1
|
Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. Int J Mol Sci 2022; 23:ijms232214143. [PMID: 36430626 PMCID: PMC9694239 DOI: 10.3390/ijms232214143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal cyclic nucleotide-gated (CNG) ion channels bind to intracellular cGMP and mediate visual phototransduction in photoreceptor rod and cone cells. Retinal rod CNG channels form hetero-tetramers comprised of three CNGA1 and one CNGB1 protein subunits. Cone CNG channels are similar tetramers consisting of three CNGA3 and one CNGB3 subunits. Calmodulin (CaM) binds to two distinct sites (CaM1: residues 565-587 and CaM2: residues 1120-1147) within the cytosolic domains of rod CNGB1. The binding of Ca2+-bound CaM to CNGB1 promotes the Ca2+-induced desensitization of CNG channels in retinal rods that may be important for photoreceptor light adaptation. Mutations that affect Ca2+-dependent CNG channel function are responsible for inherited forms of blindness. In this review, we propose structural models of the rod CNG channel bound to CaM that suggest how CaM might cause channel desensitization and how dysregulation of the channel may lead to retinal disease.
Collapse
|
2
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
3
|
cGMP Analogues with Opposing Actions on CNG Channels Selectively Modulate Rod or Cone Photoreceptor Function. Pharmaceutics 2022; 14:pharmaceutics14102102. [PMID: 36297537 PMCID: PMC9612005 DOI: 10.3390/pharmaceutics14102102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
The vertebrate retina harbors rod and cone photoreceptors. Human vision critically depends on cone photoreceptor function. In the phototransduction cascade, cGMP activates distinct rod and cone isoforms of the cyclic nucleotide-gated (CNG) channel. Excessive cGMP levels initiate a pathophysiological rollercoaster, which starts with CNG channel over-activation, typically in rod photoreceptors. This triggers cell death of rods first, and then cones, and is the root cause of many blinding retinal diseases, including Retinitis pigmentosa. While targeting of CNG channels has been proposed for therapeutic purposes, thus far, it has not been possible to inhibit rod CNG channels without compromising cone function. Here, we present a novel strategy, based on cGMP analogues with opposing actions on CNG channels, which enables the selective modulation of either rod or cone photoreceptor activity. The combined treatment with the weak rod-selective CNG-channel inhibitor (Rp-8-Br-PET-cGMPS) and the cone-selective CNG-channel activator (8-pCPT-cGMP) essentially normalized rod CNG-channel function while preserving cone functionality at physiological and pathological cGMP levels. Hence, combinations of cGMP analogues with desired properties may elegantly address the isoform-specificity problem in future pharmacological therapies. Moreover, this strategy may allow for improvements in visual performance in certain light environments.
Collapse
|
4
|
Identification of CNGB1 as a Predictor of Response to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2021; 13:cancers13153903. [PMID: 34359804 PMCID: PMC8345622 DOI: 10.3390/cancers13153903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Chemotherapy is recommended prior to surgical removal of the bladder for muscle-invasive bladder cancer patients. Despite a survival benefit, some patients do not respond and experience substantial toxicity and delay in surgery. Therefore, the identification of chemotherapy responders before initiating therapy would be a helpful clinical asset. To date, there are no reliable biomarkers routinely used in clinical practice that identify patients most likely to benefit from chemotherapy and their identification is urgently required for more precise delivery of care. To address this issue, we compared gene expression profiles of biopsy materials from 30 chemotherapy-responder and -non-responder patients. This analysis revealed a novel signature gene set and CNGB1 as a simpler proxy as a promising biomarker to predict chemoresponsiveness of muscle-invasive bladder cancer patients. Our findings require further validation in larger patient cohorts and in a clinical trial setting. Abstract Cisplatin-based neoadjuvant chemotherapy (NAC) is recommended prior to radical cystectomy for muscle-invasive bladder cancer (MIBC) patients. Despite a 5–10% survival benefit, some patients do not respond and experience substantial toxicity and delay in surgery. To date, there are no clinically approved biomarkers predictive of response to NAC and their identification is urgently required for more precise delivery of care. To address this issue, a multi-methods analysis approach of machine learning and differential gene expression analysis was undertaken on a cohort of 30 MIBC cases highly selected for an exquisitely strong response to NAC or marked resistance and/or progression (discovery cohort). RGIFE (ranked guided iterative feature elimination) machine learning algorithm, previously demonstrated to have the ability to select biomarkers with high predictive power, identified a 9-gene signature (CNGB1, GGH, HIST1H4F, IDO1, KIF5A, MRPL4, NCDN, PRRT3, SLC35B3) able to select responders from non-responders with 100% predictive accuracy. This novel signature correlated with overall survival in meta-analysis performed using published NAC treated-MIBC microarray data (validation cohort 1, n = 26, Log rank test, p = 0.02). Corroboration with differential gene expression analysis revealed cyclic nucleotide-gated channel, CNGB1, as the top ranked upregulated gene in non-responders to NAC. A higher CNGB1 immunostaining score was seen in non-responders in tissue microarray analysis of the discovery cohort (n = 30, p = 0.02). Kaplan-Meier analysis of a further cohort of MIBC patients (validation cohort 2, n = 99) demonstrated that a high level of CNGB1 expression associated with shorter cancer specific survival (p < 0.001). Finally, in vitro studies showed siRNA-mediated CNGB1 knockdown enhanced cisplatin sensitivity of MIBC cell lines, J82 and 253JB-V. Overall, these data reveal a novel signature gene set and CNGB1 as a simpler proxy as a promising biomarker to predict chemoresponsiveness of MIBC patients.
