1
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Linsdell P. Monovalent: Divalent Anion Selectivity in the CFTR Channel Pore. Cell Biochem Biophys 2021; 79:863-871. [PMID: 34031860 DOI: 10.1007/s12013-021-00998-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel shows only weak selectivity between different small monovalent anions, however, little is known about its ability to discriminate between monovalent and divalent anions. The present study uses patch clamp recording to investigate the interaction between the small divalent anions S2O32- and SO42- and wild-type and pore-mutant forms of human CFTR. Binding of these anions to wild-type CFTR appears weak; at 10 mM, intracellular S2O32- and SO42- blocked <20 and <5% of macroscopic Cl- current respectively, while these same concentrations had no discernible blocking effect when present in the extracellular solution. However, introduction of additional positive charge into the inner vestibule of the pore (in I344K and S1141K mutant channels) drastically strengthened block by intracellular (but not extracellular) S2O32- and SO42-. Block of these mutant channels was highly voltage-dependent; at very negative membrane potentials, apparent binding affinities were ~100 µM for S2O32- and <1 mM for SO42-. Permeability of S2O32- and SO42- was too small to be quantified in wild-type CFTR, but was <1% of Cl- permeability. Mutants that strengthened divalent binding (I344K, S1141K), as well as the selectivity-altering mutant F337A, also showed immeasurably low S2O32- and SO42- permeabilities. Overall CFTR selects well for monovalent over divalent anions, both in terms of binding and permeability. The number or density of fixed positive charges in the pore appears well optimized to disfavour binding of divalent anions, which may be an important facet of the monovalent Cl- permeation mechanism.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
4
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
5
|
Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci 2021; 22:3384. [PMID: 33806154 PMCID: PMC8037888 DOI: 10.3390/ijms22073384] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.
Collapse
Affiliation(s)
- Miroslaw Zajac
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Elise Dreano
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Laboratoire de Physiologie rénale et Tubulopathies, CNRS ERL 8228, 75006 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, 75015 Paris, France
- Clinical Trial Network, European Cystic Fibrosis Society, BT2 Belfast, Ireland
- European Respiratory Network Lung, 75006 Paris, France
| |
Collapse
|
6
|
Linsdell P. On the relationship between anion binding and chloride conductance in the CFTR anion channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183558. [PMID: 33444622 DOI: 10.1016/j.bbamem.2021.183558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022]
Abstract
Mutations at many sites within the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore region result in changes in chloride conductance. Although chloride binding in the pore - as well as interactions between concurrently bound chloride ions - are thought to be important facets of the chloride permeation mechanism, little is known about the relationship between anion binding and chloride conductance. The present work presents a comprehensive investigation of a number of anion binding properties in different pore mutants with differential effects on chloride conductance. When multiple pore mutants are compared, conductance appears best correlated with the ability of anions to bind to the pore when it is already occupied by chloride ions. In contrast, conductance was not correlated with biophysical measures of anion:anion interactions inside the pore. Although these findings suggest anion binding is required for high conductance, mutations that strengthened anion binding had very little effect on conductance, especially at high chloride concentrations, suggesting that the wild-type CFTR pore is already close to saturated with chloride ions. These results are used to support a revised model of chloride permeation in CFTR in which the overall chloride occupancy of multiple loosely-defined chloride binding sites results in high chloride conductance through the pore.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
7
|
Carrageta DF, Bernardino RL, Alves MG, Oliveira PF. CFTR regulation of aquaporin-mediated water transport. VITAMINS AND HORMONES 2020; 112:163-177. [PMID: 32061340 DOI: 10.1016/bs.vh.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel responsible for the direct transport of bicarbonate and chloride. CFTR-dependent ionic transport is crucial for pH regulation and fluid homeodynamics among epithelial surfaces. Particularly, CFTR performs an essential role in the male reproductive tract, which requires a tight regulation of water and electrolytes in order to produce healthy spermatozoa. The absence or malfunction of CFTR results in cystic fibrosis, the most common lethal disease among Caucasians, that is characterized by an impaired fluid and ionic homeostasis in the whole organism. Due to the wide expression and importance of CFTR, the male reproductive tract is highly affected by cystic fibrosis, resulting in male infertility. Although CFTR is not permeable to water, this protein acts as a regulator of other protein channels, such as aquaporins. In fact, CFTR acts as a molecular partner of aquaporins in epithelial cells, regulating fluid homeodynamics. Herein, up-to-date data concerning the regulation of aquaporin-mediated water transport by CFTR will be discussed, highlighting the role of both channels in the male reproductive tract.
Collapse
Affiliation(s)
- David F Carrageta
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
9
|
Functional characterization reveals that zebrafish CFTR prefers to occupy closed channel conformations. PLoS One 2018; 13:e0209862. [PMID: 30596737 PMCID: PMC6312236 DOI: 10.1371/journal.pone.0209862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the culprit behind the genetic disease cystic fibrosis (CF), is a phosphorylation-activated, but ATP-gated anion channel. Studies of human CFTR over the past two decades have provided an in-depth understanding of how CFTR works as an ion channel despite its structural resemblance to ABC transporters. Recently-solved cryo-EM structures of unphosphorylated human and zebrafish CFTR (hCFTR and zCFTR), as well as phosphorylated ATP-bound zebrafish and human CFTR offer an unprecedented opportunity to understand CFTR's function at a molecular level. Interestingly, despite millions of years of phylogenetic distance between human and zebrafish, the structures of zCFTR and hCFTR exhibit remarkable similarities. In the current study, we characterized biophysical and pharmacological properties of zCFTR with the patch-clamp technique, and showed surprisingly very different functional properties between these two orthologs. First, while hCFTR has a single-channel conductance of 8.4 pS with a linear I-V curve, zCFTR shows an inwardly-rectified I-V relationship with a single-channel conductance of ~3.5 pS. Second, single-channel gating behaviors of phosphorylated zCFTR are very different from those of hCFTR, featuring a very low open probability Po (0.03 ± 0.02, vs. ~0.50 for hCFTR) with exceedingly long closed events and brief openings. In addition, unlike hCFTR where each open burst is clearly defined with rare short-lived flickery closures, the open bursts of zCFTR are not easily resolved. Third, although abolishing ATP hydrolysis by replacing the catalytic glutamate with glutamine (i.e., E1372Q) drastically prolongs the open bursts defined by the macroscopic relaxation analysis in zCFTR, the Po within a "locked-open" burst of E1372Q-zCFTR is only ~ 0.35 (vs. Po > 0.94 in E1371Q-hCFTR). Collectively, our data not only provide a reasonable explanation for the unexpected closed-state structure of phosphorylated E1372Q-zCFTR with a canonical ATP-bound dimer of the nucleotide binding domains (NBDs), but also implicate significant structural and functional differences between these two evolutionarily distant orthologs.
Collapse
|
10
|
Chen JH, Xu W, Sheppard DN. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl - channel. J Physiol 2017; 595:1059-1076. [PMID: 27779763 DOI: 10.1113/jp273205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF), forms a gated pathway for chloride movement regulated by intracellular ATP. To understand better CFTR function, we investigated the regulation of channel openings by intracellular pH. We found that short-lived channel closures during channel openings represent subtle changes in the structure of CFTR that are regulated by intracellular pH, in part, at ATP-binding site 1 formed by the nucleotide-binding domains. Our results provide a framework for future studies to understand better the regulation of channel openings, the dysfunction of CFTR in CF and the action of drugs that repair CFTR gating defects. ABSTRACT Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated Cl- channel defective in the genetic disease cystic fibrosis (CF). The gating behaviour of CFTR is characterized by bursts of channel openings interrupted by brief, flickery closures, separated by long closures between bursts. Entry to and exit from an open burst is controlled by the interaction of ATP with two ATP-binding sites, sites 1 and 2, in CFTR. To understand better the kinetic basis of CFTR intraburst gating, we investigated the single-channel activity of human CFTR at different intracellular pH (pHi ) values. When compared with the control (pHi 7.3), acidifying pHi to 6.3 or alkalinizing pHi to 8.3 and 8.8 caused small reductions in the open-time constant (τo ) of wild-type CFTR. By contrast, the fast closed-time constant (τcf ), which describes the short-lived closures that interrupt open bursts, was greatly increased at pHi 5.8 and 6.3. To analyse intraburst kinetics, we used linear three-state gating schemes. All data were satisfactorily modelled by the C1 ↔ O ↔ C2 kinetic scheme. Changing the intracellular ATP concentration was without effect on τo , τcf and their responses to pHi changes. However, mutations that disrupt the interaction of ATP with ATP-binding site 1, including K464A, D572N and the CF-associated mutation G1349D all abolished the prolongation of τcf at pHi 6.3. Taken together, our data suggest that the regulation of CFTR intraburst gating is distinct from the ATP-dependent mechanism that controls channel opening and closing. However, our data also suggest that ATP-binding site 1 modulates intraburst gating.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Weiyi Xu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Linsdell P. Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 2017; 74:67-83. [PMID: 27699452 PMCID: PMC11107662 DOI: 10.1007/s00018-016-2389-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
Abstract
The main function of the cystic fibrosis transmembrane conductance regulator (CFTR) is as an ion channel for the movement of small anions across epithelial cell membranes. As an ion channel, CFTR must form a continuous pathway across the cell membrane-referred to as the channel pore-for the rapid electrodiffusional movement of ions. This review summarizes our current understanding of the architecture of the channel pore, as defined by electrophysiological analysis and molecular modeling studies. This includes consideration of the characteristic functional properties of the pore, definition of the overall shape of the entire extent of the pore, and discussion of how the molecular structure of distinct regions of the pore might control different facets of pore function. Comparisons are drawn with closely related proteins that are not ion channels, and also with structurally unrelated proteins with anion channel function. A simple model of pore function is also described.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
12
|
Huguet F, Calvez ML, Benz N, Le Hir S, Mignen O, Buscaglia P, Horgen FD, Férec C, Kerbiriou M, Trouvé P. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR. Cell Mol Life Sci 2016; 73:3351-73. [PMID: 26874684 PMCID: PMC11108291 DOI: 10.1007/s00018-016-2149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.
