1
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
2
|
Abstract
We investigated the effect of combined inhibition of oxidative and glycolytic metabolism on L-type Ca(2+) channels (LCCs) and Ca(2+) spikes in isolated patch-clamped rabbit ventricular myocytes. Metabolic inhibition (MI) reduced LCC open probability, increased null probability, increased first latency, and decreased open time but left conductance unchanged. These results explain the reduction in macroscopic Ca(2+) current observed during MI. MI also produced a gradual reduction in action potential duration at 90% repolarization (APD(90)), a clear decline in spike probability, and an increase in spike latency and variance. These effects are consistent with the changes we observed in LCC activity. MI had no effect on the amplitude or time to peak of Ca(2+) spikes until APD(90) reached 10% of control, suggesting preserved sarcoplasmic reticulum Ca(2+) stores and ryanodine receptor (RyR) conductance in those couplons that remained functioning. Ca(2+) spikes disappeared completely when APD(90) reached <2% of control, although in two cells, spikes were reactivated in a highly synchronized fashion by very short action potentials. This reactivation is probably due to the increased driving force for Ca(2+) entry through a reduced number of LCCs that remain open during early repolarization. The enlarged single channel flux produced by rapid repolarization is apparently sufficient to trigger RyRs whose Ca(2+) sensitivity is likely reduced by MI. We suggest that loss of coupling fidelity during MI is explained by loss of LCC activity (possibly mediated by Ca(2+)-calmodulin kinase II activity). In addition, the results are consistent with loss of RyR activity, which can be mitigated under conditions likely to enlarge the trigger.
Collapse
|
3
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
4
|
Rosales RA, Fill M, Escobar AL. Calcium regulation of single ryanodine receptor channel gating analyzed using HMM/MCMC statistical methods. ACTA ACUST UNITED AC 2004; 123:533-53. [PMID: 15111644 PMCID: PMC2234502 DOI: 10.1085/jgp.200308868] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type-II ryanodine receptor channels (RYRs) play a fundamental role in intracellular Ca2+ dynamics in heart. The processes of activation, inactivation, and regulation of these channels have been the subject of intensive research and the focus of recent debates. Typically, approaches to understand these processes involve statistical analysis of single RYRs, involving signal restoration, model estimation, and selection. These tasks are usually performed by following rather phenomenological criteria that turn models into self-fulfilling prophecies. Here, a thorough statistical treatment is applied by modeling single RYRs using aggregated hidden Markov models. Inferences are made using Bayesian statistics and stochastic search methods known as Markov chain Monte Carlo. These methods allow extension of the temporal resolution of the analysis far beyond the limits of previous approaches and provide a direct measure of the uncertainties associated with every estimation step, together with a direct assessment of why and where a particular model fails. Analyses of single RYRs at several Ca2+ concentrations are made by considering 16 models, some of them previously reported in the literature. Results clearly show that single RYRs have Ca2+-dependent gating modes. Moreover, our results demonstrate that single RYRs responding to a sudden change in Ca2+ display adaptation kinetics. Interestingly, best ranked models predict microscopic reversibility when monovalent cations are used as the main permeating species. Finally, the extended bandwidth revealed the existence of novel fast buzz-mode at low Ca2+ concentrations.
Collapse
Affiliation(s)
- Rafael A Rosales
- Department of Mathematics, Universidad Simón Bolívar and Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | |
Collapse
|
5
|
Zahradníková A, Kubalová Z, Pavelková J, Györke S, Zahradník I. Activation of calcium release assessed by calcium release-induced inactivation of calcium current in rat cardiac myocytes. Am J Physiol Cell Physiol 2004; 286:C330-41. [PMID: 14522820 DOI: 10.1152/ajpcell.00272.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian cardiac myocytes, calcium released into the dyadic space rapidly inactivates calcium current ( ICa). We used this Ca2+ release-dependent inactivation (RDI) of ICa as a local probe of sarcoplasmic reticulum Ca2+ release activation. In whole cell patch-clamped rat ventricular myocytes, Ca2+ entry induced by short prepulses from —50 mV to positive voltages caused suppression of peak ICa during a test pulse. The negative correlation between peak ICa suppression and ICa inactivation during the test pulse indicated that RDI evoked by the prepulse affected only calcium channels in those dyads in which calcium release was activated. Ca2+ ions injected during the prepulse and during the subsequent tail current suppressed peak ICa in the test pulse to a different extent. Quantitative analysis indicated that equal Ca2+ charge was 3.5 times less effective in inducing release when entering during the prepulse than when entering during the tail. Tail Ca2+ charge injected by the first voltage-dependent calcium channel (DHPR) openings was three times less effective than that injected by DHPR reopenings. These findings suggest that calcium release activation can be profoundly influenced by the recent history of L-type Ca2+ channel activity due to potentiation of ryanodine receptors (RyRs) by previous calcium influx. This conclusion was confirmed at the level of single RyRs in planar lipid bilayers: using flash photolysis of the calcium cage NP-EGTA to generate two sequential calcium stimuli, we showed that RyR activation in response to the second stimulus was four times higher than that in response to the first stimulus.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
6
|
Sánchez G, Hidalgo C, Donoso P. Kinetic studies of calcium-induced calcium release in cardiac sarcoplasmic reticulum vesicles. Biophys J 2003; 84:2319-30. [PMID: 12668440 PMCID: PMC1302798 DOI: 10.1016/s0006-3495(03)75037-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 11/26/2002] [Indexed: 11/30/2022] Open
Abstract
Fast Ca(2+) release kinetics were measured in cardiac sarcoplasmic reticulum vesicles actively loaded with Ca(2+). Release was induced in solutions containing 1.2 mM free ATP and variable free [Ca(2+)] and [Mg(2+)]. Release rate constants (k) were 10-fold higher at pCa 6 than at pCa 5 whereas Ryanodine binding was highest at pCa < or =5. These results suggest that channels respond differently when exposed to sudden [Ca(2+)] changes than when exposed to Ca(2+) for longer periods. Vesicles with severalfold different luminal calcium contents exhibited double exponential release kinetics at pCa 6, suggesting that channels undergo time-dependent activity changes. Addition of Mg(2+) produced a marked inhibition of release kinetics at pCa 6 (K(0.5) = 63 microM) but not at pCa 5. Coexistence of calcium activation and inhibition sites with equally fast binding kinetics is proposed to explain this behavior. Thimerosal activated release kinetics at pCa 5 at all [Mg(2+)] tested and increased at pCa 6 the K(0.5) for Mg(2+) inhibition, from 63 microM to 136 microM. We discuss the possible relevance of these results, which suggest release through RyR2 channels is subject to fast regulation by Ca(2+) and Mg(2+) followed by time-dependent regulation, to the physiological mechanisms of cardiac channel opening and closing.
