1
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
2
|
Matsumura K, Yokogawa M, Osawa M. Peptide Toxins Targeting KV Channels. Handb Exp Pharmacol 2021; 267:481-505. [PMID: 34117930 DOI: 10.1007/164_2021_500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A number of peptide toxins isolated from animals target potassium ion (K+) channels. Many of them are particularly known to inhibit voltage-gated K+ (KV) channels and are mainly classified into pore-blocking toxins or gating-modifier toxins. Pore-blocking toxins directly bind to the ion permeation pores of KV channels, thereby physically occluding them. In contrast, gating-modifier toxins bind to the voltage-sensor domains of KV channels, modulating their voltage-dependent conformational changes. These peptide toxins are useful molecular tools in revealing the structure-function relationship of KV channels and have potential for novel treatments for diseases related to KV channels. This review focuses on the inhibition mechanism of pore-blocking and gating-modifier toxins that target KV channels.
Collapse
Affiliation(s)
- Kazuki Matsumura
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
3
|
Armstrong DA, Jin AH, Braga Emidio N, Lewis RJ, Alewood PF, Rosengren KJ. Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Mar Drugs 2021; 19:md19020060. [PMID: 33530397 PMCID: PMC7912261 DOI: 10.3390/md19020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
Conotoxins are disulfide-rich peptides found in the venom of cone snails. Due to their exquisite potency and high selectivity for a wide range of voltage and ligand gated ion channels they are attractive drug leads in neuropharmacology. Recently, cone snails were found to have the capability to rapidly switch between venom types with different proteome profiles in response to predatory or defensive stimuli. A novel conotoxin, GXIA (original name G117), belonging to the I3-subfamily was identified as the major component of the predatory venom of piscivorous Conus geographus. Using 2D solution NMR spectroscopy techniques, we resolved the 3D structure for GXIA, the first structure reported for the I3-subfamily and framework XI family. The 32 amino acid peptide is comprised of eight cysteine residues with the resultant disulfide connectivity forming an ICK+1 motif. With a triple stranded β-sheet, the GXIA backbone shows striking similarity to several tarantula toxins targeting the voltage sensor of voltage gated potassium and sodium channels. Supported by an amphipathic surface, the structural evidence suggests that GXIA is able to embed in the membrane and bind to the voltage sensor domain of a putative ion channel target.
Collapse
Affiliation(s)
- David A. Armstrong
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.-H.J.); (N.B.E.); (R.J.L.); (P.F.A.)
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.-H.J.); (N.B.E.); (R.J.L.); (P.F.A.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.-H.J.); (N.B.E.); (R.J.L.); (P.F.A.)
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (A.-H.J.); (N.B.E.); (R.J.L.); (P.F.A.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence:
| |
Collapse
|
4
|
Salinas M, Kessler P, Douguet D, Sarraf D, Tonali N, Thai R, Servent D, Lingueglia E. Mambalgin-1 pain-relieving peptide locks the hinge between α4 and α5 helices to inhibit rat acid-sensing ion channel 1a. Neuropharmacology 2021; 185:108453. [PMID: 33450275 DOI: 10.1016/j.neuropharm.2021.108453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cationic channels involved in pain and other processes, underscoring the potential therapeutic value of specific inhibitors such as the three-finger toxin mambalgin-1 (Mamb-1) from snake venom. A low-resolution structure of the human-ASIC1a/Mamb-1 complex obtained by cryo-electron microscopy has been recently reported, implementing the structure of the chicken-ASIC1/Mamb-1 complex previously published. Here we combine structure-activity relationship of both the rat ASIC1a channel and the Mamb-1 toxin with a molecular dynamics simulation to obtain a detailed picture at the level of side-chain interactions of the binding of Mamb-1 on rat ASIC1a channels and of its inhibition mechanism. Fingers I and II of Mamb-1 but not the core of the toxin are required for interaction with the thumb domain of ASIC1a, and Lys-8 of finger I potentially interacts with Tyr-358 in the thumb domain. Mamb-1 does not interfere directly with the pH sensor as previously suggested, but locks by several contacts a key hinge between α4 and α5 helices in the thumb domain of ASIC1a to prevent channel opening. Our results provide an improved model of inhibition of mammalian ASIC1a channels by Mamb-1 and clues for further development of optimized ASIC blockers.
Collapse
Affiliation(s)
- Miguel Salinas
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France.
| | - Pascal Kessler
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Dominique Douguet
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Daad Sarraf
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Nicolo Tonali
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France; CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Robert Thai
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Denis Servent
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France.
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France.
| |
Collapse
|
5
|
Park BG, Peigneur S, Esaki N, Yamaguchi Y, Ryu JH, Tytgat J, Kim JI, Sato K. Solution Structure and Functional Analysis of HelaTx1: The First Toxin Member of the κ-KTx5 Subfamily. BMB Rep 2020. [PMID: 32172732 PMCID: PMC7262511 DOI: 10.5483/bmbrep.2020.53.5.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide with two disulfide bonds that shares low sequence homology with other scorpion toxins. HelaTx1 effectively decreases the amplitude of the K+ currents of voltage-gated Kv1.1 and Kv1.6 channels expressed in Xenopus oocytes, and was identified as the first toxin member of the κ-KTx5 subfamily, based on a sequence comparison and phylogenetic analysis. In the present study, we report the NMR solution structure of HelaTx1, and the major interaction points for its binding to voltage-gated Kv1.1 channels. The NMR results indicate that HelaTx1 adopts a helix-loop-helix fold linked by two disulfide bonds without any β-sheets, resembling the molecular folding of other cysteine-stabilized helix-loop-helix (Cs α/α) scorpion toxins such as κ-hefutoxin, HeTx, and OmTx, as well as conotoxin pl14a. A series of alanine-scanning analogs revealed a broad surface on the toxin molecule largely comprising positively-charged residues that is crucial for interaction with voltage- gated Kv1.1 channels. Interestingly, the functional dyad, a key molecular determinant for activity against voltage-gated potassium channels in other toxins, is not present in HelaTx1.