Collapse
Affiliation(s)
- F Huguet
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - M L Calvez
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
- Association G. Saleun, Brest, 29218, France
| | - N Benz
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Association G. Saleun, Brest, 29218, France
| | - S Le Hir
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France
| | - O Mignen
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Buscaglia
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - F D Horgen
- Laboratory of Marine Biological Chemistry, Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - C Férec
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France.
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France.
- Etablissement Français du Sang - Bretagne, Brest, 29200, France.
| | - M Kerbiriou
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Trouvé
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
| |
Collapse
|
13
|
Abstract
The anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ATP-binding cassette (ABC) transporter. CFTR plays a pivotal role in transepithelial ion transport as its dysfunction in the genetic disease cystic fibrosis (CF) dramatically demonstrates. Phylogenetic analysis suggests that CFTR first appeared in aquatic vertebrates fulfilling important roles in osmosensing and organ development. Here, we review selectively, knowledge of CFTR structure, function and pharmacology, gleaned from cross-species comparative studies of recombinant CFTR proteins, including CFTR chimeras. The data argue that subtle changes in CFTR structure can affect strongly channel function and the action of CF mutations.
Collapse
|
14
|
Linsdell P. Anion conductance selectivity mechanism of the CFTR chloride channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:740-7. [DOI: 10.1016/j.bbamem.2016.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/08/2023]
|
15
|
Paweloszek R, Briançon S, Chevalier Y, Gilon-Delepine N, Pelletier J, Bolzinger MA. Skin Absorption of Anions: Part Two. Skin Absorption of Halide Ions. Pharm Res 2016; 33:1576-86. [PMID: 27001272 DOI: 10.1007/s11095-016-1898-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/01/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of the study was to sort skin penetration of anions with respect to their properties and to assess their mechanisms of penetration. METHODS Aqueous solutions of halides at two concentrations were prepared and quantitative penetration studies were carried out for 24 h using Franz diffusion cells. The iodide permeation was also measured after blocking of anion channels and transporters to investigate the role of this specific transport. RESULTS Absorption of halide ions into skin revealed large differences of transport between these anions according to the Hofmeister series. Increasing steady-state fluxes and lag times in the order F(-) < Cl(-) < Br(-) < I(-) were observed in permeation experiments. The steady-state fluxes were proportional to the concentration for each halide ion. Longer lag times for iodide or bromide ions were explained by the ability of such sticky chaotropic anions to interact with apolar lipids especially in the stratum corneum. Inhibiting ion exchangers and channels decreased the flux of iodide ions by 75%, showing the high contribution of the facilitated transport over the passive pathway. CONCLUSION Ions transport had contributions coming from passive diffusion through the skin layers and transport mediated by ion channels and binding to ion transporters.
Collapse
Affiliation(s)
- Raphaël Paweloszek
- Univ Lyon, Université Lyon 1, CNRS, UMR5007, LAGEP - Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Stéphanie Briançon
- Univ Lyon, Université Lyon 1, CNRS, UMR5007, LAGEP - Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Yves Chevalier
- Univ Lyon, Université Lyon 1, CNRS, UMR5007, LAGEP - Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Nicole Gilon-Delepine
- Univ Lyon, Université Lyon 1, CNRS, UMR5280, Institut des Sciences Analytiques (ISA), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Jocelyne Pelletier
- Univ Lyon, Université Lyon 1, CNRS, UMR5007, LAGEP - Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Marie-Alexandrine Bolzinger
- Univ Lyon, Université Lyon 1, CNRS, UMR5007, LAGEP - Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de Lyon, 43 bd du 11 Novembre 1918, F-69622, Villeurbanne, France.
| |
Collapse
|
16
|
Farias R, Rousseau S. The TAK1→IKKβ→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa. Front Cell Dev Biol 2016; 3:87. [PMID: 26793709 PMCID: PMC4707240 DOI: 10.3389/fcell.2015.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022] Open
Abstract
In cystic fibrosis (CF), chronic respiratory infections result in an exaggerated and uncontrolled inflammatory response that ultimately lead to a decrease in pulmonary function. We have previously described the presence of the alarmin IL-33 in lung explants from CF patients. The signals regulating IL-33 expression in the airway epithelium following a gram-negative bacterial infection are currently unknown. Our objective was to characterize the pathways in CF airway epithelial cells (AECs) leading to an increase in IL-33 expression. We found that, in CF AECs expressing a deletion of a phenylalanine at position 508 of the gene coding for Cystic Fibrosis Transmembrane Conductance Regulator (CFTRdelF508), exposure to live Pseudomonas aeruginosa upregulates IL-33 via the TLR2 and TLR5 signaling pathways. This up-regulation can be partially or fully reverted by pre-incubating CFTRdelF508 AECs with a CFTR corrector (VX-809) and/or a CFTR potentiator (VX-770). Similarly, incubation with the CFTR corrector and/or the CFTR potentiator also decreased IL-8 expression in response to infection. Moreover, using different protein kinase inhibitors that target elements downstream of TLR signaling, we show that the TAK1→IKKβ→TPL2→MKK1/MKK2 pathway regulates IL-33 expression following an infection with P. aeruginosa. Our findings represent the first characterization of the signals regulating IL-33 expression in CF airway epithelial cells in response to a bacterial infection.
Collapse
Affiliation(s)
- Raquel Farias
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre Research Institute, McGill University Montreal, QC, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre Research Institute, McGill University Montreal, QC, Canada
| |
Collapse
|
17
|
Linsdell P. Interactions between permeant and blocking anions inside the CFTR chloride channel pore. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1573-90. [DOI: 10.1016/j.bbamem.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/19/2022]
|
18
|
Rubaiy HN, Linsdell P. Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol Sci 2015; 65:233-41. [PMID: 25673337 PMCID: PMC10717427 DOI: 10.1007/s12576-015-0359-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/24/2015] [Indexed: 01/15/2023]
Abstract
In the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, lyotropic anions with high permeability also bind relatively tightly within the pore. However, the location of permeant anion binding sites, as well as their relationship to anion permeability, is not known. We have identified lysine residue K95 as a key determinant of permeant anion binding in the CFTR pore. Lyotropic anion binding affinity is related to the number of positively charged amino acids located in the inner vestibule of the pore. However, mutations that change the number of positive charges in this pore region have minimal effects on anion permeability. In contrast, a mutation at the narrow pore region alters permeability with minimal effects on anion binding. Our results suggest that a localized permeant anion binding site exists in the pore; however, anion binding to this site has little influence over anion permeability. Implications of this work for the mechanisms of anion recognition and permeability in CFTR are discussed.