Collapse
|
5
|
Saito K, Gotoh N, Kang I, Shimada T, Usui T, Terao C. A case of retinitis pigmentosa homozygous for a rare CNGA1 causal variant. Sci Rep 2021; 11:4681. [PMID: 33633220 PMCID: PMC7907121 DOI: 10.1038/s41598-021-84098-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogenous hereditary disorder leading to blindness. Despite using next-generation sequencing technologies, causal variants in about 60% of RP cases remain unknown. The heterogeneous genetic inheritance pattern makes it difficult to pinpoint causal variants. Besides, rare penetrating variants are hardly observed in general case–control studies. Thus, a family-based analysis, specifically in a consanguineous family, is a clinically and genetically valuable approach for RP. We analyzed a Japanese consanguineous family with a member suffering from RP with a typical autosomal recessive pattern. We sequenced five direct descendants and spouse using Whole-exome sequencing (WES) and Whole-genome sequencing (WGS). We identified a homozygous pathogenic missense variant in CNGA1 (NM_000087.3, c.839G > A, p.Arg280His) in the proband, while we found no homozygous genotypes in the other family members. CNGA1 was previously reported to be associated with RP. We confirmed the genotypes by the Sanger sequencing. Additionally, we assessed the homozygous genotype in the proband for the possibility of a founder mutation using homozygosity analysis. Our results suggested the two copies of the variant derived from a founder mutation. In conclusion, we found the homozygotes for c.839G > A in CNGA1 as causal for RP.
Collapse
Affiliation(s)
- Kohei Saito
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan.,Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka, Japan
| | - Norimoto Gotoh
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,Department of Ophthalmology, Shizuoka General Hospital, Shizuoka, Japan.,Fujinomiya Gotoh Eye Clinic, Shizuoka, Japan
| | - Inyeop Kang
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,Fujinomiya Gotoh Eye Clinic, Shizuoka, Japan
| | - Toshio Shimada
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Takeshi Usui
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,Department of Medical Genetics, Shizuoka General Hospital, Shizuoka, Japan
| | - Chikashi Terao
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan. .,Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan. .,Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan. .,Division of Statistical Analysis, Research Support Center, Shizuoka General Hospital, 4-27-1 Kita Ando, Aoi-Ku, Shizuoka-shi, Shizuoka, 420-8527, Japan.
| |
Collapse
|
6
|
Niu WT, Han XW, Wei SS, Shang ZL, Wang J, Yang DW, Fan X, Gao F, Zheng SZ, Bai JT, Zhang B, Wang ZX, Li B. Arabidopsis cyclic nucleotide-gated channel 6 is negatively modulated by multiple calmodulin isoforms during heat shock. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:90-104. [PMID: 31587070 DOI: 10.1093/jxb/erz445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/26/2019] [Indexed: 05/06/2023]
Abstract
An increased concentration of cytosolic Ca2+ is an early response of plant cells to heat shock. Arabidopsis cyclic nucleotide-gated ion channel 6 (CNGC6) mediates heat-induced Ca2+ influx and is activated by cAMP. However, it remains unclear how the Ca2+ conductivity of CNGC6 is negatively regulated under the elevated cytosolic Ca2+ concentration. In this study, Arabidopsis calmodulin isoforms CaM1/4, CaM2/3/5, CaM6, and CaM7 were found to bind to CNGC6 to varying degrees, and this binding was dependent on the presence of Ca2+ and IQ6, an atypical isoleucine-glutamine motif in CNGC6. Knockout of CaM2, CaM3, CaM5, and CaM7 genes led to a marked increase in plasma membrane inward Ca2+ current under heat shock conditions; however, knockout of CaM1, CaM4, and CaM6 genes had no significant effect on plasma membrane Ca2+ current. Moreover, the deletion of IQ6 from CNGC6 led to a marked increase in plasma membrane Ca2+ current under heat shock conditions. Taken together, the data suggest that CNGC6-mediated Ca2+ influx is likely to be negatively regulated by CaM2/3/5 and CaM7 isoforms under heat shock conditions, and that IQ6 plays an important role in CaM binding and the feedback regulation of the channel.