Collapse
Affiliation(s)
- Bong Gyu Park
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, P.O. Box 922, Leuven 3000, Belgium
| | - Nao Esaki
- Department of Environmental Sciences, Fukuoka Women’s University, Fukuoka 813-8529, Japan
| | - Yoko Yamaguchi
- Department of Environmental Sciences, Fukuoka Women’s University, Fukuoka 813-8529, Japan
| | - Jae Ha Ryu
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, P.O. Box 922, Leuven 3000, Belgium
| | - Jae Il Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Kazuki Sato
- Department of Environmental Sciences, Fukuoka Women’s University, Fukuoka 813-8529, Japan
| |
Collapse
|
6
|
Ben-Abu Y. The dynamics of K + channel gates as a biological transistor. Biophys Chem 2019; 252:106196. [PMID: 31203196 DOI: 10.1016/j.bpc.2019.106196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 11/17/2022]
Abstract
Potassium channels are pore-forming membrane proteins that open and close in response to changes in a chemical or electrical potential, thereby regulating the flow of potassium ions across biological membranes. Two regions of the same channels are acting in tandem and enable ion flow through the channel pore. I refer to this coupled action as a "gate linker". To closely examine the role of the gate linker in the channel function, I mutated the amino acids in the cDNA of this region, and used from knowen mutaion, either alone or together with the amino acids of adjacent regions. I have emphasized the importance of the linker between these two gates - mutations in this region may cause conformational changes that play a fundamental role in mediating the coupling between the voltage sensor, activation gate and selectivity filter elements of Kv channels. I observe that free energy considerations show the significance of the coupling between the activation and inactivation gates. Moreover, a symmetry between the coupling and sensor spring strength leads to the destruction of ion conductivity. I present a thermodynamic framework for the possible study of multiple channel blocks. The arising physical perspective of the gating process gives rise to new research avenues of the coupling mode of potassium channels and may assist in explaining the centrality of the "gate linker" to the channel function.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, Sderot, Hof Ashkelon, 79165, Israel.
| |
Collapse
|
7
|
Tilley DC, Angueyra JM, Eum KS, Kim H, Chao LH, Peng AW, Sack JT. The tarantula toxin GxTx detains K + channel gating charges in their resting conformation. J Gen Physiol 2018; 151:292-315. [PMID: 30397012 PMCID: PMC6400525 DOI: 10.1085/jgp.201812213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Allosteric ligands modulate protein activity by altering the energy landscape of conformational space in ligand-protein complexes. Here we investigate how ligand binding to a K+ channel's voltage sensor allosterically modulates opening of its K+-conductive pore. The tarantula venom peptide guangxitoxin-1E (GxTx) binds to the voltage sensors of the rat voltage-gated K+ (Kv) channel Kv2.1 and acts as a partial inverse agonist. When bound to GxTx, Kv2.1 activates more slowly, deactivates more rapidly, and requires more positive voltage to reach the same K+-conductance as the unbound channel. Further, activation kinetics are more sigmoidal, indicating that multiple conformational changes coupled to opening are modulated. Single-channel current amplitudes reveal that each channel opens to full conductance when GxTx is bound. Inhibition of Kv2.1 channels by GxTx results from decreased open probability due to increased occurrence of long-lived closed states; the time constant of the final pore opening step itself is not impacted by GxTx. When intracellular potential is less than 0 mV, GxTx traps the gating charges on Kv2.1's voltage sensors in their most intracellular position. Gating charges translocate at positive voltages, however, indicating that GxTx stabilizes the most intracellular conformation of the voltage sensors (their resting conformation). Kinetic modeling suggests a modulatory mechanism: GxTx reduces the probability of voltage sensors activating, giving the pore opening step less frequent opportunities to occur. This mechanism results in K+-conductance activation kinetics that are voltage-dependent, even if pore opening (the rate-limiting step) has no inherent voltage dependence. We conclude that GxTx stabilizes voltage sensors in a resting conformation, and inhibits K+ currents by limiting opportunities for the channel pore to open, but has little, if any, direct effect on the microscopic kinetics of pore opening. The impact of GxTx on channel gating suggests that Kv2.1's pore opening step does not involve movement of its voltage sensors.
Collapse
Affiliation(s)
- Drew C Tilley
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Juan M Angueyra
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Kenneth S Eum
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA.,Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Heesoo Kim
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Luke H Chao
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Anthony W Peng
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Jon T Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA .,Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
8
|
Hsieh MH, Huang PT, Liou HH, Liang PH, Chen PM, Holt SA, Yu IF, James M, Shiau YS, Lee MT, Lin TL, Lou KL. The Penetration Depth for Hanatoxin Partitioning into the Membrane Hydrocarbon Core Measured with Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9036-9046. [PMID: 29986585 DOI: 10.1021/acs.langmuir.8b01076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hanatoxin (HaTx) from spider venom works as an inhibitor of Kv2.1 channels, most likely by interacting with the voltage sensor (VS). However, the way in which this water-soluble peptide modifies the gating remains poorly understood as the VS is deeply embedded within the bilayer, although it would change its position depending on the membrane potential. To determine whether HaTx can indeed bind to the VS, the depth at which HaTx penetrates into the POPC membranes was measured with neutron reflectivity. Our results successfully demonstrate that HaTx penetrates into the membrane hydrocarbon core (∼9 Å from the membrane surface), not lying on the membrane-water interface as reported for another voltage sensor toxin (VSTx). This difference in penetration depth suggests that the two toxins fix the voltage sensors at different positions with respect to the membrane normal, thereby explaining their different inhibitory effects on the channels. In particular, results from MD simulations constrained by our penetration data clearly demonstrate an appropriate orientation for HaTx to interact with the membranes, which is in line with the biochemical information derived from stopped-flow analysis through delineation of the toxin-VS binding interface.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
| | - Po-Tsang Huang
- Institute of Biochemistry and Molecular Biology , National Taiwan University , Taipei 10051 , Taiwan
- Graduate Institute of Oral Biology , National Taiwan University , Taipei 10048 , Taiwan
| | - Horng-Huei Liou
- Division of Neurology , National Taiwan University Hospital , Taipei 10002 , Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Pei-Ming Chen
- Department of Electrical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Stephen A Holt
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC , New South Wales , Australia
| | - Isaac Furay Yu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Michael James
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC , New South Wales , Australia
- The Australian Synchrotron , 800 Blackburn Road , Clayton , Victoria 3168 , Australia
| | - Yu-Shuan Shiau
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
- Department of Physics , National Central University , Jhongli 32001 , Taiwan
| | - Tsang-Lang Lin
- Department of Engineering and System Science , National Tsing-Hua University , Hsinchu 30013 , Taiwan
| | - Kuo-Long Lou
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biochemistry and Molecular Biology , National Taiwan University , Taipei 10051 , Taiwan
- Graduate Institute of Oral Biology , National Taiwan University , Taipei 10048 , Taiwan
| |
Collapse
|
9
|
Lopez-Rodriguez A, Holmgren M. Deglycosylation of Shaker K V channels affects voltage sensing and the open-closed transition. J Gen Physiol 2018; 150:1025-1034. [PMID: 29880580 PMCID: PMC6028503 DOI: 10.1085/jgp.201711958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 02/04/2023] Open
Abstract
Voltage-gated ion channels are subject to posttranslational modification, including glycosylation. Lopez-Rodriguez and Holmgren show that, in Shaker KV channels, deglycosylation influences voltage sensing and open–closed transitions but not binding of ligands to the protein. Most membrane proteins are subject to posttranslational glycosylation, which influences protein function, folding, solubility, stability, and trafficking. This modification has been proposed to protect proteins from proteolysis and modify protein–protein interactions. Voltage-activated ion channels are heavily glycosylated, which can result in up to 30% of the mature molecular mass being contributed by glycans. Normally, the functional consequences of glycosylation are assessed by comparing the function of fully glycosylated proteins with those in which glycosylation sites have been mutated or by expressing proteins in model cells lacking glycosylation enzymes. Here, we study the functional consequences of deglycosylation by PNGase F within the same population of voltage-activated potassium (KV) channels. We find that removal of sugar moieties has a small, but direct, influence on the voltage-sensing properties and final opening–closing transition of Shaker KV channels. Yet, we observe that the interactions of various ligands with different domains of the protein are not affected by deglycosylation. These results imply that the sugar mass attached to the voltage sensor neither represents a cargo for the dynamics of this domain nor imposes obstacles to the access of interacting molecules.