Collapse
Affiliation(s)
- Hussein N. Rubaiy
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
19
|
Derscheid RJ, van Geelen A, Berkebile AR, Gallup JM, Hostetter SJ, Banfi B, McCray PB, Ackermann MR. Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity. Am J Respir Cell Mol Biol 2014; 50:389-97. [PMID: 24053146 DOI: 10.1165/rcmb.2012-0529oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN(-)), and secreted lactoperoxidase (LPO). The LPO-catalyzed reaction between H2O2 and SCN(-) yields the bactericidal hypothiocyanite (OSCN(-)) in airway surface liquid (ASL). Although SCN(-) is the physiological substrate of LPO, the Duox/LPO/halide system can generate hypoiodous acid when the iodide (I(-)) concentration is elevated in ASL. Because hypoiodous acid, but not OSCN(-), inactivates respiratory syncytial virus (RSV) in cell culture, we used a lamb model of RSV to test whether potassium iodide (KI) could enhance this system in vivo. Newborn lambs received KI by intragastric gavage or were left untreated before intratracheal inoculation of RSV. KI treatment led to a 10-fold increase in ASL I(-) concentration, and this I(-) concentration was approximately 30-fold higher than that measured in the serum. Also, expiratory effort, gross lung lesions, and pulmonary expression of an RSV antigen and IL-8 were reduced in the KI-treated lambs as compared with nontreated control lambs. Inhibition of LPO activity significantly increased lesions, RSV mRNA, and antigen. Similar experiments in 3-week-old lambs demonstrated that KI administration was associated with reduced gross lesions, decreased RSV titers in bronchoalveolar lavage fluid, and reduced RSV antigen expression. Overall, these data indicate that high-dose KI supplementation can be used in vivo to lessen the severity of RSV infections, potentially through the augmentation of mucosal oxidative defenses.
Collapse
Affiliation(s)
- Rachel J Derscheid
- 1 Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa; Departments of
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
21
|
Cai Z, Li H, Chen JH, Sheppard DN. Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms. Am J Physiol Cell Physiol 2013; 305:C817-28. [PMID: 23784545 PMCID: PMC3798681 DOI: 10.1152/ajpcell.00052.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
The chemical structures of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) resemble those of small-molecules that inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We therefore tested the acute effects of T3, T4 and reverse T3 (rT3) on recombinant wild-type human CFTR using the patch-clamp technique. When added directly to the intracellular solution bathing excised membrane patches, T3, T4, and rT3 (all tested at 50 μM) inhibited CFTR in several ways: they strongly reduced CFTR open probability by impeding channel opening; they moderately decreased single-channel current amplitude, and they promoted transitions to subconductance states. To investigate the mechanism of CFTR inhibition, we studied T3. T3 (50 μM) had multiple effects on CFTR gating kinetics, suggestive of both allosteric inhibition and open-channel blockade. Channel inhibition by T3 was weakly voltage dependent and stronger than the allosteric inhibitor genistein, but weaker than the open-channel blocker glibenclamide. Raising the intracellular ATP concentration abrogated T3 inhibition of CFTR gating, but not the reduction in single-channel current amplitude nor the transitions to subconductance states. The decrease in single-channel current amplitude was relieved by membrane depolarization, but not the transitions to subconductance states. We conclude that T3 has complex effects on CFTR consistent with both allosteric inhibition and open-channel blockade. Our results suggest that there are multiple allosteric mechanisms of CFTR inhibition, including interference with ATP-dependent channel gating and obstruction of conformational changes that gate the CFTR pore. CFTR inhibition by thyroid hormones has implications for the development of innovative small-molecule CFTR inhibitors.
Collapse
Affiliation(s)
- Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
22
|
Galietta LJV. Managing the underlying cause of cystic fibrosis: a future role for potentiators and correctors. Paediatr Drugs 2013; 15:393-402. [PMID: 23757197 DOI: 10.1007/s40272-013-0035-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cystic fibrosis (CF), a severe genetic disease, is caused by mutations that alter the structure and function of CFTR, a plasma membrane channel permeable to chloride and bicarbonate. Defective anion transport in CF irreversibly damages the lungs, pancreas, liver, and other organs. CF mutations cause loss of CFTR function in multiple ways. In particular, class 3 mutations such as p.Gly551Asp strongly decrease the time spent by CFTR in the open state (gating defect). Instead, class 2 mutations impair the maturation of CFTR protein and its transport from the endoplasmic reticulum to the plasma membrane (trafficking defect). The deletion of phenylalanine 508 (p.Phe508del), the most frequent mutation among CF patients (70-90 %), destabilizes the CFTR protein, thus causing both a trafficking and a gating defect. These two defects can be overcome with drug-like molecules generically called correctors and potentiators, respectively. The potentiator Kalydeco™ (also known as Ivacaftor or VX-770), developed by Vertex Pharmaceuticals, has been recently approved by the US FDA and the European Medicines Agency (EMA) for the treatment of CF patients carrying at least one CFTR allele with the p.Gly551Asp mutation (2-5 % of all patients). In contrast, the corrector VX-809, which significantly improves p.Phe508del-CFTR trafficking in vitro, is still under study in clinical trials. Because of multiple defects caused by the p.Phe508del mutation, it is probable that rescue of the mutant protein will require combined treatment with correctors having different mechanisms of action. This review evaluates the status of experimental and clinical research in pharmacotherapy for the CF basic defect.
Collapse
Affiliation(s)
- Luis J V Galietta
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genova, Italy,
| |
Collapse
|
23
|
Ip YK, Wilson JM, Loong AM, Chen XL, Wong WP, Delgado ILS, Lam SH, Chew SF. Cystic fibrosis transmembrane conductance regulator in the gills of the climbing perch, Anabas testudineus, is involved in both hypoosmotic regulation during seawater acclimation and active ammonia excretion during ammonia exposure. J Comp Physiol B 2012; 182:793-812. [PMID: 22526263 DOI: 10.1007/s00360-012-0664-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 01/20/2023]
Abstract
This study aimed to clone and sequence the cystic fibrosis transmembrane conductance regulator (cftr) from, and to determine the effects of seawater acclimation or exposure to 100 mmol l⁻¹ NH₄Cl in freshwater on its mRNA and protein expressions in, the gills of Anabas testudineus. There were 4,530 bp coding for 1,510 amino acids in the cftr cDNA sequence from A. testudineus. The branchial mRNA expression of cftr in fish kept in freshwater was low (<50 copies of transcript per ng cDNA), but significant increases were observed in fish acclimated to seawater for 1 day (92-fold) or 6 days (219-fold). Branchial Cftr expression was detected in fish acclimated to seawater but not in the freshwater control, indicating that Cl⁻ excretion through the apical Cftr of the branchial epithelium was essential to seawater acclimation. More importantly, fish exposed to ammonia also exhibited a significant increase (12-fold) in branchial mRNA expression of cftr, with Cftr being expressed in a type of Na⁺/K⁺-ATPase-immunoreactive cells that was apparently different from the type involved in seawater acclimation. It is probable that Cl⁻ excretion through Cftr generated a favorable electrical potential across the apical membrane to drive the excretion of NH₄⁺ against a concentration gradient through a yet to be determined transporter, but it led to a slight loss of endogenous Cl⁻. Since ammonia exposure also resulted in significant decreases in blood pH, [HCO₃⁻] and [total CO₂] in A. testudineus, it can be deduced that active NH₄⁺ excretion could also be driven by the exit of HCO₃⁻ through the apical Cftr. Furthermore, A. testudineus uniquely responded to ammonia exposure by increasing the ambient pH and decreasing the branchial bafilomycin-sensitive V-type H⁺-ATPase activity, which suggests that its gills might have low NH₃ permeability.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O’Donnell N, Dawson DC, Sansom MS. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Biochemistry 2012; 51:2199-212. [PMID: 22352759 PMCID: PMC3316148 DOI: 10.1021/bi201888a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We developed molecular models for the cystic fibrosis transmembrane conductance regulator chloride channel based on the prokaryotic ABC transporter, Sav1866. Here we analyze predicted pore geometry and side-chain orientations for TM3, TM6, TM9, and TM12, with particular attention being paid to the location of the rate-limiting barrier for anion conduction. Side-chain orientations assayed by cysteine scanning were found to be from 77 to 90% in accord with model predictions. The predicted geometry of the anion conduction path was defined by a space-filling model of the pore and confirmed by visualizing the distribution of water molecules from a molecular dynamics simulation. The pore shape is that of an asymmetric hourglass, comprising a shallow outward-facing vestibule that tapers rapidly toward a narrow "bottleneck" linking the outer vestibule to a large inner cavity extending toward the cytoplasmic extent of the lipid bilayer. The junction between the outer vestibule and the bottleneck features an outward-facing rim marked by T338 in TM6 and I1131 in TM12, consistent with the observation that cysteines at both of these locations reacted with both channel-permeant and channel-impermeant, thiol-directed reagents. Conversely, cysteines substituted for S341 in TM6 or T1134 in TM12, predicted by the model to lie below the rim of the bottleneck, were found to react exclusively with channel-permeant reagents applied from the extracellular side. The predicted dimensions of the bottleneck are consistent with the demonstrated permeation of Cl(-), pseudohalide anions, water, and urea.