Collapse
Affiliation(s)
- Wei-Tao Niu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- College of Biological Science and Engineering, Xingtai University, Xingtai 054001, China
| | - Xiao-Wei Han
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shan-Shan Wei
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhong-Lin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - De-Wei Yang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiao Fan
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Fei Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shu-Zhi Zheng
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiao-Teng Bai
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bo Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zi-Xuan Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
7
|
Codding SJ, Trudeau MC. The hERG potassium channel intrinsic ligand regulates N- and C-terminal interactions and channel closure. J Gen Physiol 2018; 151:478-488. [PMID: 30425124 PMCID: PMC6445578 DOI: 10.1085/jgp.201812129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
An intersubunit interaction between the N-terminal PAS domain and C-terminal cyclic nucleotide binding homology domain (CNBHD) regulates slow deactivation in hERG potassium channels. By mutating the intrinsic ligand, Codding and Trudeau disrupt slow deactivation and prevent the PAS-CNBHD interaction. Human ether-à-go-go–related gene (hERG, KCNH2) voltage-activated potassium channels are critical for cardiac excitability. hERG channels have characteristic slow closing (deactivation), which is auto-regulated by a direct interaction between the N-terminal Per-Arnt-Sim (PAS) domain and the C-terminal cyclic nucleotide binding homology domain (CNBHD). hERG channels are not activated by the binding of extrinsic cyclic nucleotide ligands, but rather bind an “intrinsic ligand” that is composed of residues 860–862 within the CNBHD and mimics a cyclic nucleotide. The intrinsic ligand is located at the PAS–CNBHD interface, but its mechanism of action in hERG is not well understood. Here we use whole-cell patch-clamp electrophysiology and FRET spectroscopy to examine how the intrinsic ligand regulates gating. To carry out this work, we coexpress PAS (a PAS domain fused to cyan fluorescent protein) in trans with hERG “core” channels (channels with a deletion of the PAS domain fused to citrine fluorescent protein). The PAS domain in trans with hERG core channels has slow (regulated) deactivation, like that of WT hERG channels, as well as robust FRET, which indicates there is a direct functional and structural interaction of the PAS domain with the channel core. In contrast, PAS in trans with hERG F860A core channels has intermediate deactivation and intermediate FRET, indicating perturbation of the PAS domain interaction with the CNBHD. Furthermore, PAS in trans with hERG L862A core channels, or PAS in trans with hERG F860G,L862G core channels, has fast (nonregulated) deactivation and no measurable FRET, indicating abolition of the PAS and CNBHD interaction. These results indicate that the intrinsic ligand is necessary for the functional and structural interaction between the PAS domain and the CNBHD, which regulates the characteristic slow deactivation gating in hERG channels.
Collapse
Affiliation(s)
- Sara J Codding
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Wulf M, Pless SA. High-Sensitivity Fluorometry to Resolve Ion Channel Conformational Dynamics. Cell Rep 2018; 22:1615-1626. [DOI: 10.1016/j.celrep.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/01/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022] Open
|
9
|
McNally BA, Pendon ZD, Trudeau MC. hERG1a and hERG1b potassium channel subunits directly interact and preferentially form heteromeric channels. J Biol Chem 2017; 292:21548-21557. [PMID: 29089383 DOI: 10.1074/jbc.m117.816488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Indexed: 01/20/2023] Open
Abstract
Voltage-activated human ether-á-go-go-related gene (hERG) potassium channels are critical for the repolarization of cardiac action potentials and tune-spike frequency adaptation in neurons. Two isoforms of mammalian ERG1 channel subunits, ERG1a and ERG1b, are the principal subunits that conduct the IKr current in the heart and are also broadly expressed in the nervous system. However, there is little direct evidence that ERG1a and ERG1b form heteromeric channels. Here, using electrophysiology, biochemistry, and fluorescence approaches, we systematically tested for direct interactions between hERG1a and hERG1b subunits. We report 1) that hERG1a dominant-negative subunits suppress hERG1b currents (and vice versa), 2) that disulfide bonds form between single cysteine residues experimentally introduced into an extracellular loop of hERG1a and hERG1b subunits and produce hERG1a-hERG1b dimers, and 3) that hERG1a and hERG1b subunits tagged with fluorescent proteins that are FRET pairs exhibit robust energy transfer at the plasma membrane. Thus, multiple lines of evidence indicated a physical interaction between hERG1a and hERG1b, consistent with them forming heteromeric channels. Moreover, co-expression of variable ratios of hERG1a and hERG1b RNA yielded channels with deactivation kinetics that reached a plateau and were different from those of hERG1b channels, consistent with a preference of hERG1b subunits for hERG1a subunits. Cross-linking studies revealed that an equal input of hERG1a and hERG1b yields more hERG1a-hERG1a or hERG1a-hERG1b dimers than hERG1b-hERG1b dimers, also suggesting that hERG1b preferentially interacts with hERG1a. We conclude that hERG1b preferentially forms heteromeric ion channels with hERG1a at the plasma membrane.
