1
|
Voros O, Szilagyi O, Balajthy A, Somodi S, Panyi G, Hajdu P. The C-terminal HRET sequence of Kv1.3 regulates gating rather than targeting of Kv1.3 to the plasma membrane. Sci Rep 2018; 8:5937. [PMID: 29650988 PMCID: PMC5897520 DOI: 10.1038/s41598-018-24159-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.
Collapse
Affiliation(s)
- Orsolya Voros
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Orsolya Szilagyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - András Balajthy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Sándor Somodi
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 1 Egyetem sq., 4032, Hungary. MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 400, Debrecen, Hungary
| | - Péter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary. .,Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary.
| |
Collapse
|
2
|
Goodchild SJ, Macdonald LC, Fedida D. Sequence of gating charge movement and pore gating in HERG activation and deactivation pathways. Biophys J 2016; 108:1435-1447. [PMID: 25809256 DOI: 10.1016/j.bpj.2015.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/08/2015] [Accepted: 02/18/2015] [Indexed: 12/26/2022] Open
Abstract
KV11.1 voltage-gated K(+) channels are noted for unusually slow activation, fast inactivation, and slow deactivation kinetics, which tune channel activity to provide vital repolarizing current during later stages of the cardiac action potential. The bulk of charge movement in human ether-a-go-go-related gene (hERG) is slow, as is return of charge upon repolarization, suggesting that the rates of hERG channel opening and, critically, that of deactivation might be determined by slow voltage sensor movement, and also by a mode-shift after activation. To test these ideas, we compared the kinetics and voltage dependence of ionic activation and deactivation with gating charge movement. At 0 mV, gating charge moved ∼threefold faster than ionic current, which suggests the presence of additional slow transitions downstream of charge movement in the physiological activation pathway. A significant voltage sensor mode-shift was apparent by 24 ms at +60 mV in gating currents, and return of charge closely tracked pore closure after pulses of 100 and 300 ms duration. A deletion of the N-terminus PAS domain, mutation R4AR5A or the LQT2-causing mutation R56Q gave faster-deactivating channels that displayed an attenuated mode-shift of charge. This indicates that charge movement is perturbed by N- and C-terminus interactions, and that these domain interactions stabilize the open state and limit the rate of charge return. We conclude that slow on-gating charge movement can only partly account for slow hERG ionic activation, and that the rate of pore closure has a limiting role in the slow return of gating charges.
Collapse
Affiliation(s)
- Samuel J Goodchild
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Logan C Macdonald
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Goodchild SJ, Xu H, Es-Salah-Lamoureux Z, Ahern CA, Fedida D. Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations. ACTA ACUST UNITED AC 2012; 140:495-511. [PMID: 23071269 PMCID: PMC3483119 DOI: 10.1085/jgp.201210823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG+) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs+, displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K+, suggesting that K+ ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG+ ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K+, allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics.
Collapse
Affiliation(s)
- Samuel J Goodchild
- Department of Anesthesiology, Pharmacology, and Therapeutics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
4
|
Labro AJ, Snyders DJ. Being flexible: the voltage-controllable activation gate of kv channels. Front Pharmacol 2012; 3:168. [PMID: 22993508 PMCID: PMC3440756 DOI: 10.3389/fphar.2012.00168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/26/2012] [Indexed: 12/16/2022] Open
Abstract
Kv channels form voltage-dependent potassium selective pores in the outer cell membrane and are composed out of four α-subunits, each having six membrane-spanning α-helices (S1–S6). The α-subunits tetramerize such that the S5–S6 pore domains co-assemble into a centrally located K+ pore which is surrounded by four operational voltage-sensing domains (VSD) that are each formed by the S1–S4 segments. Consequently, each subunit is capable of responding to changes in membrane potential and dictates whether the pore should be conductive or not. K+ permeation through the pore can be sealed off by two separate gates in series: (a) at the inner S6 bundle crossing (BC gate) and (b) at the level of the selectivity filter (SF gate) located at the extracellular entrance of the pore. Within the last years a general consensus emerged that a direct communication between the S4S5-linker and the bottom part of S6 (S6c) constitutes the coupling with the VSD thus making the BC gate the main voltage-controllable activation gate. While the BC gate listens to the VSD, the SF changes its conformation depending on the status of the BC gate. Through the eyes of an entering K+ ion, the operation of the BC gate apparatus can be compared with the iris-like motion of the diaphragm from a camera whereby its diameter widens. Two main gating motions have been proposed to create this BC gate widening: (1) tilting of the helix whereby the S6 converts from a straight α-helix to a tilted one or (2) swiveling of the S6c whereby the S6 remains bent. Such motions require a flexible hinge that decouples the pre- and post-hinge segment. Roughly at the middle of the S6 there exists a highly conserved glycine residue and a tandem proline motif that seem to fulfill the role of a gating hinge which allows for tilting/swiveling/rotations of the post-hinge S6 segment. In this review we delineate our current view on the operation of the BC gate for controlling K+ permeation in Kv channels.