Collapse
Affiliation(s)
- Angelica Lopez-Rodriguez
- Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD .,Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, México
| | - Miguel Holmgren
- Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Gilchrist J, Bosmans F. Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating. J Physiol 2018; 596:1863-1872. [PMID: 29193176 DOI: 10.1113/jp275102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated sodium (NaV ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (NaV 1.2). By doing so, we observe that in NaV 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian NaV channel complex.
Collapse
Affiliation(s)
- John Gilchrist
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Frank Bosmans
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
11
|
Lee MT. Biophysical characterization of peptide–membrane interactions. ADVANCES IN PHYSICS: X 2018. [DOI: 10.1080/23746149.2017.1408428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ming-Tao Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Central University, Jhongli, Taiwan
| |
Collapse
|
12
|
Abstract
Sack discusses the evolution of toxin research in JGP over the last 100 years. Toxins are the poisonous products of organisms. Toxins serve vital defensive and offensive functions for those that harbor them: stinging scorpions, pesticidal plants, sanguinary snakes, fearless frogs, sliming snails, noxious newts, and smarting spiders. For physiologists, toxins are integral chemical tools that hijack life’s fundamental processes with remarkable molecular specificity. Our understanding of electrophysiological phenomena has been transformed time and time again with the help of some terrifying toxins. For this reason, studies of toxin mechanism are an important and enduring facet of The Journal of General Physiology (JGP). This Milestone in Physiology reflects on toxins studied in JGP over its first 100 years, what they have taught us, and what they have yet to reveal.
Collapse
Affiliation(s)
- Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA .,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
13
|
|
14
|
Wingerd JS, Mozar CA, Ussing CA, Murali SS, Chin YKY, Cristofori-Armstrong B, Durek T, Gilchrist J, Vaughan CW, Bosmans F, Adams DJ, Lewis RJ, Alewood PF, Mobli M, Christie MJ, Rash LD. The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Sci Rep 2017; 7:974. [PMID: 28428547 PMCID: PMC5430537 DOI: 10.1038/s41598-017-01129-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a’s potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.
Collapse
Affiliation(s)
- Joshua S Wingerd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine A Mozar
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Christine A Ussing
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.,Novo Nordisk A/S, Copenhagen Area, Capital Region, Denmark
| | - Swetha S Murali
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia.,Harvard Medical School, Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, United States
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John Gilchrist
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Christopher W Vaughan
- Pain Management Research Institute, University of Sydney, St Leonards, NSW, 2006, Australia
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging & School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lachlan D Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia. .,School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia.
| |
Collapse
|
15
|
Tang C, Zhou X, Nguyen PT, Zhang Y, Hu Z, Zhang C, Yarov-Yarovoy V, DeCaen PG, Liang S, Liu Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. FASEB J 2017; 31:3167-3178. [PMID: 28400471 DOI: 10.1096/fj.201600882r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/27/2017] [Indexed: 01/18/2023]
Abstract
Voltage-gated sodium channels (NaVs) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial NaVs have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial NaVs. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic NaVs NsVBa (nonselective voltage-gated Bacillus alcalophilus) and NaChBac (bacterial sodium channel from Bacillus halodurans) (IC50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of NsVBa, whereas the local anesthetic drug lidocaine was shown to antagonize NsVBa without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of NsVBa, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of NsVBa in one of the deactivated states. In mammalian NaVs, JZTx-27 preferably inhibited the inactivation of NaV1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic NaVs. More important, we proposed that JZTx-27 stabilized the NsVBa VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of NaVs.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.
Collapse
Affiliation(s)
- Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Phuong Tran Nguyen
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA
| | - Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhaotun Hu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Changxin Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China;
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China;
| |
Collapse
|
16
|
Hsieh MH, Shiau YS, Liou HH, Jeng US, Lee MT, Lou KL. Measurement of Hanatoxin-Induced Membrane Thinning with Lamellar X-ray Diffraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2885-2889. [PMID: 28260386 DOI: 10.1021/acs.langmuir.7b00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Membrane perturbation induced by cysteine-rich peptides is a crucial biological phenomenon but scarcely investigated, in particular with effective biophysical-chemical methodologies. Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, works as an inhibitor of drk1 (Kv2.1) channels, most likely by interacting with the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage sensor was proposed to be deeply embedded within the bilayer. To see how HaTx interacts with phospholipid bilayers, we observe the toxin-induced perturbation on POPC/DOPG-membranes through measurements of the change in membrane thickness. Lamellar X-ray diffraction (LXD) was applied on stacked planar bilayers in the near-fully hydrated state. The results provide quantitative evidence for the membrane thinning in a concentration-dependent manner, leading to novel and direct combinatory approaches by discovering how to investigate such a biologically relevant interaction between gating-modifier toxins and phospholipid bilayers.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Institute of Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| | - Yu-Shuan Shiau
- Membrane Protein Research Core, Center for Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| | - Horng-Huei Liou
- Division of Neurology, National Taiwan University Hospital , Taipei 10002, Taiwan
- Institute of Pharmacology, National Taiwan University , Taipei 10051, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , Hsinchu 30076, Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center , Hsinchu 30076, Taiwan
- Department of Physics, National Central University , Jhongli 32001, Taiwan
| | - Kuo-Long Lou
- Institute of Biotechnology, National Taiwan University , Taipei 10672, Taiwan
- Membrane Protein Research Core, Center for Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| |
Collapse
|
17
|
Hanatoxin inserts into phospholipid membranes without pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:917-923. [PMID: 28143758 DOI: 10.1016/j.bbamem.2017.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022]
Abstract
Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, functions as an inhibitor of Kv2.1 channels by interacting with phospholipids prior to affecting the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage-sensor is deeply embedded within the bilayer. To determine how HaTx interacts with phospholipid bilayers, in this study, we examined the toxin-induced partitioning of liposomal membranes. HPLC-results from high-speed spin-down vesicles with HaTx demonstrated direct binding. Dynamic light scattering (DLS) and leakage assay results further indicated that neither membrane pores nor membrane fragmentations were observed in the presence of HaTx. To clarify the binding details, Langmuir trough experiments were performed with phospholipid monolayers by mimicking the external leaflet of membrane bilayers, indicating the involvement of acyl chains in such interactions between HaTx and phospholipids. Our current study thus describes the interaction pattern of HaTx with vesicle membranes, defining a membrane-partitioning mechanism for peptide insertion involving the membrane hydrocarbon core without pore formation.