Collapse
Affiliation(s)
- Gina Sánchez
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | |
Collapse
|
7
|
Abstract
The ryanodine receptors (RyRs) are a family of Ca2+ release channels found on intracellular Ca2+ storage/release organelles. The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary pathway for Ca2+ release during the excitation-contraction coupling process. In general, the signals that activate the RyR channels are known (e.g., sarcolemmal Ca2+ influx or depolarization), but the specific mechanisms involved are still being debated. The signals that modulate and/or turn off the RyR channels remain ambiguous and the mechanisms involved unclear. Over the last decade, studies of RyR-mediated Ca2+ release have taken many forms and have steadily advanced our knowledge. This robust field, however, is not without controversial ideas and contradictory results. Controversies surrounding the complex Ca2+ regulation of single RyR channels receive particular attention here. In addition, a large body of information is synthesized into a focused perspective of single RyR channel function. The present status of the single RyR channel field and its likely future directions are also discussed.
Collapse
Affiliation(s)
- Michael Fill
- Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
8
|
Lee CH, Poburko D, Kuo KH, Seow CY, van Breemen C. Ca(2+) oscillations, gradients, and homeostasis in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2002; 282:H1571-83. [PMID: 11959618 DOI: 10.1152/ajpheart.01035.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle shows both plasticity and heterogeneity with respect to Ca(2+) signaling. Physiological perturbations in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) may take the form of a uniform maintained rise, a transient uniform [Ca(2+)](i) elevation, a transient localized rise in [Ca(2+)](i) (also known as spark and puff), a transient propagated wave of localized [Ca(2+)](i) elevation (Ca(2+) wave), recurring asynchronous Ca(2+) waves, or recurring synchronized Ca(2+) waves dependent on the type of blood vessel and the nature of stimulation. In this overview, evidence is presented which demonstrates that interactions of ion transporters located in the membranes of the cell, sarcoplasmic reticulum, and mitochondria form the basis of this plasticity of Ca(2+) signaling. We focus in particular on how the junctional complexes of plasmalemma and superficial sarcoplasmic reticulum, through the generation of local cytoplasmic Ca(2+) gradients, maintain [Ca(2+)](i) oscillations, couple these to either contraction or relaxation, and promote Ca(2+) cycling during homeostasis.
Collapse
Affiliation(s)
- Cheng-Han Lee
- The iCAPTURE Center, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, V6Z 1Y6, Canada
| | | | | | | | | |
Collapse
|
9
|
Laver D. The power of single channel recording and analysis: its application to ryanodine receptors in lipid bilayers. Clin Exp Pharmacol Physiol 2001; 28:675-86. [PMID: 11473536 DOI: 10.1046/j.1440-1681.2001.03503.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Since the inception of the patch-clamp technique, single-channel recording has made an enormous impact on our understanding of ion channel function and its role in membrane transport and cell physiology. 2. However, the impact of single-channel recording methods on our understanding of intracellular Ca2+ regulation by internal stores is not as broadly recognized. There are several possible reasons for this. 3. First, ion channels in the membranes of intracellular organelles are not directly accessible to patch pipettes, requiring other methods that are not as widely known as the patch-clamp techniques. 4. Second, bulk assays for channel activity have proved successful in advancing our knowledge of Ca2+ handling by intracellular stores. These assays include Ca2+ imaging, ryanodine binding assays and measurements of muscle tension and Ca2+ release and uptake by vesicles that have been isolated from internal stores. 5. The present review describes methods used for single- channel recording and analysis, as applied to the calcium release channels in striated muscle, and details some of the unique contributions that single-channel recording and analysis have made to our current understanding of the release of Ca2+ from the internal stores of muscle. 6. With this in mind, the review focuses on three aspects of channel function and shows how single-channel investigations have led to an improved understanding of physiological processes in muscle. 7. Finally, the review describes some of the latest improvements in membrane technology that will underpin future advances in single-channel recording.
Collapse
Affiliation(s)
- D Laver
- School of Biochemistry and Molecular Biology, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| |
Collapse
|
10
|
Fill M, Zahradníková A, Villalba-Galea CA, Zahradník I, Escobar AL, Györke S. Ryanodine receptor adaptation. J Gen Physiol 2000; 116:873-82. [PMID: 11099353 PMCID: PMC2231812 DOI: 10.1085/jgp.116.6.873] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Accepted: 10/31/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- M Fill
- Department of Physiology, Loyola University Chicago, Maywood, IL, USA
| | | | | | | | | | | |
Collapse
|