1
|
Thapa A, Beh JH, Robinson SD, Deuis JR, Tran H, Vetter I, Keramidas A. A venom peptide-induced Na V channel modulation mechanism involving the interplay between fixed channel charges and ionic gradients. J Biol Chem 2024; 300:107757. [PMID: 39260690 PMCID: PMC11470524 DOI: 10.1016/j.jbc.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Venoms are used by arthropods either to immobilize prey or as defense against predators. Our study focuses on the venom peptide, Ta3a, from the African ant species, Tetramorium africanum and its effects on voltage-gated sodium (NaV) channels, which are ion channels responsible for the generation of electrical signals in electrically excitable cells, such as neurons. Using the NaV1.7 isoform as our model NaV channel we show that Ta3a prolongs single channel active periods with increased open probability and induces non-inactivating whole-cell currents. Ta3a-affected NaV1.7 channels exhibit a leftward (hyperpolarizing) shift in activation threshold, constitutive activity even in the absence of an activating voltage stimulus, and at cell membrane voltages where channels are normally silent. Current-voltage experiments show that Ta3a shifts the voltage at which NaV current changes direction (reversal potential) by altering the local ionic concentration of permeant ions (Na+) rather than changing the channel's preference for ionic species. We propose a model where Ta3a maintains the positively charged voltage-sensing (S4) domains of the channel in the activated configuration where their electric field is exposed to the extracellular membrane surface to create an ionic bilayer comprising S4 domains and mobile anions (Cl-). This bilayer has a depolarizing effect on the cell membrane, thus reducing the amount of externally applied voltage required for channel activation.
Collapse
Affiliation(s)
- Ashvriya Thapa
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jia Hao Beh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hue Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
2
|
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 2023; 17:2281714. [PMID: 37983307 PMCID: PMC10761118 DOI: 10.1080/19336950.2023.2281714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve and muscle, and voltage-gated calcium channels couple depolarization of the plasma membrane to intracellular events such as secretion, contraction, synaptic transmission, and gene expression. In this Review and Perspective article, I summarize early work that led to identification, purification, functional reconstitution, and determination of the amino acid sequence of the protein subunits of sodium and calcium channels and showed that their pore-forming subunits are closely related. Decades of study by antibody mapping, site-directed mutagenesis, and electrophysiological recording led to detailed two-dimensional structure-function maps of the amino acid residues involved in voltage-dependent activation and inactivation, ion permeation and selectivity, and pharmacological modulation. Most recently, high-resolution three-dimensional structure determination by X-ray crystallography and cryogenic electron microscopy has revealed the structural basis for sodium and calcium channel function and pharmacological modulation at the atomic level. These studies now define the chemical basis for electrical signaling and provide templates for future development of new therapeutic agents for a range of neurological and cardiovascular diseases.
Collapse
|
3
|
Catacuzzeno L, Conti F, Franciolini F. Fifty years of gating currents and channel gating. J Gen Physiol 2023; 155:e202313380. [PMID: 37410612 PMCID: PMC10324510 DOI: 10.1085/jgp.202313380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
We celebrate this year the 50th anniversary of the first electrophysiological recordings of the gating currents from voltage-dependent ion channels done in 1973. This retrospective tries to illustrate the context knowledge on channel gating and the impact gating-current recording had then, and how it continued to clarify concepts, elaborate new ideas, and steer the scientific debate in these 50 years. The notion of gating particles and gating currents was first put forward by Hodgkin and Huxley in 1952 as a necessary assumption for interpreting the voltage dependence of the Na and K conductances of the action potential. 20 years later, gating currents were actually recorded, and over the following decades have represented the most direct means of tracing the movement of the gating charges and gaining insights into the mechanisms of channel gating. Most work in the early years was focused on the gating currents from the Na and K channels as found in the squid giant axon. With channel cloning and expression on heterologous systems, other channels as well as voltage-dependent enzymes were investigated. Other approaches were also introduced (cysteine mutagenesis and labeling, site-directed fluorometry, cryo-EM crystallography, and molecular dynamics [MD] modeling) to provide an integrated and coherent view of voltage-dependent gating in biological macromolecules. The layout of this retrospective reflects the past 50 years of investigations on gating currents, first addressing studies done on Na and K channels and then on other voltage-gated channels and non-channel structures. The review closes with a brief overview of how the gating-charge/voltage-sensor movements are translated into pore opening and the pathologies associated with mutations targeting the structures involved with the gating currents.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Franco Conti
- Department of Physics, University of Genova, Genova, Italy
| | - Fabio Franciolini
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Kostritskii AY, Machtens JP. Domain- and state-specific shape of the electric field tunes voltage sensing in voltage-gated sodium channels. Biophys J 2023; 122:1807-1821. [PMID: 37077046 PMCID: PMC10209041 DOI: 10.1016/j.bpj.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
The ability to sense transmembrane voltage underlies most physiological roles of voltage-gated sodium (Nav) channels. Whereas the key role of their voltage-sensing domains (VSDs) in channel activation is well established, the molecular underpinnings of voltage coupling remain incompletely understood. Voltage-dependent energetics of the activation process can be described in terms of the gating charge that is defined by coupling of charged residues to the external electric field. The shape of the electric field within VSDs is therefore crucial for the activation of voltage-gated ion channels. Here, we employed molecular dynamics simulations of cardiac Nav1.5 and bacterial NavAb, together with our recently developed tool g_elpot, to gain insights into the voltage-sensing mechanisms of Nav channels via high-resolution quantification of VSD electrostatics. In contrast to earlier low-resolution studies, we found that the electric field within VSDs of Nav channels has a complex isoform- and domain-specific shape, which prominently depends on the activation state of a VSD. Different VSDs vary not only in the length of the region where the electric field is focused but also differ in their overall electrostatics, with possible implications in the diverse ion selectivity of their gating pores. Due to state-dependent field reshaping, not only translocated basic but also relatively immobile acidic residues contribute significantly to the gating charge. In the case of NavAb, we found that the transition between structurally resolved activated and resting states results in a gating charge of 8e, which is noticeably lower than experimental estimates. Based on the analysis of VSD electrostatics in the two activation states, we propose that the VSD likely adopts a deeper resting state upon hyperpolarization. In conclusion, our results provide an atomic-level description of the gating charge, demonstrate diversity in VSD electrostatics, and reveal the importance of electric-field reshaping for voltage sensing in Nav channels.