Collapse
Affiliation(s)
- Beth A McNally
- From the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Zeus D Pendon
- From the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Matthew C Trudeau
- From the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
10
|
Ruigrok HJ, Shahid G, Goudeau B, Poulletier de Gannes F, Poque-Haro E, Hurtier A, Lagroye I, Vacher P, Arbault S, Sojic N, Veyret B, Percherancier Y. Full-Spectral Multiplexing of Bioluminescence Resonance Energy Transfer in Three TRPV Channels. Biophys J 2017; 112:87-98. [PMID: 28076819 DOI: 10.1016/j.bpj.2016.11.3197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
Multiplexed bioluminescence resonance energy transfer (BRET) assays were developed to monitor the activation of several functional transient receptor potential (TRP) channels in live cells and in real time. We probed both TRPV1 intramolecular rearrangements and its interaction with Calmodulin (CaM) under activation by chemical agonists and temperature. Our BRET study also confirmed that: (1) capsaicin and heat promoted distinct transitions, independently coupled to channel gating, and that (2) TRPV1 and Ca2+-bound CaM but not Ca2+-free CaM were preassociated in resting live cells, while capsaicin activation induced both the formation of more TRPV1/CaM complexes and conformational changes. The BRET assay, based on the interaction with Calmodulin, was successfully extended to TRPV3 and TRPV4 channels. We therefore developed a full-spectral three-color BRET assay for analyzing the specific activation of each of the three TRPV channels in a single sample. Such key improvement in BRET measurement paves the way for the simultaneous monitoring of independent biological pathways in live cells.
Collapse
Affiliation(s)
- Hermanus Johannes Ruigrok
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France
| | - Guillaume Shahid
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France
| | - Bertrand Goudeau
- Université de Bordeaux, Talence, France; Institut des Sciences Moleculaires, Centre National de la Recherche Scientifique (CNRS) UMR 5255, NSYSA Group, ENSCBP, Pessac, France
| | - Florence Poulletier de Gannes
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France
| | - Emmanuelle Poque-Haro
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France
| | - Annabelle Hurtier
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France
| | - Isabelle Lagroye
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France; Paris Sciences et Lettres Research University, Paris, France
| | - Pierre Vacher
- Université de Bordeaux, Talence, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1218, Institut Bergonié, Bordeaux, France
| | - Stéphane Arbault
- Université de Bordeaux, Talence, France; Institut des Sciences Moleculaires, Centre National de la Recherche Scientifique (CNRS) UMR 5255, NSYSA Group, ENSCBP, Pessac, France
| | - Neso Sojic
- Université de Bordeaux, Talence, France; Institut des Sciences Moleculaires, Centre National de la Recherche Scientifique (CNRS) UMR 5255, NSYSA Group, ENSCBP, Pessac, France
| | - Bernard Veyret
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France
| | - Yann Percherancier
- Laboratoire de l'Intégration du Matériau au Système, Centre National de la Recherche Scientifique (CNRS) UMR 5218, Talence, France; Université de Bordeaux, Talence, France.
| |
Collapse
|
11
|
DeFalco TA, Marshall CB, Munro K, Kang HG, Moeder W, Ikura M, Snedden WA, Yoshioka K. Multiple Calmodulin-Binding Sites Positively and Negatively Regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. THE PLANT CELL 2016; 28:1738-51. [PMID: 27335451 PMCID: PMC4981125 DOI: 10.1105/tpc.15.00870] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Ca(2+) signaling is critical to plant immunity; however, the channels involved are poorly characterized. Cyclic nucleotide-gated channels (CNGCs) are nonspecific, Ca(2+)-permeable cation channels. Plant CNGCs are hypothesized to be negatively regulated by the Ca(2+) sensor calmodulin (CaM), and previous work has focused on a C-terminal CaM-binding domain (CaMBD) overlapping with the cyclic nucleotide binding domain of plant CNGCs. However, we show that the Arabidopsis thaliana isoform CNGC12 possesses multiple CaMBDs at cytosolic N and C termini, which is reminiscent of animal CNGCs and unlike any plant channel studied to date. Biophysical characterizations of these sites suggest that apoCaM interacts with a conserved isoleucine-glutamine (IQ) motif in the C terminus of the channel, while Ca(2+)/CaM binds additional N- and C-terminal motifs with different affinities. Expression of CNGC12 with a nonfunctional N-terminal CaMBD constitutively induced programmed cell death, providing in planta evidence of allosteric CNGC regulation by CaM. Furthermore, we determined that CaM binding to the IQ motif was required for channel function, indicating that CaM can both positively and negatively regulate CNGC12. These data indicate a complex mode of plant CNGC regulation by CaM, in contrast to the previously proposed competitive ligand model, and suggest exciting parallels between plant and animal channels.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Christopher B Marshall
- Department of Medical Biophysics, Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Kim Munro
- Protein Function Discovery Facility, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, Texas 78666
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
12
|
Ding XQ, Thapa A, Ma H, Xu J, Elliott MH, Rodgers KK, Smith ML, Wang JS, Pittler SJ, Kefalov VJ. The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility. J Biol Chem 2016; 291:8721-34. [PMID: 26893377 DOI: 10.1074/jbc.m115.696138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Indexed: 11/06/2022] Open
Abstract
Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors.