Collapse
Affiliation(s)
- Yohei Norimatsu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Anthony Ivetac
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Christopher Alexander
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - John Kirkham
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Nicolette O’Donnell
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - David C. Dawson
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| |
Collapse
|
25
|
Cui G, Song B, Turki HW, McCarty NA. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers. Pflugers Arch 2011; 463:405-18. [PMID: 22160394 DOI: 10.1007/s00424-011-1035-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 02/06/2023]
Abstract
Previous studies suggested that four transmembrane domains 5, 6, 11, 12 make the greatest contribution to forming the pore of the CFTR chloride channel. We used excised, inside-out patches from oocytes expressing CFTR with alanine-scanning mutagenesis in amino acids in TM6 and TM12 to probe CFTR pore structure with four blockers: glibenclamide (Glyb), glipizide (Glip), tolbutamide (Tolb), and Meglitinide. Glyb and Glip blocked wildtype (WT)-CFTR in a voltage-, time-, and concentration-dependent manner. At V (M) = -120 mV with symmetrical 150 mM Cl(-) solution, fractional block of WT-CFTR by 50 μM Glyb and 200 μM Glip was 0.64 ± 0.03 (n = 7) and 0.48 ± 0.02 (n = 7), respectively. The major effects on block by Glyb and Glip were found with mutations at F337, S341, I344, M348, and V350 of TM6. Under similar conditions, fractional block of WT-CFTR by 300 μM Tolb was 0.40 ± 0.04. Unlike Glyb, Glip, and Meglitinide, block by Tolb lacked time-dependence (n = 7). We then tested the effects of alanine mutations in TM12 on block by Glyb and Glip; the major effects were found at N1138, T1142, V1147, N1148, S1149, S1150, I1151, and D1152. From these experiments, we infer that amino acids F337, S341, I344, M348, and V350 of TM6 face the pore when the channel is in the open state, while the amino acids of TM12 make less important contributions to pore function. These data also suggest that the region between F337 and S341 forms the narrow part of the CFTR pore.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
26
|
Li Y, Ganta S, Fong P. Endogenous surface expression of ΔF508-CFTR mediates cAMP-stimulated Cl(-) current in CFTR(ΔF508/ΔF508) pig thyroid epithelial cells. Exp Physiol 2011; 97:115-24. [PMID: 21948195 DOI: 10.1113/expphysiol.2011.060756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is both an anion channel and a regulator of other transport proteins. Mutations in the CFTR gene underlie the human disease, cystic fibrosis. The most common CFTR mutation, ΔF508, produces a misfolded protein which traffics improperly. The availability of transgenic CFTR(ΔF508/ΔF508) pigs allows measurement of the impact of ΔF508 in native tissue. Thyroid epithelia respond to cAMP-elevating agents by increasing anion transport, a process reliant on functional CFTR. To assess whether endogenous levels of ΔF508-CFTR mediate thyroid transport, primary thyroid epithelial cultures (pThECs) were grown from newborn CFTR(+/+) (wild-type) and CFTR(ΔF508/ΔF508) (ΔF) pig thyroids and the stimulated, secretory components of short-circuit current (I(sc)) compared. Surface biotinylation studies assessed the surface presentation of ΔF508-CFTR. Baseline I(sc) levels of both wild-type and ΔF pThECs consisted of an amiloride-sensitive component. In ΔF pThECs, this mirrored previous measurements in CFTR(-/-) (knockout) pThECs. Surprisingly, elevation of cAMP transiently increased I(sc) to peak levels ∼65% of those achieved by wild-type. In contrast, knockout pThECs were indifferent to cAMP activation. In ΔF pThECs, total ΔF508-CFTR expression was ∼9% that of wild-type, consistent with misfolding and enhanced degradation. Surface biotinylation studies indicated that ∼4% of the total ΔF508 resided at the surface and did not increase with cAMP elevation. The present findings show that low endogenous levels of pig ΔF508-CFTR can mediate substantial anion transport by thyroid epithelia. These data suggest that both wild-type and ΔF508-CFTR regulate additional thyroid transporters, and together co-ordinate the overall I(sc) response.
Collapse
Affiliation(s)
- Yonghai Li
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, 1600 Denison Avenue, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
27
|
Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel. J Membr Biol 2011; 243:15-23. [PMID: 21796426 DOI: 10.1007/s00232-011-9388-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/13/2011] [Indexed: 12/23/2022]
Abstract
Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.
Collapse
|
28
|
Li H, Ganta S, Fong P. Altered ion transport by thyroid epithelia from CFTR(-/-) pigs suggests mechanisms for hypothyroidism in cystic fibrosis. Exp Physiol 2010; 95:1132-44. [PMID: 20729267 DOI: 10.1113/expphysiol.2010.054700] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Subclinical hypothyroidism has been linked to cystic fibrosis, and the cystic fibrosis transmembrane conductance regulator (CFTR) shown to be expressed in the thyroid. The thyroid epithelium secretes Cl⁻ and absorbs Na(+) in response to cAMP. Chloride secretion may provide a counter-ion for the SLC26A4 (pendrin)-mediated I⁻ secretion which is required for the first step of thyroid hormonogenesis, thyroglobulin iodination. In contrast, few models exist to explain a role for Na(+) absorption. Whether CFTR mediates the secretory Cl⁻ current in thyroid epithelium has not been directly addressed. We used thyroids from a novel pig CFTR(-/-) model, generated primary pig thyroid epithelial cell cultures (pThECs), analysed these cultures for preservation of thyroid-specific transcripts and proteins, and monitored the following parameters: (1) the Cl⁻ secretory response to the cAMP agonist, isoprenaline; and (2) the amiloride-sensitive Na(+) current. Baseline short-circuit current (I(sc)) did not differ between CFTR(+/+) and CFTR(-/-) cultures. Serosal isoprenaline increased I(sc) in CFTR(+/+), but not CFTR(-/-), monolayers. Compared with CFTR(+/+) thyroid cultures, amiloride-sensitive Na(+) absorption measured in CFTR(-/-) pThECs represented a greater fraction of the resting I(sc). However, levels of transcripts encoding epithelial sodium channel (ENaC) subunits did not differ between CFTR(+/+) and CFTR(-/-) pThECs. Immunoblot analysis verified ENaC subunit protein expression, but quantification indicated no difference in expression levels. Our studies definitively demonstrate that CFTR mediates cAMP-stimulated Cl⁻ secretion in a well-differentiated thyroid culture model and that knockout of CFTR promotes increased Na(+) absorption by a mechanism other than increased ENaC expression. These findings suggest several models for the mechanism of cystic fibrosis-associated hypothyroidism.
Collapse
Affiliation(s)
- Hui Li
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, 1600 Denison Avenue, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
29
|
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct. Proc Natl Acad Sci U S A 2010; 107:6082-7. [PMID: 20231442 DOI: 10.1073/pnas.0902661107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in many segments of the mammalian nephron, where it may interact with and modulate the activity of a variety of apical membrane proteins, including the renal outer medullary potassium (ROMK) K(+) channel. However, the expression of CFTR in apical cell membranes or its function as a Cl(-) channel in native renal epithelia has not been demonstrated. Here, we establish that CFTR forms protein kinase A (PKA)-activated Cl(-) channels in the apical membrane of principal cells from the cortical collecting duct obtained from mice. These Cl(-) channels were observed in cell-attached apical patches of principal cells after stimulation by forskolin/3-isobutyl-1-methylxanthine. Quiescent Cl(-) channels were present in patches excised from untreated tubules because they could be activated after exposure to Mg-ATP and the catalytic subunit of PKA. The single-channel conductance, kinetics, and anion selectivity of these Cl(-) channels were the same as those of recombinant mouse CFTR channels expressed in Xenopus laevis oocytes. The CFTR-specific closed-channel blocker CFTR(inh)-172 abolished apical Cl(-) channel activity in excised patches. Moreover, apical Cl(-) channel activity was completely absent in principal cells from transgenic mice expressing the DeltaF508 CFTR mutation but was present and unaltered in ROMK-null mice. We discuss the physiologic implications of open CFTR Cl(-) channels on salt handling by the collecting duct and on the functional CFTR-ROMK interactions in modulating the metabolic ATP-sensing of ROMK.