Collapse
Affiliation(s)
- Andrei Y Kostritskii
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany; Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany; Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Quaye JA, Gadda G. Uncovering Zn 2+ as a cofactor of FAD-dependent Pseudomonas aeruginosa PAO1 d-2-hydroxyglutarate dehydrogenase. J Biol Chem 2023; 299:103007. [PMID: 36775126 PMCID: PMC10025160 DOI: 10.1016/j.jbc.2023.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa couples the oxidation of d-2-hydroxyglutarate (D2HG) to l-serine biosynthesis for survival, using d-2-hydroxyglutarate dehydrogenase from P. aeruginosa (PaD2HGDH). Knockout of PaD2HGDH impedes P. aeruginosa growth, making PaD2HGDH a potential target for therapeutics. Previous studies showed that the enzyme's activity increased with Zn2+, Co2+, or Mn2+ but did not establish the enzyme's metal composition and whether the metal is an activator or a required cofactor for the enzyme, which we addressed in this study. Comparable to the human enzyme, PaD2HGDH showed only 15% flavin reduction with D2HG or d-malate. Upon purifying PaD2HGDH with 1 mM Zn2+, the Zn2+:protein stoichiometry was 2:1, yielding an enzyme with ∼40 s-1kcat for d-malate. Treatment with 1 mM EDTA decreased the Zn2+:protein ratio to 1:1 without changing the kinetic parameters with d-malate. We observed complete enzyme inactivation for the metalloapoenzyme with 100 mM EDTA treatment, suggesting that Zn2+ is essential for PaD2HGDH activity. The presence of Zn2+ increased the flavin N3 atom pKa value to 11.9, decreased the flavin ε450 at pH 7.4 from 13.5 to 11.8 mM-1 cm-1, and yielded a charged transfer complex with a broad absorbance band >550 nm, consistent with a Zn2+-hydrate species altering the electronic properties of the enzyme-bound FAD. The exogenous addition of Zn2+, Co2+, Cd2+, Mn2+, or Ni2+ to the metalloapoenzyme reactivated the enzyme in a sigmoidal pattern, consistent with an induced fit rapid-rearrangement mechanism. Collectively, our data demonstrate that PaD2HGDH is a Zn2+-dependent metallo flavoprotein, which requires Zn2+ as an essential cofactor for enzyme activity.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
7
|
Shi YP, Thouta S, Claydon TW. Modulation of hERG K + Channel Deactivation by Voltage Sensor Relaxation. Front Pharmacol 2020; 11:139. [PMID: 32184724 PMCID: PMC7059196 DOI: 10.3389/fphar.2020.00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
The hERG (human-ether-à-go-go-related gene) channel underlies the rapid delayed rectifier current, Ikr, in the heart, which is essential for normal cardiac electrical activity and rhythm. Slow deactivation is one of the hallmark features of the unusual gating characteristics of hERG channels, and plays a crucial role in providing a robust current that aids repolarization of the cardiac action potential. As such, there is significant interest in elucidating the underlying mechanistic determinants of slow hERG channel deactivation. Recent work has shown that the hERG channel S4 voltage sensor is stabilized following activation in a process termed relaxation. Voltage sensor relaxation results in energetic separation of the activation and deactivation pathways, producing a hysteresis, which modulates the kinetics of deactivation gating. Despite widespread observation of relaxation behaviour in other voltage-gated K+ channels, such as Shaker, Kv1.2 and Kv3.1, as well as the voltage-sensing phosphatase Ci-VSP, the relationship between stabilization of the activated voltage sensor by the open pore and voltage sensor relaxation in the control of deactivation has only recently begun to be explored. In this review, we discuss present knowledge and questions raised related to the voltage sensor relaxation mechanism in hERG channels and compare structure-function aspects of relaxation with those observed in related ion channels. We focus discussion, in particular, on the mechanism of coupling between voltage sensor relaxation and deactivation gating to highlight the insight that these studies provide into the control of hERG channel deactivation gating during their physiological functioning.
Collapse
Affiliation(s)
- Yu Patrick Shi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Samrat Thouta
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
8
|
Fang Y, Kirkland J, Amaye IJ, Jackson-Ayotunde P, George M. Molecular Docking Studies on Anticonvulsant Enaminones Inhibiting Voltage-Gated Sodium Channels. ACTA ACUST UNITED AC 2019; 9:241-257. [PMID: 34012723 DOI: 10.4236/ojpc.2019.94015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although, several new anticonvulsants have been introduced, some types of seizures have still not been adequately controlled with these new and current therapies. There is an urgent need to develop new anticonvulsant drugs to control the many different types of seizures. Many studies have shown that the epilepsies involve more than one mechanism and therefore may be responsible for the various types of observed seizures. Recently reported studies have shown that a group of newly synthesized 6 Hz active anticonvulsant fluorinated N-benzamide enaminones to exhibited selective inhibitions of voltage-gated sodium (Nav) channels. Nav channels are responsible for the initial inward currents during the depolarization phases of the action potential in excitable cells. The activation and opening of Nav channels result in the initial phases of action potentials. We hypothesize that there is an essential pharmacophore model for the interactions between these enaminones and the active sites of Nav channels. The research reported here is focused on molecular docking studies of the interactions that occur between the fluorinated N-benzamide enaminones and the Nav channels. These studies may open an avenue for designing anticonvulsant drugs by inhibiting Nav channels.