Collapse
|
18
|
Tao H, Chen X, Deng M, Xiao Y, Wu Y, Liu Z, Zhou S, He Y, Liang S. Interaction site for the inhibition of tarantula Jingzhaotoxin-XI on voltage-gated potassium channel Kv2.1. Toxicon 2016; 124:8-14. [PMID: 27810559 DOI: 10.1016/j.toxicon.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/27/2023]
Abstract
Jingzhaotoxin-XI (JZTX-XI) is a 34-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom that potently inhibits both voltage-gated sodium channel Nav1.5 and voltage-gated potassium channel Kv2.1. In the present study, we further showed that JZTX-XI blocked Kv2.1 currents with the IC50 value of 0.39 ± 0.06 μM. JZTX-XI significantly shifted the current-voltage (I-V) curves and normalized conductance-voltage (G-V) curves of Kv2.1 channel to more depolarized voltages. Ala-scanning mutagenesis analyses demonstrated that mutants I273A, F274A, and E277A reduced toxin binding affinity by 10-, 16-, and 18-fold, respectively, suggesting that three common residues (I273, F274, E277) in the Kv2.1 S3b segment contribute to the formation of JZTX-XI receptor site, and the acidic residue Glu at the position 277 in Kv2.1 is the most important residue for JZTX-XI sensitivity. A single replacement of E277 with Asp(D) increased toxin inhibitory activity. These results establish that JZTX-XI inhibits Kv2.1 activation by trapping the voltage sensor in the rested state through a similar mechanism to that of HaTx1, but these two toxins have small differences in the most crucial molecular determinant. Furthermore, the in-depth investigation of the subtle differences in molecular determinants may be useful for increasing our understanding of the molecular details regarding toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yucheng Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Sainan Zhou
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yingchun He
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
19
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
20
|
Salari A, Vega BS, Milescu LS, Milescu M. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels. Sci Rep 2016; 6:23894. [PMID: 27045173 PMCID: PMC4820701 DOI: 10.1038/srep23894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 01/26/2023] Open
Abstract
Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning.
Collapse
Affiliation(s)
- Autoosa Salari
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| | - Benjamin S Vega
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| | - Lorin S Milescu
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| | - Mirela Milescu
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| |
Collapse
|
21
|
Kopljar I, Grottesi A, de Block T, Rainier JD, Tytgat J, Labro AJ, Snyders DJ. Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels. Neuropharmacology 2016; 107:160-167. [PMID: 26956727 DOI: 10.1016/j.neuropharm.2016.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/13/2016] [Accepted: 03/04/2016] [Indexed: 01/02/2023]
Abstract
Marine ladder-shaped polyether toxins are implicated in neurological symptoms of fish-borne food poisonings. The toxin gambierol, produced by the marine dinoflagellate Gambierdiscus toxicus, belongs to the group of ladder-shaped polyether toxins and inhibits Kv3.1 channels with nanomolar affinity through a mechanism of gating modification. Binding determinants for gambierol localize at the lipid-exposed interface of the pore forming S5 and S6 segments, suggesting that gambierol binds outside of the permeation pathway. To explore a possible involvement of the voltage-sensing domain (VSD), we made different chimeric channels between Kv3.1 and Kv2.1, exchanging distinct parts of the gating machinery. Our results showed that neither the electro-mechanical coupling nor the S1-S3a region of the VSD affect gambierol sensitivity. In contrast, the S3b-S4 part of the VSD (paddle motif) decreased gambierol sensitivity in Kv3.1 more than 100-fold. Structure determination by homology modeling indicated that the position of the S3b-S4 paddle and its primary structure defines the shape and∖or the accessibility of the binding site for gambierol, explaining the observed differences in gambierol affinity between the channel chimeras. Furthermore, these findings explain the observed difference in gambierol affinity for the closed and open channel configurations of Kv3.1, opening new possibilities for exploring the VSDs as selectivity determinants in drug design.
Collapse
Affiliation(s)
- Ivan Kopljar
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | | | - Tessa de Block
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | - Jon D Rainier
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Alain J Labro
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
22
|
Martin-Eauclaire MF, Ferracci G, Bosmans F, Bougis PE. A surface plasmon resonance approach to monitor toxin interactions with an isolated voltage-gated sodium channel paddle motif. ACTA ACUST UNITED AC 2015; 145:155-62. [PMID: 25624450 PMCID: PMC4306711 DOI: 10.1085/jgp.201411268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The isolated Nav channel domain IV paddle motif remains susceptible to toxins that inhibit fast inactivation. Animal toxins that inhibit voltage-gated sodium (Nav) channel fast inactivation can do so through an interaction with the S3b–S4 helix-turn-helix region, or paddle motif, located in the domain IV voltage sensor. Here, we used surface plasmon resonance (SPR), an optical approach that uses polarized light to measure the refractive index near a sensor surface to which a molecule of interest is attached, to analyze interactions between the isolated domain IV paddle and Nav channel–selective α-scorpion toxins. Our SPR analyses showed that the domain IV paddle can be removed from the Nav channel and immobilized on sensor chips, and suggest that the isolated motif remains susceptible to animal toxins that target the domain IV voltage sensor. As such, our results uncover the inherent pharmacological sensitivities of the isolated domain IV paddle motif, which may be exploited to develop a label-free SPR approach for discovering ligands that target this region.
Collapse
Affiliation(s)
- Marie-France Martin-Eauclaire
- Centre National de la Recherche Scientifique, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseillle, Unité Mixte de Recherche 7286, Plates-Formes de Recherche en Neurosciences-Centre d'Analyse Protéomique de Marseille, Aix Marseille Université, 13344 Marseille, France
| | - Géraldine Ferracci
- Centre National de la Recherche Scientifique, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseillle, Unité Mixte de Recherche 7286, Plates-Formes de Recherche en Neurosciences-Centre d'Analyse Protéomique de Marseille, Aix Marseille Université, 13344 Marseille, France
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Pierre E Bougis
- Centre National de la Recherche Scientifique, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseillle, Unité Mixte de Recherche 7286, Plates-Formes de Recherche en Neurosciences-Centre d'Analyse Protéomique de Marseille, Aix Marseille Université, 13344 Marseille, France
| |
Collapse
|
23
|
Gupta K, Zamanian M, Bae C, Milescu M, Krepkiy D, Tilley DC, Sack JT, Yarov-Yarovoy V, Kim JI, Swartz KJ. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels. eLife 2015; 4:e06774. [PMID: 25948544 PMCID: PMC4423116 DOI: 10.7554/elife.06774] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/14/2022] Open
Abstract
Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.
Collapse
Affiliation(s)
- Kanchan Gupta
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Maryam Zamanian
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Mirela Milescu
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
- Biology Division, University of Missouri, Columbia, United States
| | - Dmitriy Krepkiy
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Drew C Tilley
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Jae Il Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
24
|
Structural interactions of a voltage sensor toxin with lipid membranes. Proc Natl Acad Sci U S A 2014; 111:E5463-70. [PMID: 25453087 DOI: 10.1073/pnas.1415324111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.
Collapse
|
25
|
Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells. Proc Natl Acad Sci U S A 2014; 111:E4789-96. [PMID: 25331865 DOI: 10.1073/pnas.1406876111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling.
