal cells. Despite their intracellular localization, electrophysiological studies of the single-channel permeation and gating properties of these Ca(2+)-release channels using the powerful patch-clamp approach have been possible by application of this technique to isolated nuclei because the channels are present in membranes of the nuclear envelope. Here we provide a concise description of how nuclear patch-clamp experiments have been used to study single-channel properties of different InsP3R channels in the outer nuclear membrane. We compare this with other methods for studying intracellular Ca(2+) release. We also briefly describe application of the technique to InsP3R channels in the inner nuclear membrane and to channels in the outer nuclear membrane of HEK293 cells expressing recombinant RyR.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
20
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
21
|
Abstract
The versatility of Ca2+ as an intracellular messenger stems largely from the impressive, but complex, spatiotemporal organization of the Ca2+ signals. For example, the latter when initiated by IP3 (inositol 1,4,5-trisphosphate) in many cells manifest hierarchical recruitment of elementary Ca2+ release events ('blips' and then 'puffs') en route to global regenerative Ca2+ waves as the cellular IP3 concentration rises. The spacing of IP3Rs (IP3 receptors) and their regulation by Ca2+ are key determinants of these spatially organized Ca2+ signals, but neither is adequately understood. IP3Rs have been proposed to be pre-assembled into clusters, but their composition, geometry and whether clustering affects IP3R behaviour are unknown. Using patch-clamp recording from the outer nuclear envelope of DT40 cells expressing rat IP3R1 or IP3R3, we have recently shown that low concentrations of IP3 cause IP3Rs to aggregate rapidly and reversibly into small clusters of approximately four IP3Rs. At resting cytosolic Ca2+ concentrations, clustered IP3Rs open independently, but with lower open probability, shorter open duration and lesser IP3-sensitivity than lone IP3Rs. This inhibitory influence of clustering on IP3R is reversed when the [Ca2+]i (cytosolic free Ca2+ concentration) increases. The gating of clustered IP3Rs exposed to increased [Ca2+]i is coupled: they are more likely to open and close together, and their simultaneous openings are prolonged. Dynamic clustering of IP3Rs by IP3 thus exposes them to local Ca2+ rises and increases their propensity for a CICR (Ca2+-induced Ca2+ rise), thereby facilitating hierarchical recruitment of the elementary events that underlie all IP3-evoked Ca2+ signals.
Collapse
|
22
|
Termination of Ca²+ release for clustered IP₃R channels. PLoS Comput Biol 2012; 8:e1002485. [PMID: 22693433 PMCID: PMC3364945 DOI: 10.1371/journal.pcbi.1002485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 03/07/2012] [Indexed: 01/17/2023] Open
Abstract
In many cell types, release of calcium ions is controlled by inositol 1,4,5-trisphosphate () receptor channels. Elevations in concentration after intracellular release through receptors (R) can either propagate in the form of waves spreading through the entire cell or produce spatially localized puffs. The appearance of waves and puffs is thought to implicate random initial openings of one or a few channels and subsequent activation of neighboring channels because of an “autocatalytic” feedback. It is much less clear, however, what determines the further time course of release, particularly since the lifetime is very different for waves (several seconds) and puffs (around 100 ms). Here we study the lifetime of signals and their dependence on residual microdomains. Our general idea is that microdomains are dynamical and mediate the effect of other physiological processes. Specifically, we focus on the mechanism by which binding proteins (buffers) alter the lifetime of signals. We use stochastic simulations of channel gating coupled to a coarse-grained description for the concentration. To describe the concentration in a phenomenological way, we here introduce a differential equation, which reflects the buffer characteristics by a few effective parameters. This non-stationary model for microdomains gives deep insight into the dynamical differences between puffs and waves. It provides a novel explanation for the different lifetimes of puffs and waves and suggests that puffs are terminated by inhibition while unbinding is responsible for termination of waves. Thus our analysis hints at an additional role of and shows how cells can make use of the full complexity in R gating behavior to achieve different signals. Calcium signals are important for a host of cellular processes such as neurotransmitter release, cell contraction and gene expression. While the principles of activation and spreading of calcium signals have been largely understood, it is much less clear how their spatio-temporal appearance is shaped. This issue is of high relevance since the spatio-temporal signature is thought to carry the information content. In our paper we study the dynamical mechanisms that determine the time course of calcium release from receptor channels. We use a stochastic channel description combined with a recently developed model for the distribution of released calcium in a microdomain. The simulations uncover a complex control mechanism, which allows for the tuning of release from short frequent puffs to extended and less frequent wave-like release. Unexpectedly, the model predicts that for wave-like release the dissociation of from the receptors leads to termination of the calcium signal. This effect relies on a well-known gating property of R channels, which earlier has been regarded as superfluous in studies for groups of channels. Our results also provide a missing link to understand cellular response to calcium-binding proteins and present a novel mechanism for information processing by R channels.