Collapse
Affiliation(s)
| | | | - Hongwei Ma
- From the Departments of Cell Biology and
| | - Jianhua Xu
- From the Departments of Cell Biology and
| | - Michael H Elliott
- Ophthalmology and Dean McGee Eye Institute, Oklahoma City, Oklahoma 73104
| | - Karla K Rodgers
- Biochemistry, University of Oklahoma Health Sciences Center and
| | - Marci L Smith
- Department of Vision Sciences, University of Alabama, Birmingham, Alabama 35924, and
| | - Jin-Shan Wang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Steven J Pittler
- Department of Vision Sciences, University of Alabama, Birmingham, Alabama 35924, and
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
13
|
Aman TK, Gordon SE, Zagotta WN. Regulation of CNGA1 Channel Gating by Interactions with the Membrane. J Biol Chem 2016; 291:9939-47. [PMID: 26969165 DOI: 10.1074/jbc.m116.723932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are expressed in rod photoreceptors and open in response to direct binding of cyclic nucleotides. We have previously shown that potentiation of CNGA1 channels by transition metals requires a histidine in the A' helix following the S6 transmembrane segment. Here, we used transition metal ion FRET and patch clamp fluorometry with a fluorescent, noncanonical amino acid (3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap)) to show that the potentiating transition metal Co(2+) binds in or near the A' helix. Adding high-affinity metal-binding sites to the membrane (stearoyl-nitrilotriacetic acid (C18-NTA)) increased potentiation for low Co(2+) concentrations, indicating that the membrane can coordinate metal ions with the A' helix. These results suggest that restraining the A' helix to the plasma membrane potentiates CNGA1 channel opening. Similar interactions between the A' helix and the plasma membrane may underlie regulation of structurally related hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium subfamily H (KCNH) channels by plasma membrane components.
Collapse
Affiliation(s)
- Teresa K Aman
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Sharona E Gordon
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - William N Zagotta
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
14
|
Gordon SE, Senning EN, Aman TK, Zagotta WN. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane. ACTA ACUST UNITED AC 2016; 147:189-200. [PMID: 26755772 PMCID: PMC4727948 DOI: 10.1085/jgp.201511530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022]
Abstract
A novel method is presented to measure short distances in cell plasma membranes using transition metal ion FRET with metal ions bound to introduced sites in the membrane. Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane.
Collapse
Affiliation(s)
- Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Eric N Senning
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Teresa K Aman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
15
|
Zhu W, Varga Z, Silva JR. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:3-17. [PMID: 26724572 DOI: 10.1016/j.pbiomolbio.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models.
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Dick IE, Limpitikul WB, Niu J, Banerjee R, Issa JB, Ben-Johny M, Adams PJ, Kang PW, Lee SR, Sang L, Yang W, Babich J, Zhang M, Bazazzi H, Yue NC, Tomaselli GF. A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels (Austin) 2015; 10:20-32. [PMID: 26176690 DOI: 10.1080/19336950.2015.1051272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
David T. Yue was a renowned biophysicist who dedicated his life to the study of Ca(2+) signaling in cells. In the wake of his passing, we are left not only with a feeling of great loss, but with a tremendous and impactful body of work contributed by a remarkable man. David's research spanned the spectrum from atomic structure to organ systems, with a quantitative rigor aimed at understanding the fundamental mechanisms underlying biological function. Along the way he developed new tools and approaches, enabling not only his own research but that of his contemporaries and those who will come after him. While we cannot hope to replicate the eloquence and style we are accustomed to in David's writing, we nonetheless undertake a review of David's chosen field of study with a focus on many of his contributions to the calcium channel field.
Collapse
Affiliation(s)
- Ivy E Dick
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Worawan B Limpitikul
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jacqueline Niu
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Rahul Banerjee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - John B Issa
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manu Ben-Johny
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Paul J Adams
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,b Kwantlen Polytechnic University ; Surrey , BC Canada
| | - Po Wei Kang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Shin Rong Lee
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Lingjie Sang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Wanjun Yang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Jennifer Babich
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Manning Zhang
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Hojjat Bazazzi
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Nancy C Yue
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| | - Gordon F Tomaselli
- a Calcium Signals Laboratory; Department of Biomedical Engineering ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.,c Division of Cardiology; Department of Medicine ; Johns Hopkins University School of Medicine ; Baltimore , MD USA
| |
Collapse
|
17
|
Paul F. Cranefield Award to Matthew Trudeau. J Gen Physiol 2015; 145:3-4. [PMID: 25512597 PMCID: PMC4278183 DOI: 10.1085/jgp.201411331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Kusch J, Zifarelli G. Patch-clamp fluorometry: electrophysiology meets fluorescence. Biophys J 2014; 106:1250-7. [PMID: 24655500 DOI: 10.1016/j.bpj.2014.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/23/2013] [Accepted: 02/06/2014] [Indexed: 12/26/2022] Open
Abstract
Ion channels and transporters are membrane proteins whose functions are driven by conformational changes. Classical biophysical techniques provide insight into either the structure or the function of these proteins, but a full understanding of their behavior requires a correlation of both these aspects in time. Patch-clamp and voltage-clamp fluorometry combine spectroscopic and electrophysiological techniques to simultaneously detect conformational changes and ionic currents across the membrane. Since its introduction, patch-clamp fluorometry has been responsible for invaluable advances in our knowledge of ion channel biophysics. Over the years, the technique has been applied to many different ion channel families to address several biophysical questions with a variety of spectroscopic approaches and electrophysiological configurations. This review illustrates the strength and the flexibility of patch-clamp fluorometry, demonstrating its potential as a tool for future research.