Collapse
|
26
|
Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F. From foe to friend: using animal toxins to investigate ion channel function. J Mol Biol 2014; 427:158-175. [PMID: 25088688 DOI: 10.1016/j.jmb.2014.07.027] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/19/2022]
Abstract
Ion channels are vital contributors to cellular communication in a wide range of organisms, a distinct feature that renders this ubiquitous family of membrane-spanning proteins a prime target for toxins found in animal venom. For many years, the unique properties of these naturally occurring molecules have enabled researchers to probe the structural and functional features of ion channels and to define their physiological roles in normal and diseased tissues. To illustrate their considerable impact on the ion channel field, this review will highlight fundamental insights into toxin-channel interactions and recently developed toxin screening methods and practical applications of engineered toxins.
Collapse
Affiliation(s)
- Jeet Kalia
- Indian Institute of Science Education and Research Pune; Pune, Maharashtra 411 008 India
| | - Mirela Milescu
- Division of Biological Sciences; University of Missouri, Columbia, MO 65211 USA
| | - Juan Salvatierra
- Department of Physiology; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA
| | - Jordan Wagner
- Department of Physiology; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA
| | - Julie K Klint
- Institute for Molecular Bioscience; The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F King
- Institute for Molecular Bioscience; The University of Queensland, St. Lucia, QLD 4072 Australia
| | | | - Frank Bosmans
- Department of Physiology; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA.,Solomon H. Snyder Department of Neuroscience; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
27
|
Tao H, Chen JJ, Xiao YC, Wu YY, Su HB, Li D, Wang HY, Deng MC, Wang MC, Liu ZH, Liang SP. Analysis of the Interaction of Tarantula Toxin Jingzhaotoxin-III (β-TRTX-Cj1α) with the Voltage Sensor of Kv2.1 Uncovers the Molecular Basis for Cross-Activities on Kv2.1 and Nav1.5 Channels. Biochemistry 2013; 52:7439-48. [DOI: 10.1021/bi4006418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Huai Tao
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- Department
of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jin J. Chen
- College
of Biology Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yu C. Xiao
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Y. Wu
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Hai B Su
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Dan Li
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Heng Y. Wang
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mei C. Deng
- Department
of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013, China
| | - Mei C. Wang
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhong H. Liu
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Song P. Liang
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
28
|
Milescu M, Lee HC, Bae CH, Kim JI, Swartz KJ. Opening the shaker K+ channel with hanatoxin. ACTA ACUST UNITED AC 2013; 141:203-16. [PMID: 23359283 PMCID: PMC3557313 DOI: 10.1085/jgp.201210914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1–S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1–S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance–voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin–channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance–voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b–S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin–channel interface determine whether a toxin is an inhibitor or opener.
Collapse
Affiliation(s)
- Mirela Milescu
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Min JW, Liu WH, He XH, Peng BW. Different types of toxins targeting TRPV1 in pain. Toxicon 2013; 71:66-75. [PMID: 23732125 DOI: 10.1016/j.toxicon.2013.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
Abstract
The transient receptor potential vanilloid 1(TRPV1) channels are members of the transient receptor potential (TRP) superfamily. Members of this family are expressed in primary sensory neurons and are best known for their role in nociception and sensory transmission. Multiple painful stimuli can activate these channels. In this review, we discussed the mechanisms of different types of venoms that target TRPV1, such as scorpion venom, botulinum neurotoxin, spider toxin, ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning (NSP). Some of these toxins activate TRPV1; however, some do not. Regardless of TRPV1 inhibition or activation, they occur through different pathways. For example, BoNT/A decreases TRPV1 expression levels by blocking TRPV1 trafficking to the plasma membrane, although the exact mechanism is still under debate. Vanillotoxins from tarantula (Psalmopoeus cambridgei) are proposed to activate TRPV1 via interaction with a region of TRPV1 that is homologous to voltage-dependent ion channels. Here, we offer a description of the present state of knowledge for this complex subject.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, PR China
| | | | | | | |
Collapse
|
30
|
Gordon D, Chen R, Chung SH. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Rev 2013; 93:767-802. [PMID: 23589832 PMCID: PMC3768100 DOI: 10.1152/physrev.00035.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field.
Collapse
Affiliation(s)
- Dan Gordon
- Research School of Biology, The Australian National University, Acton, ACT 0200, Australia.
| | | | | |
Collapse
|
31
|
Binding of hanatoxin to the voltage sensor of Kv2.1. Toxins (Basel) 2012; 4:1552-64. [PMID: 23250329 PMCID: PMC3528262 DOI: 10.3390/toxins4121552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
Hanatoxin 1 (HaTx1) is a polypeptide toxin isolated from spider venoms. HaTx1 inhibits the voltage-gated potassium channel kv2.1 potently with nanomolar affinities. Its receptor site has been shown to contain the S3b-S4a paddle of the voltage sensor (VS). Here, the binding of HaTx1 to the VSs of human Kv2.1 in the open and resting states are examined using a molecular docking method and molecular dynamics. Molecular docking calculations predict two distinct binding modes for the VS in the resting state. In the two binding modes, the toxin binds the S3b-S4a from S2 and S3 helices, or from S1 and S4 helices. Both modes are found to be stable when embedded in a lipid bilayer. Only the mode in which the toxin binds the S3b-S4a paddle from S2 and S3 helices is consistent with mutagenesis experiments, and considered to be correct. The toxin is then docked to the VS in the open state, and the toxin-VS interactions are found to be less favorable. Computational mutagenesis calculations performed on F278R and E281K mutant VSs show that the mutations may reduce toxin binding affinity by weakening the non-bonded interactions between the toxin and the VS. Overall, our calculations reproduce a wide range of experimental data, and suggest that HaTx1 binds to the S3b-S4a paddle of Kv2.1 from S2 and S3 helices.
Collapse
|
32
|
Molecular determinants for the tarantula toxin jingzhaotoxin-I interacting with potassium channel Kv2.1. Toxicon 2012; 63:129-36. [PMID: 23246579 DOI: 10.1016/j.toxicon.2012.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/01/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
With high binding affinity and distinct pharmacological functions, animal toxins are powerful ligands to investigate the structure-function relationships of voltage-gated ion channels. Jingzhaotoxin-I (JZTX-I) is an important neurotoxin from the tarantula Chilobrachys jingzhao venom that inhibits both sodium and potassium channels. In our previous work, JZTX-I, as a gating modifier, is able to inhibit activation of the potassium channel subtype Kv2.1. However, its binding site on Kv2.1 remains unknown. In this study, using Ala-scanning mutagenesis strategy, we demonstrated that four residues (I273, F274, E277, and K280) in S3b-S4 motif contributed to the formation of JZTX-I binding site. The mutations I273A, F274A, E277A, and K280A reduced toxin binding affinity by 6-, 10-, 8-, and 7-fold, respectively. Taken together with our previous data that JZTX-I accelerated channel deactivation, these results suggest that JZTX-I inhibits Kv2.1 activation by docking onto the voltage sensor paddle and trapping the voltage sensor in the closed state.