Collapse
Affiliation(s)
- Yayin Fang
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Jamiya Kirkland
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Isis J Amaye
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, 1 Backbone Road, Princess Anne, MD 21853, USA
| | - Patrice Jackson-Ayotunde
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, 1 Backbone Road, Princess Anne, MD 21853, USA
| | - Matthew George
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
9
|
Cooperativity and Steep Voltage Dependence in a Bacterial Channel. Int J Mol Sci 2019; 20:ijms20184501. [PMID: 31514419 PMCID: PMC6770917 DOI: 10.3390/ijms20184501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
This paper reports on the discovery of a novel three-membrane channel unit exhibiting very steep voltage dependence and strong cooperative behavior. It was reconstituted into planar phospholipid membranes formed by the monolayer method and studied under voltage-clamp conditions. The behavior of the novel channel-former, isolated from Escherichia coli, is consistent with a linearly organized three-channel unit displaying steep voltage-gating (a minimum of 14 charges in the voltage sensor) that rivals that of channels in mammalian excitable membranes. The channels also display strong cooperativity in that closure of the first channel permits the second to close and closure of the second channel permits closure of the third. All three have virtually the same conductance and selectivity, and yet the first and third close at positive potentials whereas the second closes at negative potentials. Thus, is it likely that the second channel-former is oriented in the membrane in a direction opposite to that of the other two. This novel structure is named “triplin.” The extraordinary behavior of triplin indicates that it must have important and as yet undefined physiological roles.
Collapse
|
10
|
Abstract
The opening of voltage-gated ion channels is initiated by transfer of gating charges that sense the electric field across the membrane. Although transient receptor potential ion channels (TRP) are members of this family, their opening is not intrinsically linked to membrane potential, and they are generally not considered voltage gated. Here we demonstrate that TRPP2, a member of the polycystin subfamily of TRP channels encoded by the PKD2L1 gene, is an exception to this rule. TRPP2 borrows a biophysical riff from canonical voltage-gated ion channels, using 2 gating charges found in its fourth transmembrane segment (S4) to control its conductive state. Rosetta structural prediction demonstrates that the S4 undergoes ∼3- to 5-Å transitional and lateral movements during depolarization, which are coupled to opening of the channel pore. Here both gating charges form state-dependent cation-π interactions within the voltage sensor domain (VSD) during membrane depolarization. Our data demonstrate that the transfer of a single gating charge per channel subunit is requisite for voltage, temperature, and osmotic swell polymodal gating of TRPP2. Taken together, we find that irrespective of stimuli, TRPP2 channel opening is dependent on activation of its VSDs.
Collapse
|
11
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
12
|
Finol-Urdaneta RK, McArthur JR, Goldschen-Ohm MP, Gaudet R, Tikhonov DB, Zhorov BS, French RJ. Batrachotoxin acts as a stent to hold open homotetrameric prokaryotic voltage-gated sodium channels. J Gen Physiol 2018; 151:186-199. [PMID: 30587506 PMCID: PMC6363421 DOI: 10.1085/jgp.201812278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
Abstract
Batrachotoxin (BTX), an alkaloid from skin secretions of dendrobatid frogs, causes paralysis and death by facilitating activation and inhibiting deactivation of eukaryotic voltage-gated sodium (Nav) channels, which underlie action potentials in nerve, muscle, and heart. A full understanding of the mechanism by which BTX modifies eukaryotic Nav gating awaits determination of high-resolution structures of functional toxin-channel complexes. Here, we investigate the action of BTX on the homotetrameric prokaryotic Nav channels NaChBac and NavSp1. By combining mutational analysis and whole-cell patch clamp with molecular and kinetic modeling, we show that BTX hinders deactivation and facilitates activation in a use-dependent fashion. Our molecular model shows the horseshoe-shaped BTX molecule bound within the open pore, forming hydrophobic H-bonds and cation-π contacts with the pore-lining helices, leaving space for partially dehydrated sodium ions to permeate through the hydrophilic inner surface of the horseshoe. We infer that bulky BTX, bound at the level of the gating-hinge residues, prevents the S6 rearrangements that are necessary for closure of the activation gate. Our results reveal general similarities to, and differences from, BTX actions on eukaryotic Nav channels, whose major subunit is a single polypeptide formed by four concatenated, homologous, nonidentical domains that form a pseudosymmetric pore. Our determination of the mechanism by which BTX activates homotetrameric voltage-gated channels reveals further similarities between eukaryotic and prokaryotic Nav channels and emphasizes the tractability of bacterial Nav channels as models of voltage-dependent ion channel gating. The results contribute toward a deeper, atomic-level understanding of use-dependent natural and synthetic Nav channel agonists and antagonists, despite their overlapping binding motifs on the channel proteins.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Department of Physiology & Pharmacology and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jeffrey R McArthur
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia.,Department of Biological Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Robert J French
- Department of Physiology & Pharmacology and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Shi YP, Thouta S, Cheng YM, Claydon TW. Extracellular protons accelerate hERG channel deactivation by destabilizing voltage sensor relaxation. J Gen Physiol 2018; 151:231-246. [PMID: 30530765 PMCID: PMC6363419 DOI: 10.1085/jgp.201812137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/23/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022] Open
Abstract
The human ether-à-go-go–related gene (hERG) encodes a delayed rectifier K+ channel with slow deactivation gating. Shi et al. find that acidic residues on S3 contribute to slow deactivation kinetics by stabilizing the relaxed state of the voltage sensor, which can be mitigated by extracellular protons. hERG channels underlie the delayed-rectifier K+ channel current (IKr), which is crucial for membrane repolarization and therefore termination of the cardiac action potential. hERG channels display unusually slow deactivation gating, which contributes to a resurgent current upon repolarization and may protect against post-depolarization–induced arrhythmias. hERG channels also exhibit robust mode shift behavior, which reflects the energetic separation of activation and deactivation pathways due to voltage sensor relaxation into a stable activated state. The mechanism of relaxation is unknown and likely contributes to slow hERG channel deactivation. Here, we use extracellular acidification to probe the structural determinants of voltage sensor relaxation and its influence on the deactivation gating pathway. Using gating current recordings and voltage clamp fluorimetry measurements of voltage sensor domain dynamics, we show that voltage sensor relaxation is destabilized at pH 6.5, causing an ∼20-mV shift in the voltage dependence of deactivation. We show that the pH dependence of the resultant loss of mode shift behavior is similar to that of the deactivation kinetics acceleration, suggesting that voltage sensor relaxation correlates with slower pore gate closure. Neutralization of D509 in S3 also destabilizes the relaxed state of the voltage sensor, mimicking the effect of protons, suggesting that acidic residues on S3, which act as countercharges to S4 basic residues, are involved in stabilizing the relaxed state and slowing deactivation kinetics. Our findings identify the mechanistic determinants of voltage sensor relaxation and define the long-sought mechanism by which protons accelerate hERG deactivation.