Collapse
|
30
|
Demmers KJ, Carter D, Fan S, Mao P, Maqbool NJ, McLeod BJ, Bartolo R, Butt AG. Molecular and functional characterization of the cystic fibrosis transmembrane conductance regulator from the Australian common brushtail possum, Trichosurus vulpecula. J Comp Physiol B 2009; 180:545-61. [PMID: 20012660 DOI: 10.1007/s00360-009-0433-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/14/2009] [Accepted: 11/19/2009] [Indexed: 02/07/2023]
Abstract
Unlike eutherian mammals, the colon of the Australian common brushtail possum, Trichosurus vulpecula, a metatherian mammal, is incapable of electrogenic Cl(-) secretion and has elevated levels of electrogenic Na(+) absorption, while the ileum secretes HCO (3) (-) rather than Cl(-). In eutherian mammals, the cystic fibrosis transmembrane conductance regulator (CFTR) is essential for both Cl(-) and HCO (3) (-) secretion and the regulation of Na(+) absorption. Therefore, we have sequenced possum (p)CFTR, described its distribution and characterized the properties of cloned pCFTR expressed in Fischer rat thyroid (FRT) cells. pCFTR (GenBank accession No. AY916796) has a 1,478 amino acid open reading frame, which has >90% identity with CFTR from other marsupials and >80% identity with non-rodent eutherian mammals. In pCFTR, there is a high level of conservation of the transmembrane and nucleotide binding domains although, with the exception of other marsupials, there is considerable divergence from other species in the R domain. FRT cells transfected with pCFTR express mature CFTR protein which functions as a small Cl(-) channel activated by cAMP-dependent phosphorylation. In whole-cell recordings it has a linear, time and voltage-independent conductance, with a selectivity sequence P(Br) > P(Cl) > P(I) > P(HCO)(3) >> P(Gluconate). pCFTR transcript is present in a range of epithelia, including the ileum and the colon. The presence of pCFTR in the ileum and its measured HCO (3) (-) permeability suggest that it may be involved in ileal HCO (3) (-) secretion. Why the possum colon does not secrete Cl(-) and has elevated electrogenic Na(+) absorption, despite the apparent expression of CFTR, remains to be determined.
Collapse
Affiliation(s)
- K J Demmers
- AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9024, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is an epithelial Cl- channel inhibited with high affinity and selectivity by the thiazolidinone compound CFTR(inh)-172. In the present study, we provide evidence that CFTR(inh)-172 acts directly on the CFTR. We introduced mutations in amino acid residues of the sixth transmembrane helix of the CFTR protein, a domain that has an important role in the formation of the channel pore. Basic and hydrophilic amino acids at positions 334-352 were replaced with alanine residues and the sensitivity to CFTR(inh)-172 was assessed using functional assays. We found that an arginine-to-alanine change at position 347 reduced the inhibitory potency of CFTR(inh)-172 by 20-30-fold. Mutagenesis of Arg347 to other amino acids also decreased the inhibitory potency, with aspartate producing near total loss of CFTR(inh)-172 activity. The results of the present study provide evidence that CFTR(inh)-172 interacts directly with CFTR, and that Arg347 is important for the interaction.
Collapse
|
32
|
Reed-Tsur MD, De la Vieja A, Ginter CS, Carrasco N. Molecular characterization of V59E NIS, a Na+/I- symporter mutant that causes congenital I- transport defect. Endocrinology 2008; 149:3077-84. [PMID: 18339708 PMCID: PMC2408800 DOI: 10.1210/en.2008-0027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
I(-) is actively transported into thyrocytes via the Na+/I(-) symporter (NIS), a key glycoprotein located on the basolateral plasma membrane. The cDNA encoding rat NIS was identified in our laboratory, where an extensive structure/function characterization of NIS is being conducted. Several NIS mutants have been identified as causes of congenital I(-) transport defect (ITD), including V59E NIS. ITD is characterized by low thyroid I(-) uptake, low saliva/plasma I(-) ratio, hypothyroidism, and goiter and may cause mental retardation if untreated. Studies of other ITD-causing NIS mutants have revealed valuable information regarding NIS structure/function. V59E NIS was reported to exhibit as much as 30% of the activity of wild-type NIS. However, this observation was at variance with the patients' phenotype of total lack of activity. We have thoroughly characterized V59E NIS and studied several amino acid substitutions at position 59. We demonstrated that, in contrast to the previous report, V59E NIS is inactive, although it is properly targeted to the plasma membrane. Glu and all other charged amino acids or Pro at position 59 also yielded nonfunctional NIS proteins. However, I(-) uptake was rescued to different degrees by the other substitutions. Although the Km values for Na+ and I(-) were not altered in these active mutants, we found that the structural requirement for NIS function at position 59 is a neutral, helix-promoting amino acid. This result suggests that the region that contains V59 may be involved in intramembrane helix-helix interactions during the transport cycle without being in direct contact with the substrates.
Collapse
Affiliation(s)
- Mia D Reed-Tsur
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
33
|
Cui G, Zhang ZR, O'Brien ARW, Song B, McCarty NA. Mutations at arginine 352 alter the pore architecture of CFTR. J Membr Biol 2008; 222:91-106. [PMID: 18421494 DOI: 10.1007/s00232-008-9105-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 03/21/2008] [Indexed: 01/11/2023]
Abstract
Arginine 352 (R352) in the sixth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) previously was reported to form an anion/cation selectivity filter and to provide positive charge in the intracellular vestibule. However, mutations at this site have nonspecific effects, such as inducing susceptibility of endogenous cysteines to chemical modification. We hypothesized that R352 stabilizes channel structure and that charge-destroying mutations at this site disrupt pore architecture, with multiple consequences. We tested the effects of mutations at R352 on conductance, anion selectivity and block by the sulfonylurea drug glipizide, using recordings of wild-type and mutant channels. Charge-altering mutations at R352 destabilized the open state and altered both selectivity and block. In contrast, R352K-CFTR was similar to wild-type. Full conductance state amplitude was similar to that of wild-type CFTR in all mutants except R352E, suggesting that R352 does not itself form an anion coordination site. In an attempt to identify an acidic residue that may interact with R352, we found that permeation properties were similarly affected by charge-reversing mutations at D993. Wild-type-like properties were rescued in R352E/D993R-CFTR, suggesting that R352 and D993 in the wild-type channel may interact to stabilize pore architecture. Finally, R352A-CFTR was sensitive to modification by externally applied MTSEA+, while wild-type and R352E/D993R-CFTR were not. These data suggest that R352 plays an important structural role in CFTR, perhaps reflecting its involvement in forming a salt bridge with residue D993.
Collapse
Affiliation(s)
- Guiying Cui
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | | | | | |
Collapse
|
34
|
Uchiyama H, Hayashi H, Tanji KI, Sugimoto O, Suzuki Y. pH stat studies on bicarbonate secretion in the isolated mouse ileum. ACTA ACUST UNITED AC 2008; 28:239-46. [PMID: 18000336 DOI: 10.2220/biomedres.28.239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bicarbonate secretion occurs in almost all segments of the gastrointestinal tract. This study examined HCO(3)(-) secretion in the ileum, since it is less understood than HCO(3)(-) secretion in other intestinal segments. Mouse ileal mucosa was mounted in vitro in Ussing chambers, and the mucosal alkalinization rate (J(OH)) was determined by pH stat titration, while the mucosal side was bathed with a buffer-free solution (100% O(2)) and the serosal side with a HCO(3)(-)/CO(2)-buffered solution. The transmural potential difference (PD) was recorded. The mucosal alkalinization rate (J(OH)) was higher in the presence of mucosal Cl(-) than in its absence. Forskolin, an activator of adenylate cyclase, enhanced J(OH) and PD in both the presence and absence of mucosal Cl(-). Mucosal SO(4)(2-) also caused an increase in J(OH), although the magnitude was smaller than that induced by Cl(-). Mucosal Cl(-)-dependent J(OH) was partially inhibited by acetazolamide, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), tenidap and probably also by niflumic acid, but not by glibenclamide, DIDS or bumetanide. The forskolin-induced J(OH) value and PD were both inhibited by NPPB and probably also by tenidap. It is concluded that HCO(3)(-)- secretion in the ileum follows a mucosal Cl(-)-dependent pathway and a cAMP-activated pathway, each being distinct from each other. The Cl(-)-dependent pathway is probably mediated by the slc26a6 anion exchanger, and possibly also by the slc26a3 anion exchanger. The cAMP-activated HCO(3)(-) secretion is probably mediated by the cystic fibrosis transmembrane conductance regulator.