Collapse
|
33
|
The free energy barrier for arginine gating charge translation is altered by mutations in the voltage sensor domain. PLoS One 2012; 7:e45880. [PMID: 23094020 PMCID: PMC3477161 DOI: 10.1371/journal.pone.0045880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/22/2012] [Indexed: 11/22/2022] Open
Abstract
The gating of voltage-gated ion channels is controlled by the arginine-rich S4 helix of the voltage-sensor domain moving in response to an external potential. Recent studies have suggested that S4 moves in three to four steps to open the conducting pore, thus visiting several intermediate conformations during gating. However, the exact conformational changes are not known in detail. For instance, it has been suggested that there is a local rotation in the helix corresponding to short segments of a 3-helix moving along S4 during opening and closing. Here, we have explored the energetics of the transition between the fully open state (based on the X-ray structure) and the first intermediate state towards channel closing (C), modeled from experimental constraints. We show that conformations within 3 Å of the X-ray structure are obtained in simulations starting from the C model, and directly observe the previously suggested sliding 3-helix region in S4. Through systematic free energy calculations, we show that the C state is a stable intermediate conformation and determine free energy profiles for moving between the states without constraints. Mutations indicate several residues in a narrow hydrophobic band in the voltage sensor contribute to the barrier between the open and C states, with F233 in the S2 helix having the largest influence. Substitution for smaller amino acids reduces the transition cost, while introduction of a larger ring increases it, largely confirming experimental activation shift results. There is a systematic correlation between the local aromatic ring rotation, the arginine barrier crossing, and the corresponding relative free energy. In particular, it appears to be more advantageous for the F233 side chain to rotate towards the extracellular side when arginines cross the hydrophobic region.
Collapse
|
34
|
Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA. Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels. J Biol Chem 2012; 287:30719-28. [PMID: 22761417 DOI: 10.1074/jbc.m112.370742] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIV(E15A). Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on Na(V) channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on Na(V) channels acts synergistically to modify channel gating and paralyze prey.
Collapse
Affiliation(s)
- Joel Z Zhang
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee CW, Bae C, Lee J, Ryu JH, Kim HH, Kohno T, Swartz KJ, Kim JI. Solution structure of kurtoxin: a gating modifier selective for Cav3 voltage-gated Ca(2+) channels. Biochemistry 2012; 51:1862-73. [PMID: 22329781 PMCID: PMC3295331 DOI: 10.1021/bi201633j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kurtoxin is a 63-amino acid polypeptide isolated from the venom of the South African scorpion Parabuthus transvaalicus. It is the first and only peptide ligand known to interact with Cav3 (T-type) voltage-gated Ca(2+) channels with high affinity and to modify the voltage-dependent gating of these channels. Here we describe the nuclear magnetic resonance (NMR) solution structure of kurtoxin determined using two- and three-dimensional NMR spectroscopy with dynamical simulated annealing calculations. The molecular structure of the toxin was highly similar to those of scorpion α-toxins and contained an α-helix, three β-strands, and several turns stabilized by four disulfide bonds. This so-called "cysteine-stabilized α-helix and β-sheet (CSαβ)" motif is found in a number of functionally varied small proteins. A detailed comparison of the backbone structure of kurtoxin with those of the scorpion α-toxins revealed that three regions [first long loop (Asp(8)-Ile(15)), β-hairpin loop (Gly(39)-Leu(42)), and C-terminal segment (Arg(57)-Ala(63))] in kurtoxin significantly differ from the corresponding regions in scorpion α-toxins, suggesting that these regions may be important for interacting with Cav3 (T-type) Ca(2+) channels. In addition, the surface profile of kurtoxin shows a larger and more focused electropositive patch along with a larger hydrophobic surface compared to those seen on scorpion α-toxins. These distinct surface properties of kurtoxin could explain its binding to Cav3 (T-type) voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Chul Won Lee
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuan C, Liu Z, Hu W, Gao T, Liang S. JZTX-XIII, a Kv channel gating modifier toxin from Chinese tarantula Chilobrachys jingzhao. Toxicon 2012; 59:265-71. [DOI: 10.1016/j.toxicon.2011.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/22/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
37
|
Palmitoylation influences the function and pharmacology of sodium channels. Proc Natl Acad Sci U S A 2011; 108:20213-8. [PMID: 22123950 DOI: 10.1073/pnas.1108497108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Palmitoylation is a common lipid modification known to regulate the functional properties of various proteins and is a vital step in the biosynthesis of voltage-activated sodium (Nav) channels. We discovered a mutation in an intracellular loop of rNav1.2a (G1079C), which results in a higher apparent affinity for externally applied PaurTx3 and ProTx-II, two voltage sensor toxins isolated from tarantula venom. To explore whether palmitoylation of the introduced cysteine underlies this observation, we compared channel susceptibility to a range of animal toxins in the absence and presence of 2-Br-palmitate, a palmitate analog that prevents palmitate incorporation into proteins, and found that palmitoylation contributes to the increased affinity of PaurTx3 and ProTx-II for G1079C. Further investigations with 2-Br-palmitate revealed that palmitoylation can regulate the gating and pharmacology of wild-type (wt) rNav1.2a. To identify rNav1.2a palmitoylation sites contributing to these phenomena, we substituted three endogenous cysteines predicted to be palmitoylated and found that the gating behavior of this triple cysteine mutant is similar to wt rNav1.2a treated with 2-Br-palmitate. As with chemically depalmitoylated rNav1.2a channels, this mutant also exhibits an increased susceptibility for PaurTx3. Additional mutagenesis experiments showed that palmitoylation of one cysteine in particular (C1182) primarily influences PaurTx3 sensitivity and may enhance the inactivation process of wt rNav1.2a. Overall, our results demonstrate that lipid modifications are capable of altering the gating and pharmacological properties of rNav1.2a.
Collapse
|
38
|
Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 2011; 108:15426-31. [PMID: 21876146 DOI: 10.1073/pnas.1112320108] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The α-scorpions toxins bind to the resting state of Na(+) channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ~73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na(+) channels and reveals its mode of interaction with a gating modifier toxin.
Collapse
|
39
|
Bosmans F, Puopolo M, Martin-Eauclaire MF, Bean BP, Swartz KJ. Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. ACTA ACUST UNITED AC 2011; 138:59-72. [PMID: 21670206 PMCID: PMC3135324 DOI: 10.1085/jgp.201110614] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The voltage-activated sodium (Nav) channel Nav1.9 is expressed in dorsal root ganglion (DRG) neurons where it is believed to play an important role in nociception. Progress in revealing the functional properties and pharmacological sensitivities of this non-canonical Nav channel has been slow because attempts to express this channel in a heterologous expression system have been unsuccessful. Here, we use a protein engineering approach to dissect the contributions of the four Nav1.9 voltage sensors to channel function and pharmacology. We define individual S3b–S4 paddle motifs within each voltage sensor, and show that they can sense changes in membrane voltage and drive voltage sensor activation when transplanted into voltage-activated potassium channels. We also find that the paddle motifs in Nav1.9 are targeted by animal toxins, and that these toxins alter Nav1.9-mediated currents in DRG neurons. Our results demonstrate that slowly activating and inactivating Nav1.9 channels have functional and pharmacological properties in common with canonical Nav channels, but also show distinctive pharmacological sensitivities that can potentially be exploited for developing novel treatments for pain.