Collapse
|
23
|
Hepburn I, Chen W, Wils S, De Schutter E. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC SYSTEMS BIOLOGY 2012; 6:36. [PMID: 22574658 PMCID: PMC3472240 DOI: 10.1186/1752-0509-6-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 05/10/2012] [Indexed: 11/13/2022]
Abstract
Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates models of cellular reaction–diffusion systems with complex boundaries with high accuracy and high performance in C/C++, controlled by a powerful and user-friendly Python interface. STEPS is free for use and is available at http://steps.sourceforge.net/
Collapse
Affiliation(s)
- Iain Hepburn
- Theoretical Neurobiology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | | | | | | |
Collapse
|
24
|
Parys JB, De Smedt H. Inositol 1,4,5-trisphosphate and its receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:255-79. [PMID: 22453946 DOI: 10.1007/978-94-007-2888-2_11] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of cells by many extracellular agonists leads to the production of inositol 1,4,5-trisphosphate (IP₃). IP₃ is a global messenger that easily diffuses in the cytosol. Its receptor (IP₃R) is a Ca(2+)-release channel located on intracellular membranes, especially the endoplasmic reticulum (ER). The IP₃R has an affinity for IP(3) in the low nanomolar range. A prime regulator of the IP₃R is the Ca(2+) ion itself. Cytosolic Ca(2+) is considered as a co-agonist of the IP₃R, as it strongly increases IP(3)R activity at concentrations up to about 300 nM. In contrast, at higher concentrations, cytosolic Ca(2+) inhibits the IP₃R. Also the luminal Ca(2+) sensitizes the IP₃R. In higher organisms three genes encode for an IP₃R and additional diversity exists as a result of alternative splicing mechanisms and the formation of homo- and heterotetramers. The various IP₃R isoforms have a similar structure and a similar function, but due to differences in their affinity for IP₃, their variable sensitivity to regulatory parameters, their differential interaction with associated proteins, and the variation in their subcellular localization, they participate differently in the formation of intracellular Ca(2+) signals and this affects therefore the physiological consequences of these signals.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N1 - Bus 802, Herestraat 49, Belgium.
| | | |
Collapse
|
25
|
Quantifying the uncertainty of spontaneous Ca2+ oscillations in astrocytes: particulars of Alzheimer's disease. Biophys J 2011; 101:554-64. [PMID: 21806923 DOI: 10.1016/j.bpj.2011.06.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 05/12/2011] [Accepted: 06/21/2011] [Indexed: 11/27/2022] Open
Abstract
The quantification of spontaneous calcium (Ca(2+)) oscillations (SCOs) in astrocytes presents a challenge because of the large irregularities in the amplitudes, durations, and initiation times of the underlying events. In this article, we use a stochastic context to account for such SCO variability, which is based on previous models for cellular Ca(2+) signaling. First, we found that passive Ca(2+) influx from the extracellular space determine the basal concentration of this ion in the cytosol. Second, we demonstrated the feasibility of estimating both the inositol 1,4,5-trisphosphate (IP(3)) production levels and the average number of IP(3) receptor channels in the somatic clusters from epifluorescent Ca(2+) imaging through the combination of a filtering strategy and a maximum-likelihood criterion. We estimated these two biophysical parameters using data from wild-type adult mice and age-matched transgenic mice overexpressing the 695-amino-acid isoform of human Alzheimer β-amyloid precursor protein. We found that, together with an increase in the passive Ca(2+) influx, a significant reduction in the sensitivity of G protein-coupled receptors might lie beneath the abnormalities in the astrocytic Ca(2+) signaling, as was observed in rodent models of Alzheimer's disease. This study provides new, to our knowledge, indices for a quantitative analysis of SCOs in normal and pathological astrocytes.