Collapse
Affiliation(s)
- Yu Patrick Shi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Samrat Thouta
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
14
|
Yang E, Granata D, Eckenhoff RG, Carnevale V, Covarrubias M. Propofol inhibits prokaryotic voltage-gated Na + channels by promoting activation-coupled inactivation. J Gen Physiol 2018; 150:1299-1316. [PMID: 30018038 PMCID: PMC6122921 DOI: 10.1085/jgp.201711924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 µM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation.
Collapse
Affiliation(s)
- Elaine Yang
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Daniele Granata
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Manuel Covarrubias
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
15
|
Abstract
A voltage change across a membrane protein moves charges or dipoles producing a gating current that is an electrical expression of a conformational change. Many membrane proteins sense the voltage across the membrane where they are inserted, and their function is affected by voltage changes. The voltage sensor consists of charges or dipoles that move in response to changes in the electric field, and their movement produces an electric current that has been called gating current. In the case of voltage-gated ion channels, the kinetic and steady-state properties of the gating charges provide information of conformational changes between closed states that are not visible when observing ionic currents only. In this Journal of General Physiology Milestone, the basic principles of voltage sensing and gating currents are presented, followed by a historical description of the recording of gating currents. The results of gating current recordings are then discussed in the context of structural changes in voltage-dependent membrane proteins and how these studies have provided new insights on gating mechanisms.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
| |
Collapse
|
16
|
Yang E, Zhi L, Liang Q, Covarrubias M. Electrophysiological Analysis of Voltage-Gated Ion Channel Modulation by General Anesthetics. Methods Enzymol 2018; 602:339-368. [PMID: 29588038 DOI: 10.1016/bs.mie.2018.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Voltage-gated ion channels (VGICs) of excitable tissues are emerging as targets likely involved in both the therapeutic and toxic effects of inhaled and intravenous general anesthetics. Whereas sevoflurane and propofol inhibit voltage-gated Na+ channels (Navs), sevoflurane potentiates certain voltage-gated K+ channels (Kvs). The combination of these effects would dampen neural excitability and, therefore, might contribute to the clinical endpoints of general anesthesia. As the body of work regarding the interaction of general anesthetics with VGICs continues to grow, a multidisciplinary approach involving functional, biochemical, structural, and computational techniques, many of which are detailed in other chapters, has increasingly become necessary to solve the molecular mechanism of general anesthetic action on VGICs. Here, we focus on electrophysiological and modeling approaches and methodologies to describe how our work has elucidated the biophysical basis of the inhibition Navs by propofol and the potentiation of Kvs by sevoflurane.
Collapse
Affiliation(s)
- Elaine Yang
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Lianteng Zhi
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Qiansheng Liang
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Pevarnik M, Cui W, Yemenicioglu S, Rofeh J, Theogarajan L. Solid-state nanopore based biomimetic voltage gated ion channels. BIOINSPIRATION & BIOMIMETICS 2017; 12:066008. [PMID: 28726670 DOI: 10.1088/1748-3190/aa811b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Voltage gating is essential to the computational ability of neurons. We show this effect can be mimicked in a solid-state nanopore by functionalizing the pore interior with a redox active molecule. We study the integration of an active biological molecule-a quinone-into a solid state nanopore, and its subsequent induced voltage gating. We show that the voltage gating effect mimics biological gating systems in its classic sigmoidal voltage response, unlike previous synthetic voltage gating systems. Initially, the quinone undergoes a reduction due to radicals in the bulk solution, and is converted to the hydroquinone state. Upon deprontonation the hydroquinone then acts as a charged nanomechanical arm, which opens the channel under the applied potential. We establish that the quinone gains a single net charge when the pH inside of the nanopore reaches its pKa value, and explore factors that influence the net pH in the middle of the pore. Using a combination of theory, experiment and simulation, we conclude that concentration polarization and a shift of the pH inside of the channel is the main cause of this gating effect.
Collapse
Affiliation(s)
- Matthew Pevarnik
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-9560, United States of America. Department of Science and Math, Regent University, Virginia Beach, VA 23464-5037, United States of America
| | | | | | | | | |
Collapse
|
18
|
Ferreira Gregorio J, Pequera G, Manno C, Ríos E, Brum G. The voltage sensor of excitation-contraction coupling in mammals: Inactivation and interaction with Ca 2. J Gen Physiol 2017; 149:1041-1058. [PMID: 29021148 PMCID: PMC5677103 DOI: 10.1085/jgp.201611725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/03/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
In excitation–contraction coupling, voltage-sensing modules (VSMs) of CaV1.1 Ca2+ channels simultaneously gate the associated pore and Ca2+ release channels in the sarcoplasmic reticulum. Ferreira Gregorio et al. find that VSMs adopt two inactivated states, and the degree of inactivation is dependent on external Ca2+ and the mouse strain used. In skeletal muscle, the four-helix voltage-sensing modules (VSMs) of CaV1.1 calcium channels simultaneously gate two Ca2+ pathways: the CaV1.1 pore itself and the RyR1 calcium release channel in the sarcoplasmic reticulum. Here, to gain insight into the mechanism by which VSMs gate RyR1, we quantify intramembrane charge movement associated with VSM activation (sensing current) and gated Ca2+ release flux in single muscle cells of mice and rats. As found for most four-helix VSMs, upon sustained depolarization, rodent VSMs lose the ability to activate Ca2+ release channels opening; their properties change from a functionally capable mode, in which the mobile sensor charge is called charge 1, to an inactivated mode, charge 2, with a voltage dependence shifted toward more negative voltages. We find that charge 2 is promoted and Ca2+ release inactivated when resting, well-polarized muscle cells are exposed to low extracellular [Ca2+] and that the opposite occurs in high [Ca2+]. It follows that murine VSMs are partly inactivated at rest, which establishes the reduced availability of voltage sensing as a pathogenic mechanism in disorders of calcemia. We additionally find that the degree of resting inactivation is significantly different in two mouse strains, which underscores the variability of voltage sensor properties and their vulnerability to environmental conditions. Our studies reveal that the resting and activated states of VSMs are equally favored by extracellular Ca2+. Promotion by an extracellular species of two states of the VSM that differ in the conformation of the activation gate requires the existence of a second gate, inactivation, topologically extracellular and therefore accessible from outside regardless of the activation state.