Collapse
Affiliation(s)
- Hisakazu Uchiyama
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka
| | | | | | | | | |
Collapse
|
35
|
Ferrari S, Griesenbach U, Iida A, Farley R, Wright AM, Zhu J, Munkonge FM, Smith SN, You J, Ban H, Inoue M, Chan M, Singh C, Verdon B, Argent BE, Wainwright B, Jeffery PK, Geddes DM, Porteous DJ, Hyde SC, Gray MA, Hasegawa M, Alton EWFW. Sendai virus-mediated CFTR gene transfer to the airway epithelium. Gene Ther 2007; 14:1371-9. [PMID: 17597790 DOI: 10.1038/sj.gt.3302991] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The potential for gene therapy to be an effective treatment for cystic fibrosis has been hampered by the limited gene transfer efficiency of current vectors. We have shown that recombinant Sendai virus (SeV) is highly efficient in mediating gene transfer to differentiated airway epithelial cells, because of its capacity to overcome the intra- and extracellular barriers known to limit gene delivery. Here, we have identified a novel method to allow the cystic fibrosis transmembrane conductance regulator (CFTR) cDNA sequence to be inserted within SeV (SeV-CFTR). Following in vitro transduction with SeV-CFTR, a chloride-selective current was observed using whole-cell and single-channel patch-clamp techniques. SeV-CFTR administration to the nasal epithelium of cystic fibrosis (CF) mice (Cftr(G551D) and Cftr(tm1Unc)TgN(FABPCFTR)#Jaw mice) led to partial correction of the CF chloride transport defect. In addition, when compared to a SeV control vector, a higher degree of inflammation and epithelial damage was found in the nasal epithelium of mice treated with SeV-CFTR. Second-generation transmission-incompetent F-deleted SeV-CFTR led to similar correction of the CF chloride transport defect in vivo as first-generation transmission-competent vectors. Further modifications to the vector or the host may make it easier to translate these studies into clinical trials of cystic fibrosis.
Collapse
Affiliation(s)
- S Ferrari
- Department of Gene Therapy, Faculty of Medicine, Imperial College, National Heart and Lung Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aubin CNS, Linsdell P. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel. ACTA ACUST UNITED AC 2006; 128:535-45. [PMID: 17043152 PMCID: PMC2151590 DOI: 10.1085/jgp.200609516] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many different ion channel pores are thought to have charged amino acid residues clustered around their entrances. The so-called surface charges contributed by these residues can play important roles in attracting oppositely charged ions from the bulk solution on one side of the membrane, increasing effective local counterion concentration and favoring rapid ion movement through the channel. Here we use site-directed mutagenesis to identify arginine residues contributing important surface charges in the intracellular mouth of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel pore. While wild-type CFTR was associated with a linear current–voltage relationship with symmetrical solutions, strong outward rectification was observed after mutagenesis of two arginine residues (R303 and R352) located near the intracellular ends of the fifth and sixth transmembrane regions. Current rectification was dependent on the charge present at these positions, consistent with an electrostatic effect. Furthermore, mutagenesis-induced rectification was more pronounced at lower Cl− concentrations, suggesting that these mutants had a reduced ability to concentrate Cl− ions near the inner pore mouth. R303 and R352 mutants exhibited reduced single channel conductance, especially at negative membrane potentials, that was dependent on the charge of the amino acid residue present at these positions. However, the very low conductance of both R303E and R352E-CFTR could be greatly increased by elevating intracellular Cl− concentration. Modification of an introduced cysteine residue at position 303 by charged methanethiosulfonate reagents reproduced charge-dependent effects on current rectification. Mutagenesis of arginine residues in the second and tenth transmembrane regions also altered channel permeation properties, however these effects were not consistent with changes in channel surface charges. These results suggest that positively charged arginine residues act to concentrate Cl− ions at the inner mouth of the CFTR pore, and that this contributes to maximization of the rate of Cl− ion permeation through the pore.
Collapse
Affiliation(s)
- Chantal N St Aubin
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | |
Collapse
|
37
|
Abstract
Cl- currents were observed under whole cell clamp conditions in cells of the rat cortical collecting duct (CCD), connecting tubule (CNT), and thick ascending limb of Henle's loop (TALH). These currents were much larger in intercalated cells compared with principal cells of the CCD and were also larger in the TALH and in the CNT compared with the CCD. The conductance had no strong voltage dependence, and steady-state currents were similar in inward and outward directions with similar Cl- concentrations on both sides of the membrane. Current transients were observed, particularly at low Cl- concentrations, which could be explained by solute depletion and concentration in fluid layers next to the membrane. The currents had a remarkable selectivity among anions. Among halides, Br- and F- conductances were only 15% of that of Cl-, and I- conductance was immeasurably small. SCN- and OCN- conductances were approximately 50%, and aspartate, glutamate, and methanesulfonate conductance was approximately 5% that of Cl-. No conductance could be measured for any other anion tested, including NO3-, HCO3-, formate, acetate, or isethionate; NO3- and I- appeared to block the channels weakly. Conductances were diminished by lowering the extracellular pH to 6.4. The properties of the conductance fit best with those of the cloned renal anion channel ClC-K2 and likely reflect the basolateral Cl- conductances of the cells of these nephron segments.
Collapse
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA.
| | | |
Collapse
|
38
|
Abstract
The retinal pigment epithelium (RPE) lying distal to the retina regulates the extracellular environment and provides metabolic support to the outer retina. RPE abnormalities are closely associated with retinal death and it has been claimed several of the most important diseases causing blindness are degenerations of the RPE. Therefore, the study of the RPE is important in Ophthalmology. Although visualisation of the RPE is part of clinical investigations, there are a limited number of methods which have been used to investigate RPE function. One of the most important is a study of the current generated by the RPE. In this it is similar to other secretory epithelia. The RPE current is large and varies as retinal activity alters. It is also affected by drugs and disease. The RPE currents can be studied in cell culture, in animal experimentation but also in clinical situations. The object of this review is to summarise this work, to relate it to the molecular membrane mechanisms of the RPE and to possible mechanisms of disease states.
Collapse
Affiliation(s)
- Geoffrey B Arden
- Department of Optometry and Visual Science, Henry Wellcome Laboratiories for Visual Sciences, City University, London, UK.
| | | |
Collapse
|
39
|
Farmen SL, Karp PH, Ng P, Palmer DJ, Koehler DR, Hu J, Beaudet AL, Zabner J, Welsh MJ. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct Cl- transport and overexpression can generate basolateral CFTR. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1123-30. [PMID: 16085675 DOI: 10.1152/ajplung.00049.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene transfer of CFTR cDNA to airway epithelia is a promising approach to treat cystic fibrosis (CF). Most gene transfer vectors use strong viral promoters even though the endogenous CFTR promoter is very weak. To learn whether expressing CFTR at a low level in a fraction of cells would correct Cl(-) transport, we mixed freshly isolated wild-type and CF airway epithelial cells in varying proportions and generated differentiated epithelia. Epithelia with approximately 20% wild-type cells generated approximately 70% the transepithelial Cl(-) current of epithelia containing 100% wild-type cells. These data were nearly identical to those previously obtained with CFTR expressed under control of a strong promoter in a CF epithelial cell line. We also tested high level CFTR expression using the very strong cytomegalovirus (CMV) promoter as well as the cytokeratin-18 (K18) promoter. In differentiated airway epithelia, the CMV promoter generated 50-fold more transgene expression than the K18 promoter, but the K18 promoter generated more transepithelial Cl(-) current at high vector doses. Using functional studies, we found that with marked overexpression, some CFTR channels were present in the basolateral membrane where they shunted Cl(-) flow, thereby reducing net transepithelial Cl(-) transport. These results suggest that very little CFTR is required in a fraction of CF epithelial cells to complement Cl(-) transport because transepithelial Cl(-) flow is limited at the basolateral membrane. Thus they suggest a broad leeway in promoter strength for correcting the CF gene transfer, although at very high expression levels CFTR may be mislocalized to the basolateral membrane.