Collapse
Affiliation(s)
- Alain J Labro
- Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | | |
Collapse
|
5
|
Goodchild SJ, Fedida D. Contributions of intracellular ions to kv channel voltage sensor dynamics. Front Pharmacol 2012; 3:114. [PMID: 22719727 PMCID: PMC3376422 DOI: 10.3389/fphar.2012.00114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/25/2012] [Indexed: 11/13/2022] Open
Abstract
Voltage-sensing domains (VSDs) of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K(+) ions to flow. Conformational transitions within the VSD are induced by changes in the applied voltage across the membrane field. However, several other factors not directly linked to the voltage-dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity, and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization, and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.
Collapse
Affiliation(s)
- Samuel J Goodchild
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Shirokov R. What's in gating currents? Going beyond the voltage sensor movement. Biophys J 2011; 101:512-4; discussion 515-6. [PMID: 21767505 DOI: 10.1016/j.bpj.2011.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022] Open
Affiliation(s)
- Roman Shirokov
- Department of Pharmacology and Physiology, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
| |
Collapse
|
7
|
Response to R. Shirokov. Biophys J 2011. [DOI: 10.1016/j.bpj.2011.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Batulan Z, Haddad GA, Blunck R. An intersubunit interaction between S4-S5 linker and S6 is responsible for the slow off-gating component in Shaker K+ channels. J Biol Chem 2010; 285:14005-19. [PMID: 20202932 DOI: 10.1074/jbc.m109.097717] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated ion channels are controlled by the membrane potential, which is sensed by peripheral, positively charged voltage sensors. The movement of the charged residues in the voltage sensor may be detected as gating currents. In Shaker K(+) channels, the gating currents are asymmetric; although the on-gating currents are fast, the off-gating currents contain a slow component. This slow component is caused by a stabilization of the activated state of the voltage sensor and has been suggested to be linked to ion permeation or C-type inactivation. The molecular determinants responsible for the stabilization, however, remain unknown. Here, we identified an interaction between Arg-394, Glu-395, and Leu-398 on the C termini of the S4-S5 linker and Tyr-485 on the S6 of the neighboring subunit, which is responsible for the development of the slow off-gating component. Mutation of residues involved in this intersubunit interaction modulated the strength of the associated interaction. Impairment of the interaction still led to pore opening but did not exhibit slow gating kinetics. Development of this interaction occurs under physiological ion conduction and is correlated with pore opening. We, thus, suggest that the above residues stabilize the channel in the open state.
Collapse
Affiliation(s)
- Zarah Batulan
- Département de Physique and Groupe d'Etude des Protéines Membranaires, Université de Montréal, Montréal, Quebec H3C 3J7 Canada
| | | | | |
Collapse
|
9
|
Jiang X, Bett GCL, Li X, Bondarenko VE, Rasmusson RL. C-type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 K+ channels expressed in Xenopus oocytes. J Physiol 2003; 549:683-95. [PMID: 12730347 PMCID: PMC2342995 DOI: 10.1113/jphysiol.2002.034660] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Channels are water-filled membrane-spanning proteins, which undergo conformational changes as they gate, i.e. open or close. These conformational changes affect both the shape of the channel and the volume of the water-filled pore. We measured the changes in pore volume associated with activation, deactivation, C-type inactivation and recovery in an N-terminal-deleted mutant of the Kv1.4 K+ channel (Kv1.4DeltaN) expressed in Xenopus oocytes. We used giant-patch and cut-open oocyte voltage clamp techniques and applied solutes which are too large to enter the pore mouth to exert osmotic pressure and thus favour smaller pore volume conformations. Applied intracellular osmotic pressure (300 mM sucrose) sped inactivation (time constants (tauinactivation): control, 0.66 +/- 0.09 s; hyperosmotic solution, 0.29 +/- 0.04 s; n = 5, P < 0.01), sped deactivation (taudeactivation: control, 18.8 +/- 0.94 ms; hyperosmotic solution, 8.01 +/- 1.92 ms; n = 5, P < 0.01), and slowed activation (tauactivation: control, 1.04 +/- 0.05 ms; hyperosmotic solution, 1.96 +/- 0.31 ms; n = 5, P < 0.01). These effects were reversible and solute independent. We estimated the pore volume change on inactivation to be about 4500 A3. Osmotic pressure had no effect when applied extracellularly. These data suggest that the intracellular side of the pore closes during C-type inactivation and the volume change is similar to that associated with activation or deactivation. This is also similar to the pore volume estimated from the crystal structure of KcsA and MthK K+ channels. Intracellular osmotic pressure also strongly inhibited re-opening currents associated with recovery from inactivation, which is consistent with a physical similarity between the C-type inactivated and resting closed state.
Collapse
Affiliation(s)
- XueJun Jiang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, 124 Sherman Hall, State University of New York at Buffalo, Buffalo, NY 14214-3005, USA
| | | | | | | | | |
Collapse
|