Collapse
Affiliation(s)
- Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany.
| | - Giovanni Zifarelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy.
| |
Collapse
|
19
|
Vocke K, Dauner K, Hahn A, Ulbrich A, Broecker J, Keller S, Frings S, Möhrlen F. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. ACTA ACUST UNITED AC 2014; 142:381-404. [PMID: 24081981 PMCID: PMC3787769 DOI: 10.1085/jgp.201311015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.
Collapse
Affiliation(s)
- Kerstin Vocke
- Department of Molecular Physiology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dai G, Sherpa T, Varnum MD. Alternative splicing governs cone cyclic nucleotide-gated (CNG) channel sensitivity to regulation by phosphoinositides. J Biol Chem 2014; 289:13680-90. [PMID: 24675082 DOI: 10.1074/jbc.m114.562272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.
Collapse
Affiliation(s)
- Gucan Dai
- From the Department of Integrative Physiology and Neuroscience
| | | | | |
Collapse
|
21
|
Fischer C, Kugler A, Hoth S, Dietrich P. An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. PLANT & CELL PHYSIOLOGY 2013; 54:573-84. [PMID: 23385145 PMCID: PMC3612182 DOI: 10.1093/pcp/pct021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/28/2013] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide-gated channels (CNGCs) form non-selective cation entry pathways regulated by calmodulin (CaM), a universal Ca(2+) sensor in eukaryotes. Although CaM binding has been shown to be important for Ca(2+)-dependent feedback regulation of CNGC activity, the CaM-binding properties of these channels have been investigated in a few cases only. We show that CNGC20 from Arabidopsis thaliana binds CaM in a Ca(2+)-dependent manner and interacts with all AtCaM isoforms but not with the CaM-like proteins CML8 and CML9. CaM interaction with the full-length channel was demonstrated in planta, using bimolecular fluorescence complementation. This interaction occurred at the plasma membrane, in accordance with our localization data of green fluorescent protein (GFP)-fused CNGC20 proteins. The CaM-binding site was mapped to an isoleucine glutamine (IQ) motif, which has not been characterized in plant CNGCs so far. Our results show that compared with the overlapping binding sites for cyclic nucleotides and CaM in CNGCs studied so far, they are sequentially organized in CNGC20. The presence of two alternative CaM-binding modes indicates that ligand regulation of plant CNGCs is more complex than previously expected. Since the IQ domain is conserved among plant CNGCs, this domain adds to the variability of Ca(2+)-dependent channel control mechanisms underlining the functional diversity within this multigene family.
Collapse
Affiliation(s)
- Cornelia Fischer
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Annette Kugler
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Molekulare Pflanzenphysiologie, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Petra Dietrich
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| |
Collapse
|
22
|
Abstract
Ion channels, as membrane proteins, are the sensors of the cell. They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells. Because of their importance in cellular communication, ion channels have been intensively studied at the structural and functional levels. Here, we summarize the diverse approaches, including molecular and cellular, chemical, optical, biophysical, and computational, used to probe the structural and functional rearrangements that occur during channel activation (or sensitization), inactivation (or desensitization), and various forms of modulation. The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.