Collapse
Affiliation(s)
- Sara L Farmen
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 500 EMRB, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Calcium-activated chloride channels (CaCCs) play important roles in cellular physiology, including epithelial secretion of electrolytes and water, sensory transduction, regulation of neuronal and cardiac excitability, and regulation of vascular tone. This review discusses the physiological roles of these channels, their mechanisms of regulation and activation, and the mechanisms of anion selectivity and conduction. Despite the fact that CaCCs are so broadly expressed in cells and play such important functions, understanding these channels has been limited by the absence of specific blockers and the fact that the molecular identities of CaCCs remains in question. Recent status of the pharmacology and molecular identification of CaCCs is evaluated.
Collapse
Affiliation(s)
- Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
41
|
Wang W, Li G, Clancy JP, Kirk KL. Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs. J Biol Chem 2005; 280:23622-30. [PMID: 15857825 DOI: 10.1074/jbc.m503118200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations that disrupt the surface localization and/or gating of the CF transmembrane conductance regulator (CFTR) chloride channel. The most common CF mutant is deltaF508-CFTR, which inefficiently traffics to the surfaces of most cells. The deltaF508 mutation may also disrupt the opening of CFTR channels once they reach the cell surface, but the extent of this gating defect is unclear. Here, we describe potent activators of wild-type and deltaF508-CFTR channels that are structurally related to 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), a negatively charged pore blocker that we show to have mixed agonistic activity (channel activation plus voltage-dependent pore block). These CFTR agonists include 1) an uncharged NPPB analog that stimulates channel opening at submicromolar concentrations without blocking the pore and 2) curcumin, a dietary compound recently reported to augment deltaF508-CFTR function in mice by an unknown mechanism. The uncharged NPPB analog enhanced the activities of wild-type and deltaF508-CFTR channels both in excised membrane patches and in intact epithelial monolayers. This compound increased the open probabilities of deltaF508-CFTR channels in excised membrane patches by 10-15-fold under conditions in which wild-type channels were already maximally active. Our results support the emerging view that CFTR channel activity is substantially reduced by the deltaF508 mutation and that effective CF therapies may require the use of channel openers to activate mutant CFTR channels at the cell surface.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
42
|
Kim KH, Shcheynikov N, Wang Y, Muallem S. SLC26A7 is a Cl- channel regulated by intracellular pH. J Biol Chem 2004; 280:6463-70. [PMID: 15591059 DOI: 10.1074/jbc.m409162200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the SLC26 transporter family play an essential role in several epithelial functions, as revealed by diseases associated with mutations in members of the family. Several members were shown to function as Cl(-) and HCO(3)(-) transporters that likely play an important role in epithelial Cl(-) absorption and HCO(3)(-) secretion. However, the mechanism of most transporters is not well understood. SLC26A7 is a member of the SLC26 transporter family reported to be expressed in the basolateral membrane of the cortical collecting duct and parietal cells and functions as a coupled Cl(-)/HCO(3)(-) exchanger. In the present work we examined the transport properties of SLC26A7 to determine its transport characteristics and electrogenicity. We found that when expressed in Xenopus oocytes or HEK293 cells SLC26A7 functions as a pH(i)-regulated Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability. Expression of SLC26A7 in oocytes or HEK293 cells generated a Cl(-) current with linear I/V and an instantaneous current that was voltage- and time-independent. Based on measurement of reversal potential the selectivity of SLC26A7 is NO(3)(-)>>Cl(-)=Br(-)=I(-)>SO(4)(2-)=Glu(-), although I(-) partially inhibited the current. Incubating the cells with HCO(3)(-) or butyrate acidified the cytosol and increased the selectivity of SLC26A7 for Cl(-). Measurement of membrane potential and pH(i) showed minimal OH(-) and HCO(3)(-) transport by SLC26A7 when the cells were incubated in Cl(-)-containing or Cl(-)-free media. The activity of SLC26A7 was inhibited by all inhibitors of anion transporters tested, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, diphenylamine-2-carboxylic acid, and glybenclamide. These findings reveal that SLC26A7 functions as a unique Cl(-) channel that is regulated by intracellular H(+).
Collapse
Affiliation(s)
- Kil Hwan Kim
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | |
Collapse
|
43
|
Wright AM, Gong X, Verdon B, Linsdell P, Mehta A, Riordan JR, Argent BE, Gray MA. Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by external chloride. J Biol Chem 2004; 279:41658-63. [PMID: 15286085 DOI: 10.1074/jbc.m405517200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is vital for Cl(-) and HCO(3)(-) transport in many epithelia. As the HCO(3)(-) concentration in epithelial secretions varies and can reach as high as 140 mm, the lumen-facing domains of CFTR are exposed to large reciprocal variations in Cl(-) and HCO(3)(-) levels. We have investigated whether changes in the extracellular anionic environment affects the activity of CFTR using the patch clamp technique. In fast whole cell current recordings, the replacement of 100 mm external Cl(-) ((Cl(o)(-))) with HCO(3)(-), Br(-), NO(3)(-), or aspartate(-) inhibited inward CFTR current (Cl(-) efflux) by approximately 50% in a reversible manner. Lowering Cl(o)(-) alone by iso-osmotic replacement with mannitol also reduced Cl(-) efflux to a similar extent. The maximal inhibition of CFTR current was approximately 70%. Raising cytosolic calcium shifted the Cl(-) dose-inhibition curve to the left but did not alter the maximal current inhibition observed. In contrast, a reduction in the internal [Cl(-)] neither inhibited CFTR nor altered the block caused by reduced Cl(o)(-). Single channel recordings from outside-out patches showed that lowering Cl(o)(-) markedly reduced channel open probability with little effect on unitary conductance. Together, these results indicate that alterations in Cl(o)(-) alone and not the Cl(-)/HCO(3)(-) ratio regulate the gating of CFTR. Physiologically, our data have implications for current models of epithelial HCO(3)(-) secretion and for the control of pH at epithelial cell surfaces.
Collapse
Affiliation(s)
- Angela M Wright
- Institute of Cell and Molecular Biosciences, University of Newcastle Upon Tyne, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Button B, Altenberg GA, Reuss L. Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2. Am J Physiol Cell Physiol 2004; 287:C1436-44. [PMID: 15282191 DOI: 10.1152/ajpcell.00045.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activity of the human (h) cystic fibrosis transmembrane conductance regulator (CFTR) channel is predominantly regulated by PKA-mediated phosphorylation. In contrast, Xenopus (X)CFTR is more responsive to PKC than PKA stimulation. We investigated the interaction between the two kinases in XCFTR. We expressed XCFTR in Xenopus oocytes and maximally stimulated it with PKA agonists. The magnitude of activation after PKC stimulation was about eightfold that without pretreatment with PKC agonist. hCFTR, expressed in the same system, lacked this response. We name this phenomenon XCFTR-specific PKC potentiation effect. To ascertain its biophysical mechanism, we first tested for XCFTR channel insertion into the plasma membrane by a substituted-cysteine-accessibility method. No insertion was detected during kinase stimulation. Next, we studied single-channel properties and found that the single-channel open probability (Po) with PKA stimulation subsequent to PKC stimulation was 2.8-fold that observed in the absence of PKC preactivation and that single-channel conductance (gamma) was increased by approximately 22%. To ascertain which XCFTR regions are responsible for the potentiation, we constructed several XCFTR-hCFTR chimeras, expressed them in Xenopus oocytes, and tested them electrophysiologically. Two chimeras [hCFTR NH2-terminal region or regulatory (R) domain in XCFTR] showed a significant decrease in potentiation. In the chimera in which XCFTR nucleotide-binding domain (NBD)2 was replaced with the hCFTR sequence there was no potentiation whatsoever. The converse chimera (hCFTR with Xenopus NBD2) did not exhibit potentiation. These results indicate that potentiation by PKC involves a large increase in Po (with a small change in gamma) without CFTR channel insertion into the plasma membrane, that XCFTR NBD2 is necessary but not sufficient for the effect, and that the potentiation effect is likely to involve other CFTR domains.