Collapse
|
26
|
Rossi AM, Tovey SC, Rahman T, Prole DL, Taylor CW. Analysis of IP3 receptors in and out of cells. Biochim Biophys Acta Gen Subj 2011; 1820:1214-27. [PMID: 22033379 DOI: 10.1016/j.bbagen.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2+ channels. SCOPE OF THE REVIEW In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2+ signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling. MAJOR CONCLUSIONS All IP3R are regulated by both IP3 and Ca2+. This allows them to initiate and regeneratively propagate intracellular Ca2+ signals. The elementary Ca2+ release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2+-mediated interactions between them. The spatial organization of these Ca2+ signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution. GENERAL SIGNIFICANCE A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2+ signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
27
|
Vais H, Foskett JK, Mak DOD. InsP3R channel gating altered by clustering? Nature 2011; 478:E1-2; discussion E2-3. [PMID: 21993761 DOI: 10.1038/nature10493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 08/11/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Horia Vais
- Department of Physiology, University of Pennsylvania Perleman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
28
|
Solovey G, Fraiman D, Dawson SP. Mean field strategies induce unrealistic non-linearities in calcium puffs. Front Physiol 2011; 2:46. [PMID: 21869877 PMCID: PMC3150724 DOI: 10.3389/fphys.2011.00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/21/2011] [Indexed: 12/19/2022] Open
Abstract
Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs). To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic non-linear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.
Collapse
Affiliation(s)
- Guillermo Solovey
- Laboratory of Mathematical Physics, The Rockefeller University New York, NY, USA
| | | | | |
Collapse
|
29
|
Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 2011; 63:700-27. [PMID: 21737534 DOI: 10.1124/pr.110.003814] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca(2+) in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca(2+) ATPases and two types of ER membrane Ca(2+) channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca(2+) uptake and release, respectively. There are also direct and indirect interactions of ER Ca(2+) stores with plasma membrane and mitochondrial Ca(2+)-regulating systems. Pharmacological agents that selectively modify ER Ca(2+) release or uptake have enabled studies that revealed many different physiological roles for ER Ca(2+) signaling. Several inherited diseases are caused by mutations in ER Ca(2+)-regulating proteins, and perturbed ER Ca(2+) homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca(2+) handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | |
Collapse
|
30
|
Pantazaka E, Taylor CW. Differential distribution, clustering, and lateral diffusion of subtypes of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 2011; 286:23378-87. [PMID: 21550988 PMCID: PMC3123102 DOI: 10.1074/jbc.m111.236372] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/27/2011] [Indexed: 01/19/2023] Open
Abstract
Regulation of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R) by IP(3) and Ca(2+) allows them to initiate and regeneratively propagate intracellular Ca(2+) signals. The distribution and mobility of IP(3)R determines the spatial organization of these Ca(2+) signals. Until now, there has been no systematic comparison of the distribution and mobility of the three mammalian IP(3)R subtypes in a uniform background. We used confocal microscopy and fluorescence recovery after photobleaching to define these properties for each IP(3)R subtype expressed heterologously in COS-7 cells. IP(3)R1 and IP(3)R3 were uniformly distributed within the membranes of the endoplasmic reticulum (ER), but the distribution of IP(3)R2 was punctate. The mobile fractions (M(f) = 84 ± 2 and 80 ± 2%) and diffusion coefficients (D = 0.018 ± 0.001 and 0.016 ± 0.002 μm(2)/s) of IP(3)R1 and IP(3)R3 were similar. Other ER membrane proteins (ryanodine receptor type 1 and sarco/endoplasmic reticulum Ca(2+)-ATPase type 1) and a luminal protein (enhanced GFP with a KDEL retrieval sequence) had similar mobile fractions, suggesting that IP(3)R1 and IP(3)R3 move freely within an ER that is largely, although not entirely, continuous. IP(3)R2 was less mobile, but IP(3)R2 mobility differed between perinuclear (M(f) = 47 ± 4% and D = 0.004 ± 0.001 μm(2)/s) and near-plasma membrane (M(f) = 64 ± 6% and D = 0.013 ± 0.004 μm(2)/s) regions, whereas IP(3)R3 behaved similarly in both regions. We conclude that IP(3)R1 and IP(3)R3 diffuse freely within a largely continuous ER, but IP(3)R2 is more heterogeneously distributed and less mobile, and its mobility differs between regions of the cell.