Collapse
Affiliation(s)
| | - Germán Pequera
- Departamento de Biofísica, Facultad de Medicina, Montevideo, Uruguay
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL
| | - Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL
| | - Gustavo Brum
- Departamento de Biofísica, Facultad de Medicina, Montevideo, Uruguay
| |
Collapse
|
19
|
Changeux JP, Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes Metab 2017; 19 Suppl 1:4-21. [PMID: 28880476 DOI: 10.1111/dom.12959] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Site/drug effects
- Animals
- Binding Sites/drug effects
- Dimerization
- Drug Discovery/trends
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Humans
- Ligand-Gated Ion Channels/agonists
- Ligand-Gated Ion Channels/antagonists & inhibitors
- Ligand-Gated Ion Channels/chemistry
- Ligand-Gated Ion Channels/metabolism
- Ligands
- Models, Molecular
- Protein Conformation/drug effects
- Protein Multimerization/drug effects
- Receptor Protein-Tyrosine Kinases/agonists
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Voltage-Gated Sodium Channels/chemistry
- Voltage-Gated Sodium Channels/metabolism
Collapse
Affiliation(s)
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia
| |
Collapse
|
20
|
Sand RM, Gingrich KJ, Macharadze T, Herold KF, Hemmings HC. Isoflurane modulates activation and inactivation gating of the prokaryotic Na + channel NaChBac. J Gen Physiol 2017; 149:623-638. [PMID: 28416648 PMCID: PMC5460948 DOI: 10.1085/jgp.201611600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/04/2016] [Accepted: 03/15/2017] [Indexed: 02/01/2023] Open
Abstract
The pharmacological effects of inhaled anesthetics on ion channel function are poorly understood. Sand et al. analyze macroscopic gating of the prokaryotic voltage-gated sodium channel, NaChBac, using a six-state kinetic scheme and demonstrate that isoflurane modulates microscopic gating properties. Voltage-gated Na+ channels (Nav) have emerged as important presynaptic targets for volatile anesthetic (VA) effects on synaptic transmission. However, the detailed biophysical mechanisms by which VAs modulate Nav function remain unclear. VAs alter macroscopic activation and inactivation of the prokaryotic Na+ channel, NaChBac, which provides a useful structural and functional model of mammalian Nav. Here, we study the effects of the common general anesthetic isoflurane on NaChBac function by analyzing macroscopic Na+ currents (INa) in wild-type (WT) channels and mutants with impaired (G229A) or enhanced (G219A) inactivation. We use a previously described six-state Markov model to analyze empirical WT and mutant NaChBac channel gating data. The model reproduces the mean empirical gating manifest in INa time courses and optimally estimates microscopic rate constants, valences (z), and fractional electrical distances (x) of forward and backward transitions. The model also reproduces gating observed for all three channels in the absence or presence of isoflurane, providing further validation. We show using this model that isoflurane increases forward activation and inactivation rate constants at 0 mV, which are associated with estimated chemical free energy changes of approximately −0.2 and −0.7 kcal/mol, respectively. Activation is voltage dependent (z ≈ 2e0, x ≈ 0.3), inactivation shows little voltage dependence, and isoflurane has no significant effect on either. Forward inactivation rate constants are more than 20-fold greater than backward rate constants in the absence or presence of isoflurane. These results indicate that isoflurane modulates NaChBac gating primarily by increasing forward activation and inactivation rate constants. These findings support accumulating evidence for multiple sites of anesthetic interaction with the channel.
Collapse
Affiliation(s)
- Rheanna M Sand
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Kevin J Gingrich
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Tamar Macharadze
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Karl F Herold
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 .,Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
21
|
Carnevale V, Klein ML. Small molecule modulation of voltage gated sodium channels. Curr Opin Struct Biol 2017; 43:156-162. [PMID: 28363194 DOI: 10.1016/j.sbi.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/28/2022]
Abstract
Voltage gated sodium channels are fundamental players in animals physiology. By triggering the depolarization of the lipid membrane they enable generation and propagation of the action potential. The involvement of these channels in numerous pathological conditions makes them relevant target for pharmaceutical intervention. Therefore, modulation of sodium conductance via small molecule binding constitutes a promising strategy to treat a large variety of diseases. However, this approach entails significant challenges: voltage gated sodium channels are complex nanomachines and the details of their workings have only recently started to become clear. Here we review - with emphasis on the computational studies - some of the major milestones in the long-standing search of a quantitative microscopic description of the molecular mechanism and modulation of voltage-gated sodium channels.
Collapse
Affiliation(s)
- Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, United States.
| | - Michael L Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
22
|
Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter. Proc Natl Acad Sci U S A 2017; 114:3234-3239. [PMID: 28265056 DOI: 10.1073/pnas.1618101114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mode-shift or hysteresis has been reported in ion channels. Voltage-shift for gating currents is well documented for voltage-gated cation channels (VGCC), and it is considered a voltage-sensing domain's (VSD) intrinsic property. However, uncoupling the Shaker K+ channel's pore domain (PD) from the VSD prevented the mode-shift of the gating currents. Consequently, it was proposed that an open-state stabilization of the PD imposes a mechanical load on the VSD, which causes its mode-shift. Furthermore, the mode-shift displayed by hyperpolarization-gated cation channels is likely caused by structural changes at the channel's PD similar to those underlying C-type inactivation. To demonstrate that the PD of VGCC undergoes hysteresis, it is imperative to study its gating process in the absence of the VSD. A back-door strategy is to use KcsA (a K+ channel from the bacteria Streptomyces lividans) as a surrogate because it lacks a VSD and exhibits an activation coupled to C-type inactivation. By directly measuring KcsA's activation gate opening and closing in conditions that promote or halt C-type inactivation, we have found (i) that KcsA undergoes mode-shift of gating when having K+ as the permeant ion; (ii) that Cs+ or Rb+, known to halt C-inactivation, prevented mode-shift of gating; and (iii) that, in the total absence of C-type inactivation, KcsA's mode-shift was prevented. Finally, our results demonstrate that an allosteric communication causes KcsA's activation gate to "remember" the conformation of the selectivity filter, and hence KcsA requires a different amount of energy for opening than for closing.