Collapse
Affiliation(s)
- Yongyue Chen
- Sealy Center for Structural Biology and Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0437, USA
| | | | | | | |
Collapse
|
45
|
Brochiero E, Dagenais A, Privé A, Berthiaume Y, Grygorczyk R. Evidence of a functional CFTR Cl(-) channel in adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L382-92. [PMID: 15107294 DOI: 10.1152/ajplung.00320.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the fetal lung, but during lung development it gradually disappears in cells of future alveolar spaces. Recent studies have implicated the CFTR in fluid transport by the adult alveolar epithelium, but its presence has not been demonstrated directly. This study re-evaluated CFTR expression and activity in the adult pulmonary epithelium by using freshly isolated rat alveolar type II (ATII) cells. CFTR mRNA was detected by semiquantitative polymerase chain reaction on the day of cell isolation but was rapidly reduced by 60% after 24 h of cell culture. This was paralleled by a similar decrease of surfactant protein A expression and alkaline phosphatase staining, markers of the ATII cell phenotype. CFTR expression increased significantly on day 4 in cells grown on filters at the air-liquid interface compared with cells submerged or grown on plastic. Significantly higher CFTR expression was detected in distal lung tissue compared with the trachea. The CFTR was also found at the protein level in Western blot experiments employing lysates of freshly isolated alveolar cells. Whole cell patch-clamp experiments revealed cAMP-stimulated, 5-nitro-2-(3-phenylpropylamino)-benzoate-sensitive Cl(-) conductance with a linear current-voltage relationship. In cell-attached membrane patches with 100 microM amiloride in pipette solution, forskolin stimulated channels of approximately 4 pS conductance. Our results indicate that 50-250 of functional CFTR Cl(-) channels occur in adult alveolar cells and could contribute to alveolar liquid homeostasis.
Collapse
Affiliation(s)
- Emmanuelle Brochiero
- Départemente de Médecine, Université de Montréal, Montresl, Quebec, Canada H2W 1T7
| | | | | | | | | |
Collapse
|
46
|
Perez-Cornejo P, De Santiago JA, Arreola J. Permeant Anions Control Gating of Calcium-dependent Chloride Channels. J Membr Biol 2004; 198:125-33. [PMID: 15216414 DOI: 10.1007/s00232-004-0659-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 02/13/2004] [Indexed: 10/26/2022]
Abstract
The effects of external anions (SCN(-), NO3-, I(-), Br(-), F(-), glutamate, and aspartate) on gating of Ca(2+)-dependent Cl(-) channels from rat parotid acinar cells were studied using the whole-cell configuration of the patch-clamp technique. Shifts in the reversal potential of the current induced by replacement of external Cl(-) with foreign anions, gave the following selectivity sequence based on permeability ratios ( P(x)/ P(Cl)): SCN(-)>I(-)>NO3->Br(-)>Cl(-)>F(-)>aspartate>glutamate. Using a continuum electrostatic model we calculated that this lyotropic sequence resulted from the interaction between anions and a polarizable tunnel with an effective dielectric constant of approximately 23. Our data revealed that anions with P(x)/P(Cl) > 1 accelerated activation kinetics in a voltage-independent manner and slowed deactivation kinetics. Moreover, permeant anions enhanced whole-cell conductance ( g, an index of the apparent open probability) in a voltage-dependent manner, and shifted leftward the membrane potential- g curves. All of these effects were produced by the anions with an effectiveness that followed the selectivity sequence. To explain the effects of permeant anions on activation kinetics and g(Cl) we propose that there are 2 different anion-binding sites in the channel. One site is located outside the electrical field and controls channel activation kinetics, while a second site is located within the pore and controls whole-cell conductance. Thus, interactions of permeant anions with these two sites hinder the closing mechanism and stabilize the channel in the open state.
Collapse
Affiliation(s)
- P Perez-Cornejo
- School of Medicine, Universidad Autonoma de San Luis Potosi, 78290, Mexico
| | | | | |
Collapse
|
47
|
Kidd JF, Kogan I, Bear CE. Molecular Basis for the Chloride Channel Activity of Cystic Fibrosis Transmembrane Conductance Regulator and the Consequences of Disease-Causing Mutations. Curr Top Dev Biol 2004; 60:215-49. [PMID: 15094300 DOI: 10.1016/s0070-2153(04)60007-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jackie F Kidd
- Programme in Structural Biology and Biochemistry Research Institute, Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto Canada M5G 1X8
| | | | | |
Collapse
|
48
|
Szkotak AJ, Man SFP, Duszyk M. The role of the basolateral outwardly rectifying chloride channel in human airway epithelial anion secretion. Am J Respir Cell Mol Biol 2003; 29:710-20. [PMID: 12777250 DOI: 10.1165/rcmb.2003-0109oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to characterize basolateral anion channels in Calu-3 and normal human bronchial epithelial cells, and their role in anion secretion. Patch clamp studies identified an outwardly rectifying Cl- channel (ORCC), which could be activated by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA). Short-circuit current measurements revealed that NECA activates a basolateral, but not an apical, anion conductance sensitive to 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid, and to 9-anthracenecarboxylic acid, but not to 4,4'-dinitrostilbene-2,2'-disulfonic acid. Apical membrane permeabilization studies confirmed the presence of basolateral anion channels, established their halide permeability sequence (Cl- >/= Br- >> I-), and demonstrated their outwardly rectifying nature. Experiments using H-89, forskolin, and Ht31 demonstrated that adenosine receptor dependent activation of basolateral ORCC was cAMP- and potentially A-kinase anchoring protein-dependent. Neither BAPTA-AM treatment nor basolateral Ca2+ removal had any effect on the activation of these channels. Anion replacement and 36Cl- flux studies show that Calu-3 cells primarily secrete HCO3- when stimulated with NECA, and that Cl- secretion can be stimulated by blocking basolateral ORCC, whereas normal human bronchial epithelial cells exclusively secrete Cl- under all conditions studied. We propose a novel model of anion secretion in which ORCC recycles Cl- across the basolateral membrane, allowing preferential HCO3- secretion.
Collapse
Affiliation(s)
- Artur J Szkotak
- Department of Physiology, University of Alberta, 7-46 Medical Sciences Bldg., Edmonton, Alberta, T6G 2H7 Canada
| | | | | |
Collapse
|
49
|
Ramjeesingh M, Ugwu F, Li C, Dhani S, Huan LJ, Wang Y, Bear CE. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore. Biochem J 2003; 375:633-41. [PMID: 12892562 PMCID: PMC1223717 DOI: 10.1042/bj20030774] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/18/2003] [Accepted: 08/01/2003] [Indexed: 02/07/2023]
Abstract
Structural information is required to define the molecular basis for chloride conduction through CFTR (cystic fibrosis transmembrane conductance regulator). Towards this goal, we expressed MSD2, the second of the two MSDs (membrane-spanning domains) of CFTR, encompassing residues 857-1158 in Sf9 cells using the baculovirus system. In Sf9 plasma membranes, MSD2 migrates as expected for a dimer in non-dissociative PAGE, and confers the appearance of an anion permeation pathway suggesting that dimeric MSD2 mediates anion flux. To assess directly the function and quaternary structure of MSD2, we purified it from Sf9 cells by virtue of its polyhistidine tag and nickel affinity. Reconstitution of MSD2 into liposomes conferred a 4,4'-di-isothiocyanostilbene-2,2'-disulphonate-inhibitable, chloride-selective electrodiffusion pathway. Further, this activity is probably mediated directly by MSD2 as reaction of its single cysteine residue (Cys866) with the thiol modifying reagent, N(alpha)(3-maleimidylpropionyl)biocytin, inhibited chloride flux. Only MSD2 dimers were labelled by N(alpha)(3-maleimidylpropionyl)biocytin, supporting the idea that only dimeric MSD2 can mediate anion flux. As a further test of this hypothesis, we conducted a second purification procedure, wherein purified dimeric and monomeric MSD2 proteins were reconstituted separately. Only proteoliposomes containing stable MSD2 dimers mediated chloride electrodiffusion, providing direct evidence that dimeric MSD2 mediates chloride channel function. In summary, we have shown that the second membrane domain of CFTR can be purified and functionally reconstituted as a chloride channel, providing a tool for probing the structural basis of chloride conduction through CFTR.
Collapse
Affiliation(s)
- Mohabir Ramjeesingh
- Programme in Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada M5G 1X8
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The Cystic Fibrosis Conductance Regulator (CFTR) functions as a cAMP-activated, anion-selective channel, but the structural basis for anion permeation is not well understood. Here we summarize recent studies aimed at understanding how anions move through the CFTR channel, and the nature of the environment anions experience inside the pore. From these studies it is apparent that anion permeability selectivity and anion binding selectivity of the pore are consistent with a model based on a "dielectric tunnel." The selectivity pattern for halides and pseudohalides can be predicted if it is assumed that permeant anions partition between bulk water and a polarizable space that is characterized by an effective dielectric constant of about 19. Covalent labeling of engineered cysteines and pH titration of engineered cysteines and histidines lead to the conclusion that the CFTR anion conduction path includes a positively charged outer vestibule. A residue in transmembrane segment 6 (TM6) (R334) appears to reside in the outer vestibule of the CFTR pore where it creates a positive electrostatic potential that enhances anion conduction.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Physiology/Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|