Collapse
Affiliation(s)
- Evangelia Pantazaka
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Colin W. Taylor
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
31
|
Baran I, Ganea C, Ungureanu R, Tofolean IT. Signal mass and Ca2+ kinetics in local calcium events: a modeling study. J Mol Model 2011; 18:721-36. [DOI: 10.1007/s00894-011-1104-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
32
|
LaMar MD, Kemper P, Smith GD. Reduction of calcium release site models via moment fitting of phase-type distributions. Phys Biol 2011; 8:026015. [PMID: 21471635 DOI: 10.1088/1478-3975/8/2/026015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Models of calcium (Ca(2 +)) release sites derived from continuous-time Markov chain (CTMC) models of intracellular Ca(2 +) channels exhibit collective gating reminiscent of the experimentally observed phenomenon of Ca(2 +) puffs and sparks. In order to overcome the state-space explosion that occurs in compositionally defined Ca(2 +) release site models, we have implemented an automated procedure for model reduction that replaces aggregated states of the full release site model with much simpler CTMCs that have similar within-group phase-type sojourn times and inter-group transitions. Error analysis based on comparison of full and reduced models validates the method when applied to release site models composed of 20 three-state channels that are both activated and inactivated by Ca(2 +). Although inspired by existing techniques for fitting moments of phase-type distributions, the automated reduction method for compositional Ca(2 +) release site models is unique in several respects and novel in this biophysical context.
Collapse
Affiliation(s)
- M Drew LaMar
- Department of Applied Science, The College of William and Mary, Williamsburg, VA 23187, USA.
| | | | | |
Collapse
|
33
|
Abstract
Of the established Ca(2+) mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations. Recent studies have identified a new class of calcium release channel, the two-pore channels (TPCs), as the likely targets for NAADP. These channels are endolysosomal in localization where they mediate local Ca(2+) release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca(2+) mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca(2+) release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca(2+)-induced Ca(2+) release (CICR) channels at lysosomal-ER junctions. The third is to regulate plasma membrane excitability by the targeting of Ca(2+) release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca(2+)-activated channels. In this review, I discuss the role of NAADP-mediated Ca(2+) release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca(2+) signaling.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
34
|
Vais H, Foskett JK, Daniel Mak DO. Unitary Ca(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions. J Gen Physiol 2010; 136:687-700. [PMID: 21078871 PMCID: PMC2995152 DOI: 10.1085/jgp.201010513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/21/2010] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - J. Kevin Foskett
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Don-On Daniel Mak
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
35
|
Vais H, Siebert AP, Ma Z, Fernández-Mongil M, Foskett JK, Mak DOD. Redox-regulated heterogeneous thresholds for ligand recruitment among InsP3R Ca2+-release channels. Biophys J 2010; 99:407-16. [PMID: 20643058 DOI: 10.1016/j.bpj.2010.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022] Open
Abstract
To clarify the molecular mechanisms behind quantal Ca2+ release, the graded Ca2+ release from intracellular stores through inositol 1,4,5-trisphosphate receptor (InsP3R) channels responding to incremental ligand stimulation, single-channel patch-clamp electrophysiology was used to continuously monitor the number and open probability of InsP3R channels in the same excised cytoplasmic-side-out nuclear membrane patches exposed alternately to optimal and suboptimal cytoplasmic ligand conditions. Progressively more channels were activated by more favorable conditions in patches from insect cells with only one InsP3R gene or from cells solely expressing one recombinant InsP3R isoform, demonstrating that channels with identical primary sequence have different ligand recruitment thresholds. Such heterogeneity was largely abrogated, in a fully reversible manner, by treatment of the channels with sulfhydryl reducing agents, suggesting that it was mostly regulated by different levels of posttranslational redox modifications of the channels. In contrast, sulfhydryl reduction had limited effects on channel open probability. Thus, sulfhydryl redox modification can regulate various aspects of intracellular Ca2+ signaling, including quantal Ca2+ release, by tuning ligand sensitivities of InsP3R channels. No intrinsic termination of channel activity with a timescale comparable to that for quantal Ca2+ release was observed under any steady ligand conditions, indicating that this process is unlikely to contribute.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
36
|
Calabrese A, Fraiman D, Zysman D, Ponce Dawson S. Stochastic fire-diffuse-fire model with realistic cluster dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:031910. [PMID: 21230111 DOI: 10.1103/physreve.82.031910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 07/19/2010] [Indexed: 05/30/2023]
Abstract
Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R 's that replicates the experimental observations reported in [D. Fraiman, Biophys. J. 90, 3897 (2006)]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.