Collapse
|
23
|
Sun RN, Gong H. Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field. J Phys Chem Lett 2017; 8:901-908. [PMID: 28171721 DOI: 10.1021/acs.jpclett.7b00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Voltage-gated sodium (NaV) channels play vital roles in the signal transduction of excitable cells. Upon activation of a NaV channel, the change of transmembrane voltage triggers conformational change of the voltage sensing domain, which then elicits opening of the pore domain and thus allows an influx of Na+ ions. Description of this process with atomistic details is in urgent demand. In this work, we simulated the partial activation process of the voltage sensing domain of a prokaryotic NaV channel using a polarizable force field. We not only observed the conformational change of the voltage sensing domain from resting to preactive state, but also rigorously estimated the free energy profile along the identified reaction pathway. Comparison with the control simulation using an additive force field indicates that voltage-gating thermodynamics of NaV channels may be inaccurately described without considering the electrostatic polarization effect.
Collapse
Affiliation(s)
- Rui-Ning Sun
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
24
|
Sula A, Booker J, Ng LCT, Naylor CE, DeCaen PG, Wallace BA. The complete structure of an activated open sodium channel. Nat Commun 2017; 8:14205. [PMID: 28205548 PMCID: PMC5316852 DOI: 10.1038/ncomms14205] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4–S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate. Voltage-gated sodium (Nav) channels are crucial for action potential initiation in excitable cells. Here the authors present the complete structure of prokaryotic NavMs in a fully open state, providing structural insight into the opening and closure of the channel's intracellular gate.
Collapse
Affiliation(s)
- Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Jennifer Booker
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, Illinois 60611, USA
| | - Claire E Naylor
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, Illinois 60611, USA
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
25
|
Voltage-gated sodium channels viewed through a structural biology lens. Curr Opin Struct Biol 2016; 45:74-84. [PMID: 27988421 DOI: 10.1016/j.sbi.2016.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
Voltage-gated sodium (Nav) channels initiate and propagate action potentials in excitable cells, and are frequently dysregulated or mutated in human disease. Despite decades of intense physiological and biophysical research, eukaryotic Nav channels have so far eluded high-resolution structure determination because of their biochemical complexity. Recently, simpler bacterial voltage-gated sodium (BacNav) channels have provided templates to understand the structural basis of voltage-dependent activation, inactivation, ion selectivity, and drug block in eukaryotic Nav and related voltage-gated calcium (Cav) channels. Further breakthroughs employing BacNav channels have also enabled visualization of bound small molecule modulators that can guide the rational design of next generation therapeutics. This review will highlight the emerging structural biology of BacNav channels and its contribution to our understanding of the gating, ion selectivity, and pharmacological regulation of eukaryotic Nav (and Cav) channels.
Collapse
|
26
|
Zhao J, Blunck R. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. eLife 2016; 5. [PMID: 27710769 PMCID: PMC5092046 DOI: 10.7554/elife.18130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/30/2016] [Indexed: 01/28/2023] Open
Abstract
Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| |
Collapse
|
27
|
Abstract
Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- a Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| |
Collapse
|
28
|
Covarrubias M, Barber AF, Carnevale V, Treptow W, Eckenhoff RG. Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics. Biophys J 2016; 109:2003-11. [PMID: 26588560 DOI: 10.1016/j.bpj.2015.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
General anesthesia is a relatively safe medical procedure, which for nearly 170 years has allowed life saving surgical interventions in animals and people. However, the molecular mechanism of general anesthesia continues to be a matter of importance and debate. A favored hypothesis proposes that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. Neurotransmitter-gated ion channels and two-pore K+ channels are key players in the mechanism of anesthesia; however, new studies have also implicated voltage-gated ion channels. Recent biophysical and structural studies of Na+ and K+ channels strongly suggest that halogenated inhalational general anesthetics interact with gates and pore regions of these ion channels to modulate function. Here, we review these studies and provide a perspective to stimulate further advances.
Collapse
Affiliation(s)
- Manuel Covarrubias
- Department of Neuroscience and Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Annika F Barber
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Werner Treptow
- Laboratorio de Biologia Teorica e Computacional, Universidade de Brasilia, Brazil
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Vien TN, DeCaen PG. Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:39-64. [PMID: 27586280 DOI: 10.1016/bs.ctm.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This chapter describes the adaptive features found in voltage-gated sodium channels (NaVs) of prokaryotes and eukaryotes. These two families are distinct, having diverged early in evolutionary history but maintain a surprising degree of convergence in function. While prokaryotic NaVs are required for growth and motility, eukaryotic NaVs selectively conduct fast electrical currents for short- and long-range signaling across cell membranes in mammalian organs. Current interest in prokaryotic NaVs is stoked by their resolved high-resolution structures and functional features which are reminiscent of eukaryotic NaVs. In this chapter, comparisons between eukaryotic and prokaryotic NaVs are made to highlight the shared and unique aspects of ion selectivity, voltage sensitivity, and pharmacology. Examples of prokaryotic and eukaryotic NaV convergent evolution will be discussed within the context of their structural features.