Collapse
Affiliation(s)
- Frank Bosmans
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. Frank.Bosmans@-nih.gov
| | | | | | | | | |
Collapse
|
40
|
Jung HH, Jung HJ, Milescu M, Lee CW, Lee S, Lee JY, Eu YJ, Kim HH, Swartz KJ, Kim JI. Structure and orientation of a voltage-sensor toxin in lipid membranes. Biophys J 2010; 99:638-46. [PMID: 20643084 DOI: 10.1016/j.bpj.2010.04.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022] Open
Abstract
Amphipathic protein toxins from tarantula venom inhibit voltage-activated potassium (Kv) channels by binding to a critical helix-turn-helix motif termed the voltage sensor paddle. Although these toxins partition into membranes to bind the paddle motif, their structure and orientation within the membrane are unknown. We investigated the interaction of a tarantula toxin named SGTx with membranes using both fluorescence and NMR spectroscopy. Depth-dependent fluorescence-quenching experiments with brominated lipids suggest that Trp30 in SGTx is positioned approximately 9 A from the center of the bilayer. NMR spectra reveal that the inhibitor cystine knot structure of the toxin does not radically change upon membrane partitioning. Transferred cross-saturation NMR experiments indicate that the toxin's hydrophobic protrusion contacts the hydrophobic core of the membrane, whereas most surrounding polar residues remain at interfacial regions of the bilayer. The inferred orientation of the toxin reveals a twofold symmetry in the arrangement of basic and hydrophobic residues, a feature that is conserved among tarantula toxins. These results have important implications for regions of the toxin involved in recognizing membranes and voltage-sensor paddles, and for the mechanisms by which tarantula toxins alter the activity of different types of ion channels.
Collapse
Affiliation(s)
- Hyun Ho Jung
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schow EV, Freites JA, Gogna K, White SH, Tobias DJ. Down-state model of the voltage-sensing domain of a potassium channel. Biophys J 2010; 98:2857-66. [PMID: 20550898 DOI: 10.1016/j.bpj.2010.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/14/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022] Open
Abstract
Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structure of the down state, we used a set of experiment-based restraints to generate a model of the down state of the KvAP VSD using molecular-dynamics simulations of the VSD in a lipid bilayer in excess water. The equilibrated VSD configuration is consistent with the biotin-avidin accessibility and internal salt-bridge data used to generate it, and with additional biotin-avidin accessibility data. In the model, both the S3b and S4 segments are displaced approximately 10 A toward the intracellular side with respect to the up-state configuration, but they do not move as a rigid body. Arginine side chains that carry the majority of the gating charge also make large excursions between the up and down states. In both states, arginines interact with water and participate in salt bridges with acidic residues and lipid phosphate groups. An important feature that emerges from the down-state model is that the N-terminal half of the S4 segment adopts a 3(10)-helical conformation, which appears to be necessary to satisfy a complex salt-bridge network.
Collapse
Affiliation(s)
- Eric V Schow
- Department of Physics and Astronomy, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
42
|
Xu Y, Ramu Y, Lu Z. A shaker K+ channel with a miniature engineered voltage sensor. Cell 2010; 142:580-9. [PMID: 20691466 DOI: 10.1016/j.cell.2010.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/06/2010] [Accepted: 06/15/2010] [Indexed: 11/17/2022]
Abstract
Voltage-gated ion channels sense transmembrane voltage changes via a paddle-shaped motif that includes the C-terminal part of the third transmembrane segment (S3b) and the N-terminal part of the fourth segment ((NT)S4) that harbors voltage-sensing arginines. Here, we find that residue triplets in S3b and (NT)S4 can be deleted individually, or even in some combinations, without compromising the channels' basic voltage-gating capability. Thus, a high degree of complementarity between these S3b and (NT)S4 regions is not required for basic voltage gating per se. Remarkably, the voltage-gated Shaker K(+) channel remains voltage gated after a 43 residue paddle sequence is replaced by a glycine triplet. Therefore, the paddle motif comprises a minimal core that suffices to confer voltage gating in the physiological voltage range, and a larger, modulatory part. Our study also shows that the hydrophobic residues between the voltage-sensing arginines help set the sensor's characteristic chemical equilibrium between activated and deactivated states.
Collapse
Affiliation(s)
- Yanping Xu
- Department of Physiology, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Lee S, Milescu M, Jung HH, Lee JY, Bae CH, Lee CW, Kim HH, Swartz KJ, Kim JI. Solution structure of GxTX-1E, a high-affinity tarantula toxin interacting with voltage sensors in Kv2.1 potassium channels . Biochemistry 2010; 49:5134-42. [PMID: 20509680 DOI: 10.1021/bi100246u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GxTX-1E is a neurotoxin recently isolated from Plesiophrictus guangxiensis venom that inhibits the Kv2.1 channel in pancreatic beta-cells. The sequence of the toxin is related to those of previously studied tarantula toxins that interact with the voltage sensors in Kv channels, and GxTX-1E interacts with the Kv2.1 channel with unusually high affinity, making it particularly useful for structural and mechanistic studies. Here we determined the three-dimensional solution structure of GxTX-1E using NMR spectroscopy and compared it to that of several related tarantula toxins. The molecular structure of GxTX-1E is similar to those of tarantula toxins that target voltage sensors in Kv channels in that it contains an ICK motif, composed of beta-strands, and contains a prominent cluster of solvent-exposed hydrophobic residues surrounded by polar residues. When compared with the structure of SGTx1, a toxin for which mutagenesis data are available, the residue compositions of the two toxins are distinct in regions that are critical for activity, suggesting that their modes of binding to voltage sensors may be different. Interestingly, the structural architecture of GxTX-1E is also similar to that of JZTX-III, a tarantula toxin that interacts with Kv2.1 with low affinity. The most striking structural differences between GxTX-1E and JZTX-III are found in the orientation between the first and second cysteine loops and the C-terminal region of the toxins, suggesting that these regions of GxTX-1E are responsible for its high affinity.