Collapse
Affiliation(s)
- Ana Calabrese
- Departamento de Física, FCEN-UBA, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
37
|
Foskett JK, Daniel Mak DO. Regulation of IP(3)R Channel Gating by Ca(2+) and Ca(2+) Binding Proteins. CURRENT TOPICS IN MEMBRANES 2010; 66:235-72. [PMID: 22353483 PMCID: PMC6707373 DOI: 10.1016/s1063-5823(10)66011-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
38
|
Betzenhauser MJ, Yule DI. Regulation of inositol 1,4,5-trisphosphate receptors by phosphorylation and adenine nucleotides. CURRENT TOPICS IN MEMBRANES 2010; 66:273-98. [PMID: 22353484 DOI: 10.1016/s1063-5823(10)66012-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Matthew J Betzenhauser
- Department of Physiology and Cellular Biophysics, Columbia University Medical School, New York City, New York, USA
| | | |
Collapse
|
39
|
Rahman T, Taylor CW. Nuclear Patch-Clamp Recording from Inositol 1,4,5-Trisphosphate Receptors. Methods Cell Biol 2010; 99:199-224. [DOI: 10.1016/b978-0-12-374841-6.00008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Taylor CW, Rahman T, Tovey SC, Dedos SG, Taylor EJA, Velamakanni S. IP3 receptors: some lessons from DT40 cells. Immunol Rev 2009; 231:23-44. [PMID: 19754888 DOI: 10.1111/j.1600-065x.2009.00807.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol-1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that are regulated by IP3 and Ca2+ and are modulated by many additional signals. These properties allow them to initiate and, via Ca2+-induced Ca2+ release, regeneratively propagate Ca2+ signals evoked by receptors that stimulate formation of IP3. The ubiquitous expression of IP3R highlights their importance, but it also presents problems when attempting to resolve the behavior of defined IP3R. DT40 cells are a pre-B-lymphocyte cell line in which high rates of homologous recombination afford unrivalled opportunities to disrupt endogenous genes. DT40-knockout cells with both alleles of each of the three IP3R genes disrupted provide the only null-background for analysis of homogenous recombinant IP3R. We review the properties of DT40 cells and consider three areas where they have contributed to understanding IP3R behavior. Patch-clamp recording from the nuclear envelope and Ca2+ release from intracellular stores loaded with a low-affinity Ca2+ indicator address the mechanisms leading to activation of IP(3)R. We show that IP3 causes intracellular IP3R to cluster and re-tune their responses to IP3 and Ca2+, better equipping them to mediate regenerative Ca2+ signals. Finally, we show that DT40 cells reliably count very few IP3R into the plasma membrane, where they mediate about half the Ca2+ entry evoked by the B-cell antigen receptor.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Diambra L, Marchant JS. Localization and socialization: experimental insights into the functional architecture of IP3 receptors. CHAOS (WOODBURY, N.Y.) 2009; 19:037103. [PMID: 19792028 PMCID: PMC2771704 DOI: 10.1063/1.3147425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/11/2009] [Indexed: 05/28/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP(3))-evoked Ca(2+) signals display great spatiotemporal malleability. This malleability depends on diversity in both the cellular organization and in situ functionality of IP(3) receptors (IP(3)Rs) that regulate Ca(2+) release from the endoplasmic reticulum (ER). Recent experimental data imply that these considerations are not independent, such that-as with other ion channels-the local organization of IP(3)Rs impacts their functionality, and reciprocally IP(3)R activity impacts their organization within native ER membranes. Here, we (i) review experimental data that lead to our understanding of the "functional architecture" of IP(3)Rs within the ER, (ii) propose an updated terminology to span the organizational hierarchy of IP(3)Rs observed in intact cells, and (iii) speculate on the physiological significance of IP(3)R socialization in Ca(2+) dynamics, and consequently the emerging need for modeling studies to move beyond gridded, planar, and static simulations of IP(3)R clustering even over short experimental timescales.