Collapse
Affiliation(s)
- T N Vien
- Tufts University, Boston, MA, United States
| | - P G DeCaen
- Children's Hospital Boston, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Northwestern University, Chicago, IL, United States
| |
Collapse
|
30
|
Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell 2016; 166:1084-1102. [DOI: 10.1016/j.cell.2016.08.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
|
31
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
32
|
Corbin-Leftwich A, Mossadeq SM, Ha J, Ruchala I, Le AHN, Villalba-Galea CA. Retigabine holds KV7 channels open and stabilizes the resting potential. ACTA ACUST UNITED AC 2016; 147:229-41. [PMID: 26880756 PMCID: PMC4772374 DOI: 10.1085/jgp.201511517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 02/04/2023]
Abstract
The anticonvulsant Retigabine is a KV7 channel agonist used to treat hyperexcitability disorders in humans. Retigabine shifts the voltage dependence for activation of the heteromeric KV7.2/KV7.3 channel to more negative potentials, thus facilitating activation. Although the molecular mechanism underlying Retigabine's action remains unknown, previous studies have identified the pore region of KV7 channels as the drug's target. This suggested that the Retigabine-induced shift in voltage dependence likely derives from the stabilization of the pore domain in an open (conducting) conformation. Testing this idea, we show that the heteromeric KV7.2/KV7.3 channel has at least two open states, which we named O1 and O2, with O2 being more stable. The O1 state was reached after short membrane depolarizations, whereas O2 was reached after prolonged depolarization or during steady state at the typical neuronal resting potentials. We also found that activation and deactivation seem to follow distinct pathways, suggesting that the KV7.2/KV7.3 channel activity displays hysteresis. As for the action of Retigabine, we discovered that this agonist discriminates between open states, preferentially acting on the O2 state and further stabilizing it. Based on these findings, we proposed a novel mechanism for the therapeutic effect of Retigabine whereby this drug reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. To address this hypothesis, we used a model for action potential (AP) in Xenopus laevis oocytes and found that the resting membrane potential became more negative as a function of Retigabine concentration, whereas the threshold potential for AP firing remained unaltered.
Collapse
Affiliation(s)
- Aaron Corbin-Leftwich
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Sayeed M Mossadeq
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Junghoon Ha
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Iwona Ruchala
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Audrey Han Ngoc Le
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| |
Collapse
|
33
|
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280.
| |
Collapse
|
34
|
Kubota T, Lacroix JJ, Bezanilla F, Correa AM. Probing α-3(10) transitions in a voltage-sensing S4 helix. Biophys J 2015; 107:1117-1128. [PMID: 25185547 DOI: 10.1016/j.bpj.2014.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/10/2014] [Accepted: 07/22/2014] [Indexed: 01/24/2023] Open
Abstract
The S4 helix of voltage sensor domains (VSDs) transfers its gating charges across the membrane electrical field in response to changes of the membrane potential. Recent studies suggest that this process may occur via the helical conversion of the entire S4 between α and 310 conformations. Here, using LRET and FRET, we tested this hypothesis by measuring dynamic changes in the transmembrane length of S4 from engineered VSDs expressed in Xenopus oocytes. Our results suggest that the native S4 from the Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) does not exhibit extended and long-lived 310 conformations and remains mostly α-helical. Although the S4 of NavAb displays a fully extended 310 conformation in x-ray structures, its transplantation in the Ci-VSP VSD scaffold yielded similar results as the native Ci-VSP S4. Taken together, our study does not support the presence of long-lived extended α-to-310 helical conversions of the S4 in Ci-VSP associated with voltage activation.
Collapse
Affiliation(s)
- Tomoya Kubota
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Jérôme J Lacroix
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
| | - Ana M Correa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
35
|
Abstract
The voltage sensitive domain (VSD) is a pivotal structure of voltage-gated ion channels (VGICs) and plays an essential role in the generation of electrochemical signals by neurons, striated muscle cells, and endocrine cells. The VSD is not unique to VGICs. Recent studies have shown that a VSD regulates a phosphatase. Similarly, Hv1, a voltage-sensitive protein that lacks an apparent pore domain, is a self-contained voltage sensor that operates as an H⁺ channel. VSDs are formed by four transmembrane helices (S1-S4). The S4 helix is positively charged due to the presence of arginine and lysine residues. It is surrounded by two water crevices that extend into the membrane from both the extracellular and intracellular milieus. A hydrophobic septum disrupts communication between these water crevices thus preventing the permeation of ions. The septum is maintained by interactions between the charged residues of the S4 segment and the gating charge transfer center. Mutating the charged residue of the S4 segment allows the water crevices to communicate and generate gating pore or omega pore. Gating pore currents have been reported to underlie several neuronal and striated muscle channelopathies. Depending on which charged residue on the S4 segment is mutated, gating pores are permeant either at depolarized or hyperpolarized voltages. Gating pores are cation selective and seem to converge toward Eisenmann's first or second selectivity sequences. Most gating pores are blocked by guanidine derivatives as well as trivalent and quadrivalent cations. Gating pores can be used to study the movement of the voltage sensor and could serve as targets for novel small therapeutic molecules.
Collapse
|
36
|
Gamal El-Din TM, Scheuer T, Catterall WA. Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. ACTA ACUST UNITED AC 2015; 144:147-57. [PMID: 25070432 PMCID: PMC4113903 DOI: 10.1085/jgp.201411210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Comparison of the kinetics and voltage dependence of gating pore current conducted by S4 gating charge mutants supports the sliding-helix model of voltage sensor function and elucidates the pathogenic mechanisms underlying periodic paralysis syndromes. Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.
Collapse
Affiliation(s)
| | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
37
|
Li Y, Gong H. Theoretical and simulation studies on voltage-gated sodium channels. Protein Cell 2015; 6:413-22. [PMID: 25894089 PMCID: PMC4444806 DOI: 10.1007/s13238-015-0152-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nav channels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the progress in computational studies, especially the simulation studies, on these proteins in the past years.
Collapse
Affiliation(s)
- Yang Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
38
|
Booth IR, Miller S, Müller A, Lehtovirta-Morley L. The evolution of bacterial mechanosensitive channels. Cell Calcium 2014; 57:140-50. [PMID: 25591932 DOI: 10.1016/j.ceca.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Mechanosensitive channels are ubiquitous and highly studied. However, the evolution of the bacterial channels remains enigmatic. It can be argued that mechanosensitivity might be a feature of all membrane proteins with some becoming progressively less sensitive to membrane tension over the course of evolution. Bacteria and archaea exhibit two main classes of channels, MscS and MscL. Present day channels suggest that the evolution of MscL may be highly constrained, whereas MscS has undergone elaboration via gene fusion (and potentially gene fission) events to generate a diversity of channel structures. Some of these channel variants are constrained to a small number of genera or species. Some are only found in higher organisms. Only exceptionally have these diverse channels been investigated in any detail. In this review we consider both the processes that might have led to the evolved complexity but also some of the methods exploiting the explosion of genome sequences to understand (and/or track) their distribution. The role of MscS-related channels in calcium-mediated cell biology events is considered.