Collapse
Affiliation(s)
- Seungkyu Lee
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Edgerton GB, Blumenthal KM, Hanck DA. Inhibition of the activation pathway of the T-type calcium channel Ca(V)3.1 by ProTxII. Toxicon 2010; 56:624-36. [PMID: 20600227 DOI: 10.1016/j.toxicon.2010.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/12/2010] [Accepted: 06/15/2010] [Indexed: 11/18/2022]
Abstract
Toxins have been used extensively to probe the gating mechanisms of voltage-gated ion channels. Relatively few such tools are available to study the low-voltage activated T-type Ca channels, which underlie thalamic neuron firing and affect sleep, resistance to seizures, and weight gain. Here we show that ProTxII, a peptide toxin recently isolated from the venom of the tarantula spider Thrixopelma pruriens, dose-dependently inhibited Ca(V)3.1 causing a decrease in current (81.6% +/- 3.1% at -30 mV in 5 microM toxin) and a positive shift in the voltage range of activation (+34.5 mV +/- 4.4 mV). Toxin-modified currents were slower to activate and faster to deactivate and they displayed a longer lag in the onset of current, i.e. the Cole-Moore shift, consistent with the inhibition of gating transitions along the activation pathway, particularly the final opening transition. Single-channel current amplitude and total gating charge were unaffected by toxin, ruling out a change in ion flux or channel dropout as mechanisms for the decrease in macroscopic conductance. A positive shift in the voltage range of gating charge movement (+30.6 mV +/- 2.6 mV shift in the voltage of half maximal charge movement in the presence of 5 microM toxin) confirmed that ProTxII-induced gating perturbations in this channel occur at the level of the voltage sensors, and kinetic modeling based on these findings suggested that reductions in current magnitude could be largely accounted for by kinetic perturbations of activation.
Collapse
Affiliation(s)
- Gabrielle B Edgerton
- Committee on Neurobiology, University of Chicago, 5841 S. Maryland Avenue, MC6094, Chicago, IL 60637, USA
| | | | | |
Collapse
|
45
|
A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 2010; 141:834-45. [PMID: 20510930 DOI: 10.1016/j.cell.2010.03.052] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/12/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
Toxins have evolved to target regions of membrane ion channels that underlie ligand binding, gating, or ion permeation, and have thus served as invaluable tools for probing channel structure and function. Here, we describe a peptide toxin from the Earth Tiger tarantula that selectively and irreversibly activates the capsaicin- and heat-sensitive channel, TRPV1. This high-avidity interaction derives from a unique tandem repeat structure of the toxin that endows it with an antibody-like bivalency. The "double-knot" toxin traps TRPV1 in the open state by interacting with residues in the presumptive pore-forming region of the channel, highlighting the importance of conformational changes in the outer pore region of TRP channels during activation.
Collapse
|
46
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
47
|
Ohkubo T, Yamazaki J, Kitamura K. Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ Channels Cav3.1 and Cav3.2. J Pharmacol Sci 2010; 112:452-8. [PMID: 20351484 DOI: 10.1254/jphs.09356fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
ProTx-I peptide, a venom toxin of the tarantula Thrixopelma pruriens, has been reported to interact with voltage-gated ion channels. ProTx-I reduced Ba(2+) currents through recombinant human T-type voltage-gated Ca(2+) channels, Ca(v)3.1 (hCa(v)3.1), with roughly 160-fold more potency than through hCa(v)3.2 channels. Chimeric channel proteins (hCa(v)3.1/S3S4 and hCa(v)3.2/S3S4) were produced by exchanging fourteen amino acids in the hCa(v)3.1 domain IV S3-S4 linker region and the corresponding region of hCa(v)3.2 between each other. The ProTx-I sensitivity was markedly reduced in the hCa(v)3.1/S3S4 chimera as compared to the original hCa(v)3.1 channel, while the hCa(v)3.2/S3S4 chimera exhibited greater ProTx-I sensitivity than the original hCa(v)3.2 channel. These results suggest that the domain IV S3-S4 linker in the hCa(v)3.1 channel may contain residues involved in the interaction of ProTx-I with T-type Ca(2+) channels.
Collapse
Affiliation(s)
- Tsuyako Ohkubo
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Japan.
| | | | | |
Collapse
|
48
|
Petricevich VL. Scorpion venom and the inflammatory response. Mediators Inflamm 2010; 2010:903295. [PMID: 20300540 PMCID: PMC2838227 DOI: 10.1155/2010/903295] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 01/04/2010] [Indexed: 02/06/2023] Open
Abstract
Scorpion venoms consist of a complex of several toxins that exhibit a wide range of biological properties and actions, as well as chemical compositions, toxicity, and pharmacokinetic and pharmacodynamic characteristics. These venoms are associated with high morbility and mortality, especially among children. Victims of envenoming by a scorpion suffer a variety of pathologies, involving mainly both sympathetic and parasympathetic stimulation as well as central manifestations such as irritability, hyperthermia, vomiting, profuse salivation, tremor, and convulsion. The clinical signs and symptoms observed in humans and experimental animals are related with an excessive systemic host inflammatory response to stings and stings, respectively. Although the pathophysiology of envenomation is complex and not yet fully understood, venom and immune responses are known to trigger the release of inflammatory mediators that are largely mediated by cytokines. In models of severe systemic inflammation produced by injection of high doses of venom or venoms products, the increase in production of proinflammatory cytokines significantly contributes to immunological imbalance, multiple organ dysfunction and death. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and also physiological events in the host such as activation of vasodilatation, hypotension, and increased of vessel permeability.
Collapse
Affiliation(s)
- Vera L Petricevich
- Laboratorio de Inflamación y Toxicología, Facultad de Medicina de la Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
49
|
Targeting voltage sensors in sodium channels with spider toxins. Trends Pharmacol Sci 2010; 31:175-82. [PMID: 20097434 DOI: 10.1016/j.tips.2009.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 12/19/2022]
Abstract
Voltage-activated sodium (Nav) channels are essential in generating and propagating nerve impulses, placing them amongst the most widely targeted ion channels by toxins from venomous organisms. An increasing number of spider toxins have been shown to interfere with the voltage-driven activation process of mammalian Nav channels, possibly by interacting with one or more of their voltage sensors. This review focuses on our existing knowledge of the mechanism by which spider toxins affect Nav channel gating and the possible applications of these toxins in the drug discovery process.
Collapse
|
50
|
Kang HW, Vitko I, Lee SS, Perez-Reyes E, Lee JH. Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels. J Biol Chem 2009; 285:3271-81. [PMID: 19940152 DOI: 10.1074/jbc.m109.067660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(v)3.2 T-type channels contain a high affinity metal binding site for trace metals such as copper and zinc. This site is occupied at physiologically relevant concentrations of these metals, leading to decreased channel activity and pain transmission. A histidine at position 191 was recently identified as a critical determinant for both trace metal block of Ca(v)3.2 and modulation by redox agents. His(191) is found on the extracellular face of the Ca(v)3.2 channel on the IS3-S4 linker and is not conserved in other Ca(v)3 channels. Mutation of the corresponding residue in Ca(v)3.1 to histidine, Gln(172), significantly enhances trace metal inhibition, but not to the level observed in wild-type Ca(v)3.2, implying that other residues also contribute to the metal binding site. The goal of the present study is to identify these other residues using a series of chimeric channels. The key findings of the study are that the metal binding site is composed of a Asp-Gly-His motif in IS3-S4 and a second aspartate residue in IS2. These results suggest that metal binding stabilizes the closed conformation of the voltage-sensor paddle in repeat I, and thereby inhibits channel opening. These studies provide insight into the structure of T-type channels, and identify an extracellular motif that could be targeted for drug development.
Collapse
Affiliation(s)
- Ho-Won Kang
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | | | | | | | | |
Collapse
|