Collapse
Affiliation(s)
- Luis Diambra
- Laboratorio de Biología de Sistemas, CREG-UNLP, Buenos Aires, Argentina
| | | |
Collapse
|
42
|
Gin E, Wagner LE, Yule DI, Sneyd J. Inositol trisphosphate receptor and ion channel models based on single-channel data. CHAOS (WOODBURY, N.Y.) 2009; 19:037104. [PMID: 19792029 PMCID: PMC5848693 DOI: 10.1063/1.3184540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 07/01/2009] [Indexed: 05/28/2023]
Abstract
The inositol trisphosphate receptor (IPR) plays an important role in controlling the dynamics of intracellular Ca(2+). Single-channel patch-clamp recordings are a typical way to study these receptors as well as other ion channels. Methods for analyzing and using this type of data have been developed to fit Markov models of the receptor. The usual method of parameter fitting is based on maximum-likelihood techniques. However, Bayesian inference and Markov chain Monte Carlo techniques are becoming more popular. We describe the application of the Bayesian methods to real experimental single-channel data in three ion channels: the ryanodine receptor, the K(+) channel, and the IPR. One of the main aims of all three studies was that of model selection with different approaches taken. We also discuss the modeling implications for single-channel data that display different levels of channel activity within one recording.
Collapse
Affiliation(s)
- Elan Gin
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
43
|
Taylor CW, Pantazaka E. Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals. CHAOS (WOODBURY, N.Y.) 2009; 19:037102. [PMID: 19798811 DOI: 10.1063/1.3127593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels that are almost ubiquitously expressed in animal cells. The spatiotemporal complexity of the Ca2+ signals evoked by IP3R underlies their versatility in cellular signaling. Here we review the mechanisms that contribute to the subcellular targeting of IP3R and the dynamic interplay between IP3R that underpin their ability to generate complex intracellular Ca2+ signals.
Collapse
|
44
|
Baran I, Popescu A. A model-based method for estimating Ca2+ release fluxes from linescan images in Xenopus oocytes. CHAOS (WOODBURY, N.Y.) 2009; 19:037106. [PMID: 19792031 DOI: 10.1063/1.3190484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We propose a model-based method of interpreting linescan images observed in Xenopus oocytes with the use of Oregon Green-1 as a fluorescent dye. We use a detailed modeling formalism based on numerical simulations that incorporate physical barriers for local diffusion, and, by assuming a Gaussian distribution of release durations, we derive the distributions of release Ca(2+) amounts and currents, fluorescence amplitudes, and puff widths. We analyze a wide set of available data collected from 857 and 281 events observed in the animal and the vegetal hemispheres of the oocyte, respectively. A relatively small fraction of events appear to involve coupling of two or three adjacent clusters of Ca(2+) releasing channels. In the animal hemisphere, the distribution of release currents with a mean of 1.4 pA presents a maximum at 1.0 pA and a rather long tail extending up to 5 pA. The overall distribution of liberated Ca(2+) amounts exhibits a dominant peak at 120 fC, a smaller peak at 375 fC, and an average of 166 fC. Ca(2+) amounts and release fluxes in the vegetal hemisphere appear to be 3.6 and 1.6 times smaller than in the animal hemisphere, respectively. Predicted diameters of elemental release sites are approximately 1.0 microm in the animal and approximately 0.5 microm in the vegetal hemisphere, but the side-to-side separation between adjacent sites appears to be identical (approximately 0.4 microm). By fitting the model to individual puffs we can estimate the quantity of liberated calcium, the release current, the orientation of the scan line, and the dimension of the corresponding release site.