Collapse
Affiliation(s)
- Wei-Guang Li
- Neuroscience Division, Department of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
23
|
Shuart NG, Haitin Y, Camp SS, Black KD, Zagotta WN. Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nat Commun 2011; 2:457. [PMID: 21878911 PMCID: PMC3265371 DOI: 10.1038/ncomms1466] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/01/2011] [Indexed: 11/20/2022] Open
Abstract
Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels. The assembly mechanisms of heteromeric ion channels are poorly understood. Using a range of techniques, Shuartet al.determine the mechanism by which rod photoreceptor cyclic nucleotide-gated channels assume a 3:1 stoichiometry of CNGA1 and CNGB1 subunits.![]()
Collapse
Affiliation(s)
- Noah G Shuart
- Howard Hughes Medical Institute and Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, USA
| | | | | | | | | |
Collapse
|
24
|
Ungerer N, Mücke N, Broecker J, Keller S, Frings S, Möhrlen F. Distinct binding properties distinguish LQ-type calmodulin-binding domains in cyclic nucleotide-gated channels. Biochemistry 2011; 50:3221-8. [PMID: 21413724 DOI: 10.1021/bi200115m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels operate as transduction channels in photoreceptors and olfactory receptor neurons. Direct binding of cGMP or cAMP opens these channels which conduct a mixture of monovalent cations and Ca(2+). Upon activation, CNG channels generate intracellular Ca(2+) signals that play pivotal roles in the transduction cascades of the visual and olfactory systems. Channel activity is controlled by negative feedback mechanisms that involve Ca(2+)-calmodulin, for which all CNG channels possess binding sites. Here we compare the binding properties of the two LQ-type calmodulin binding sites, both of which are thought to be involved in channel regulation. They reside on the isoforms CNGB1 and CNGA4. The CNGB1 subunit is present in rod photoreceptors and olfactory receptor neurons. The CNGA4 subunit is only expressed in olfactory receptor neurons, and there are conflicting results as to its role in calmodulin-mediated feedback inhibition. We examined the interaction of Ca(2+)-calmodulin with two recombinant proteins that encompass either of the two LQ sites. Comparing binding properties, we found that the LQ site of CNGB1 binds Ca(2+)-calmodulin at 10-fold lower Ca(2+) levels than the LQ site of CNGA4. Our data provide biochemical evidence against a contribution of CNGA4 to feedback inhibition. In accordance with previous work on photoreceptor CNG channels, our results indicate that feedback control is the exclusive role of the B-subunits in photoreceptors and olfactory receptor neurons.
Collapse
Affiliation(s)
- Nicole Ungerer
- Department of Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Macromolecules drive the complex behavior of neurons. For example, channels and transporters control the movements of ions across membranes, SNAREs direct the fusion of vesicles at the synapse, and motors move cargo throughout the cell. Understanding the structure, assembly, and conformational movements of these and other neuronal proteins is essential to understanding the brain. Developments in fluorescence have allowed the architecture and dynamics of proteins to be studied in real time and in a cellular context with great accuracy. In this review, we cover classic and recent methods for studying protein structure, assembly, and dynamics with fluorescence. These methods include fluorescence and luminescence resonance energy transfer, single-molecule bleaching analysis, intensity measurements, colocalization microscopy, electron transfer, and bimolecular complementation analysis. We present the principles of these methods, highlight recent work that uses the methods, and discuss a framework for interpreting results as they apply to molecular neurobiology.
Collapse
|
26
|
A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels. Proc Natl Acad Sci U S A 2009; 106:13082-7. [PMID: 19651618 DOI: 10.1073/pnas.0900180106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human ether á go-go related gene (hERG) potassium channels play a central role in cardiac repolarization where channel closing (deactivation) regulates current density during action potentials. Consequently, mutations in hERG that perturb deactivation are linked to long QT syndrome (LQTS), a catastrophic cardiac arrhythmia. Interactions between an N-terminal domain and the pore-forming "core" of the channel were proposed to regulate deactivation, however, despite its central importance the mechanistic basis for deactivation is unclear. Here, to more directly examine the mechanism for regulation of deactivation, we genetically fused N-terminal domains to fluorescent proteins and tested channel function with electrophysiology and protein interactions with Förster resonance energy transfer (FRET) spectroscopy. Truncation of hERG N-terminal regions markedly sped deactivation, and here we report that reapplication of gene fragments encoding N-terminal residues 1-135 (the "eag domain") was sufficient to restore regulation of deactivation. We show that fluorophore-tagged eag domains and N-truncated channels were in close proximity at the plasma membrane as determined with FRET. The eag domains with Y43A or R56Q (a LQTS locus) mutations showed less regulation of deactivation and less FRET, whereas eag domains restored regulation of deactivation gating to full-length Y43A or R56Q channels and showed FRET. This study demonstrates that direct, noncovalent interactions between the eag domain and the channel core were sufficient to regulate deactivation gating, that an LQTS mutation perturbed physical interactions between the eag domain and the channel, and that small molecules such as the eag domain represent a novel method for restoring function to channels with disease-causing mutations.
Collapse
|
27
|
Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA. Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. THE PLANT CELL 2007; 19:1081-95. [PMID: 17384171 PMCID: PMC1867353 DOI: 10.1105/tpc.106.045096] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 02/09/2007] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca(2+), nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca(2+) into cells and provide a model linking this Ca(2+) current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca(2+) current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen-associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca(2+) current, which may be linked to NO generation due to buildup of cytosolic Ca(2+)/calmodulin.