Collapse
Affiliation(s)
- Irina Baran
- Department of Biophysics, Faculty of Medicine, Carol Davila University of Medicine and Pharmaceutics, Bucharest, Romania.
| | | |
Collapse
|
45
|
Shuai JW, Yang DP, Pearson JE, Rüdiger S. An investigation of models of the IP3R channel in Xenopus oocyte. CHAOS (WOODBURY, N.Y.) 2009; 19:037105. [PMID: 19792030 PMCID: PMC2771705 DOI: 10.1063/1.3156402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/29/2009] [Indexed: 05/28/2023]
Abstract
We consider different models of inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) channels in order to fit nuclear membrane patch clamp data of the stationary open probability, mean open time, and mean close time of channels in the Xenopus oocyte. Our results indicate that rather than to treat the tetrameric IP(3)R as four independent and identical subunits, one should assume sequential binding-unbinding processes of Ca(2+) ions and IP(3) messengers. Our simulations also favor the assumption that a channel opens through a conformational transition from a close state to an active state.
Collapse
Affiliation(s)
- J W Shuai
- Department of Physics, Xiamen University, Xiamen, China.
| | | | | | | |
Collapse
|
46
|
Gin E, Falcke M, Wagner LE, Yule DI, Sneyd J. A kinetic model of the inositol trisphosphate receptor based on single-channel data. Biophys J 2009; 96:4053-62. [PMID: 19450477 DOI: 10.1016/j.bpj.2008.12.3964] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/14/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022] Open
Abstract
In many cell types, the inositol trisphosphate receptor is one of the important components controlling intracellular calcium dynamics, and an understanding of this receptor is necessary for an understanding of calcium oscillations and waves. Based on single-channel data from the type-I inositol trisphosphate receptor, and using a Markov chain Monte Carlo approach, we show that the most complex time-dependent model that can be unambiguously determined from steady-state data is one with three closed states and one open state, and we determine how the rate constants depend on calcium. Because the transitions between these states are complex functions of calcium concentration, each model state must correspond to a group of physical states. We fit two different topologies and find that both models predict that the main effect of [Ca(2+)] is to modulate the probability that the receptor is in a state that is able to open, rather than to modulate the transition rate to the open state.
Collapse
Affiliation(s)
- Elan Gin
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
47
|
Taufiq-Ur-Rahman, Skupin A, Falcke M, Taylor CW. Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+. Nature 2009; 458:655-9. [PMID: 19348050 PMCID: PMC2702691 DOI: 10.1038/nature07763] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The versatility of Ca2+ signals derives from their spatio-temporal organization. For Ca2+ signals initiated by inositol-1,4,5-trisphosphate (InsP3), this requires local interactions between InsP3 receptors (InsP3Rs) mediated by their rapid stimulation and slower inhibition\ by cytosolic Ca2+. This allows hierarchical recruitment of Ca2+ release events as the InsP3 concentration increases. Single InsP3Rs respond first, then clustered InsP3Rs open together giving a local 'Ca2+ puff', and as puffs become more frequent they ignite regenerative Ca2+ waves. Using nuclear patch-clamp recording, here we demonstrate that InsP3Rs are initially randomly distributed with an estimated separation of 1 m. Low concentrations of InsP3 cause InsP3Rs to aggregate rapidly and reversibly into small clusters of about four closely associated InsP3Rs. At resting cytosolic [Ca2+], clustered InsP3Rs open independently, but with lower open probability, shorter open time, and less InsP3 sensitivity than lone InsP3Rs. Increasing cytosolic [Ca2+] reverses the inhibition caused by clustering, InsP3R gating becomes coupled, and the duration of multiple openings is prolonged. Clustering both exposes InsP3Rs to local Ca2+ rises and increases the effects of Ca2+. Dynamic regulation of clustering by InsP3 retunes InsP3R sensitivity to InsP3 and Ca2+, facilitating hierarchical recruitment of the elementary events that underlie all InsP3-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Taufiq-Ur-Rahman
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | |
Collapse
|
48
|
Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors. J Theor Biol 2008; 257:460-74. [PMID: 19168073 DOI: 10.1016/j.jtbi.2008.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/21/2022]
Abstract
In many cell types, the inositol trisphosphate receptor (IPR) is one of the important components that control intracellular calcium dynamics, and an understanding of this receptor (which is also a calcium channel) is necessary for an understanding of calcium oscillations and waves. Recent advances in experimental techniques now allow for the measurement of single-channel activity of the IPR in conditions similar to its native environment, and these data can be used to determine the rate constants in Markov models of the IPR. We illustrate a parameter estimation method based on Markov chain Monte Carlo, which can be used to fit directly to single-channel data, and determining, as an intrinsic part of the fit, the times at which the IPR is opening and closing. We show, using simulated data, the most complex Markov model that can be unambiguously determined from steady-state data and show that non-steady-state data is required to determine more complex models.
Collapse
|
49
|
PSD-95 mediates membrane clustering of the human plasma membrane Ca2+ pump isoform 4b. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1023-32. [PMID: 19073225 DOI: 10.1016/j.bbamcr.2008.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/31/2008] [Accepted: 11/16/2008] [Indexed: 01/09/2023]
Abstract
Besides the control of global calcium changes, specific plasma membrane calcium ATPase (PMCA) isoforms are involved in the regulation of local calcium signals. Although local calcium signaling requires the confinement of signaling molecules into microdomains, little is known about the specific organization of PMCA molecules within the plasma membrane. Here we show that co-expression with the postsynaptic density-95 (PSD-95) scaffolding protein increased the plasma membrane expression of PMCA4b and redistributed the pump into clusters. The clustering of PMCA4b was fully dependent on the presence of its PDZ-binding sequence. Using the fluorescence recovery after photobleaching (FRAP) technique, we show that the lateral membrane mobility of the clustered PMCA4b is significantly lower than that of the non-clustered molecules. Disruption of the actin-based cytoskeleton by cytochalasin D resulted in increased cluster size. Our results suggest that PSD-95 promotes the formation of high-density PMCA4b microdomains in the plasma membrane and that the membrane cytoskeleton plays an important role in the regulation of this process.
Collapse
|
50
|
Solovey G, Fraiman D, Pando B, Ponce Dawson S. Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041915. [PMID: 18999463 DOI: 10.1103/physreve.78.041915] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Indexed: 05/27/2023]
Abstract
Calcium release from intracellular stores plays a key role in the regulation of a variety of cellular activities. In various cell types this release occurs through inositol-triphosphate (IP3) receptors which are Ca2+ channels whose open probability is modulated by the cytosolic Ca2+ concentration itself. Thus, the combination of Ca2+ release and Ca2+ diffusion evokes a variety of Ca2+ signals depending on the number and relative location of the channels that participate of them. In fact, a hierarchy of Ca2+ signals has been observed in Xenopus laevis oocytes, ranging from very localized events (puffs and blips) to waves that propagate throughout the cell. In this cell type channels are organized in clusters. The behavior of individual channels within a cluster cannot be resolved with current optical techniques. Therefore, a combination of experiments and mathematical modeling is unavoidable to understand these signals. However, the numerical simulation of a detailed mathematical model of the problem is very hard given the large range of spatial and temporal scales that must be covered. In this paper we present an alternative model in which the cluster region is modeled using a relatively fine grid but where several approximations are made to compute the cytosolic Ca2+ concentration ([Ca;{2+}]) distribution. The inner-cluster [Ca;{2+}] distribution is used to determine the openings and closings of the channels of the cluster. The spatiotemporal [Ca;{2+}] distribution outside the cluster is determined using a coarser grid in which each (active) cluster is represented by a point source whose current is proportional to the number of open channels determined before. A full reaction-diffusion system is solved on this coarser grid.
Collapse
Affiliation(s)
- G Solovey
- Departamento de Física, FCEN-UBA, Ciudad Universitaria, Pabellón I, (1428) Buenos Aires, Argentina
| | | | | | | |
Collapse
|