Collapse
Affiliation(s)
- Rashid Ali
- Agricultural Biotechnology Laboratory, University of Conecticut, Storrs, Conecticut 06269-4163, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Biskup C, Kusch J, Schulz E, Nache V, Schwede F, Lehmann F, Hagen V, Benndorf K. Relating ligand binding to activation gating in CNGA2 channels. Nature 2007; 446:440-3. [PMID: 17322905 DOI: 10.1038/nature05596] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 01/12/2007] [Indexed: 11/09/2022]
Abstract
Cyclic nucleotide-gated (CNG) ion channels mediate sensory signal transduction in photoreceptors and olfactory cells. Structurally, CNG channels are heterotetramers composed of either two or three homologue subunits. Although it is well established that activation is a cooperative process of these subunits, it remains unknown whether the cooperativity is generated by the ligand binding, the gating, or both, and how the subunits interact. In this study, the action of homotetrameric olfactory-type CNGA2 channels was studied in inside-out membrane patches by simultaneously determining channel activation and ligand binding, using the fluorescent cGMP analogue 8-DY547-cGMP as the ligand. At concentrations of 8-DY547-cGMP < 1 microM, steady-state binding was larger than steady-state activation, whereas at higher concentrations it was smaller, generating a crossover of the steady-state relationships. Global analysis of these relationships together with multiple activation time courses following cGMP jumps showed that four ligands bind to the channels and that there is significant interaction between the binding sites. Among the binding steps, the second is most critical for channel opening: its association constant is three orders of magnitude smaller than the others and it triggers a switch from a mostly closed to a maximally open state. These results contribute to unravelling the role of the subunits in the cooperative mechanism of CNGA2 channel activation and could be of general relevance for the action of other ion channels and receptors.
Collapse
Affiliation(s)
- Christoph Biskup
- Institut für Physiologie II, Friedrich-Schiller-Universität Jena, D 07740 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Grishchenko VM, Orlova TG, Freidin AA, Orlov NY. Calcium-dependent interaction of transducin with calmodulin Sepharose. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Paillart C, Zhang K, Rebrik TI, Baehr W, Korenbrot JI. Cloning and molecular characterization of cGMP-gated ion channels from rod and cone photoreceptors of striped bass ( M. saxatilis ) retina. Vis Neurosci 2006; 23:99-113. [PMID: 16597354 DOI: 10.1017/s0952523806231092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/01/2005] [Indexed: 11/06/2022]
Abstract
Vertebrate photoreceptors respond to light with changes in membrane conductance that reflect the activity of cyclic-nucleotide gated channels (CNG channels). The functional features of these channels differ in rods and cones; to understand the basis of these differences we cloned CNG channels from the retina of striped bass, a fish from which photoreceptors can be isolated and studied electrophysiologically. Through a combination of experimental approaches, we recovered and sequenced three full-length cDNA clones. We made unambiguous assignments of the cellular origin of the clones through single photoreceptor RT-PCR. Synthetic peptides derived from the sequence were used to generate monospecific antibodies which labeled intact, unfixed photoreceptors and confirmed the cellular assignment of the various clones. In rods, we identified the channel alpha subunit gene product as 2040 bp in length, transcribed into two mRNA 1.8 kb and 2.9 kb in length and translated into a single 96-kDa protein. In cones we identified both alpha (CNGA3) and beta (CNGB3) channel subunits. For alpha, the gene product is 1956 bp long, the mRNA 3.4 kb, and the protein 74 kDa. For beta, the gene product is 2265 bp long and the mRNA 3.3 kb. Based on deduced amino acid sequence, we developed a phylogenetic map of the evolution of vertebrate rod and cone CNG channels. Sequence comparison revealed channels in striped bass, unlike those in mammals, are likely not N-linked-glycosylated as they are transported within the photoreceptor. Also bass cone channels lack certain residues that, in mammals, can be phosphorylated and, thus, affect the cGMP sensitivity of gating. On the other hand, functionally critical residues, such as positively charged amino acids within the fourth transmembrane helix (S4) and the Ca(2+)-binding glutamate in the pore loop are absolutely the same in mammalian and nonmammalian species.
Collapse
Affiliation(s)
- Christophe Paillart
- Department of Physiology, School of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Patch fluorometry has emerged as a new approach to the study of the structure-function relationship in membrane-embedded functional ion channels. Simultaneous fluorescent and electrical recordings are achieved from a small number of channels in a cell-free membrane patch, yielding high recording sensitivities. Further improvement of this approach should permit direct observation of the gating motion of a single-channel protein.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
32
|
Gandhi CS, Isacoff EY. Shedding light on membrane proteins. Trends Neurosci 2005; 28:472-9. [PMID: 16043238 DOI: 10.1016/j.tins.2005.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/08/2005] [Accepted: 07/15/2005] [Indexed: 11/25/2022]
Abstract
Membrane proteins are a cell's first line of communication with the world that exists just beyond the plasma membrane. These proteins afford the cell a peek at its external environment, signal the cell to adjust its internal chemistry in response to its surroundings, and ensure that the cell's metabolic state is faithfully coupled to the outside world. Because of their importance in cellular communication, membrane proteins have been the focus of intense study at the functional and structural levels. Here, we describe optical techniques that can either passively monitor or actively control the structural rearrangements that take place as these proteins peek at the outside world. Our focus is on ion channels, but the techniques described can be applied to a host of other proteins.
Collapse
Affiliation(s)
- Chris S Gandhi
- Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91101, USA
| | | |
Collapse
|