Collapse
Affiliation(s)
- Ian R Booth
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Samantha Miller
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, Broad Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Laura Lehtovirta-Morley
- Institute of Biological and Environmental Sciences, Cruikshank Building, University of Aberdeen, St Machar Drive, Aberdeen AB24 3UU, UK.
| |
Collapse
|
39
|
Bagnéris C, Naylor CE, McCusker EC, Wallace BA. Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. ACTA ACUST UNITED AC 2014; 145:5-16. [PMID: 25512599 PMCID: PMC4278185 DOI: 10.1085/jgp.201411242] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In excitable cells, the initiation of the action potential results from the opening of voltage-gated sodium channels. These channels undergo a series of conformational changes between open, closed, and inactivated states. Many models have been proposed for the structural transitions that result in these different functional states. Here, we compare the crystal structures of prokaryotic sodium channels captured in the different conformational forms and use them as the basis for examining molecular models for the activation, slow inactivation, and recovery processes. We compare structural similarities and differences in the pore domains, specifically in the transmembrane helices, the constrictions within the pore cavity, the activation gate at the cytoplasmic end of the last transmembrane helix, the C-terminal domain, and the selectivity filter. We discuss the observed differences in the context of previous models for opening, closing, and inactivation, and present a new structure-based model for the functional transitions. Our proposed prokaryotic channel activation mechanism is then compared with the activation transition in eukaryotic sodium channels.
Collapse
Affiliation(s)
- Claire Bagnéris
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - Claire E Naylor
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - Emily C McCusker
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| |
Collapse
|
40
|
Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner CJ, Lloyd TE, Macleod GT, Bellen HJ, Venkatachalam K. A TRPV channel in Drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron 2014; 84:764-77. [PMID: 25451193 DOI: 10.1016/j.neuron.2014.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/30/2022]
Abstract
Presynaptic resting Ca(2+) influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca(2+)] by promoting Ca(2+) release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction. Thus, loss of Iav induces destabilization of presynaptic microtubules, resulting in diminished synaptic growth. Interestingly, expression of human TRPV1 in Iav-deficient motor neurons rescues these defects. We also show that the absence of Iav causes lower SV release probability and diminished synaptic transmission, whereas Iav overexpression elevates these synaptic parameters. Together, our findings indicate that Iav acts as a key regulator of synaptic development and function by influencing presynaptic resting [Ca(2+)].
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Kuchuan Chen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yong Qi Lin
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Zhongmin Lu
- Integrative Biology and Neuroscience program, Florida Atlantic University and Max Planck Florida Institute, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Wan Hee Yoon
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Gregory T Macleod
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hugo J Bellen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Graduate Programs in Cell and Regulatory Biology (CRB) and Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030.
| |
Collapse
|
41
|
Payandeh J, Minor DL. Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol 2014; 427:3-30. [PMID: 25158094 DOI: 10.1016/j.jmb.2014.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (Na(V)s) provide the initial electrical signal that drives action potential generation in many excitable cells of the brain, heart, and nervous system. For more than 60years, functional studies of Na(V)s have occupied a central place in physiological and biophysical investigation of the molecular basis of excitability. Recently, structural studies of members of a large family of bacterial voltage-gated sodium channels (BacNa(V)s) prevalent in soil, marine, and salt lake environments that bear many of the core features of eukaryotic Na(V)s have reframed ideas for voltage-gated channel function, ion selectivity, and pharmacology. Here, we analyze the recent advances, unanswered questions, and potential of BacNa(V)s as templates for drug development efforts.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Priest MF, Lacroix JJ, Villalba-Galea CA, Bezanilla F. S3-S4 linker length modulates the relaxed state of a voltage-gated potassium channel. Biophys J 2014; 105:2312-22. [PMID: 24268143 DOI: 10.1016/j.bpj.2013.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 02/01/2023] Open
Abstract
Voltage-sensing domains (VSDs) are membrane protein modules found in ion channels and enzymes that are responsible for a large number of fundamental biological tasks, such as neuronal electrical activity. The VSDs switch from a resting to an active conformation upon membrane depolarization, altering the activity of the protein in response to voltage changes. Interestingly, numerous studies describe the existence of a third distinct state, called the relaxed state, also populated at positive potentials. Although some physiological roles for the relaxed state have been suggested, little is known about the molecular determinants responsible for the development and modulation of VSD relaxation. Several lines of evidence have suggested that the linker (S3-S4 linker) between the third (S3) and fourth (S4) transmembrane segments of the VSD alters the equilibrium between resting and active conformations. By measuring gating currents from the Shaker potassium channel, we demonstrate here that shortening the S3-S4 linker stabilizes the relaxed state, whereas lengthening the linker or splitting it and coinjecting two fragments of the channel have little effect. We propose that natural variations of the length of the S3-S4 linker in various VSD-containing proteins may produce differential VSD relaxation in vivo.
Collapse
Affiliation(s)
- Michael F Priest
- Committee on Neurobiology, University of Chicago, Chicago, Illinois; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | | | | | | |
Collapse
|
43
|
Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. Proc Natl Acad Sci U S A 2014; 111:6726-31. [PMID: 24753583 DOI: 10.1073/pnas.1405768111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Halogenated inhaled general anesthetic agents modulate voltage-gated ion channels, but the underlying molecular mechanisms are not understood. Many general anesthetic agents regulate voltage-gated Na(+) (NaV) channels, including the commonly used drug sevoflurane. Here, we investigated the putative binding sites and molecular mechanisms of sevoflurane action on the bacterial NaV channel NaChBac by using a combination of molecular dynamics simulation, electrophysiology, and kinetic analysis. Structural modeling revealed multiple sevoflurane interaction sites possibly associated with NaChBac modulation. Electrophysiologically, sevoflurane favors activation and inactivation at low concentrations (0.2 mM), and additionally accelerates current decay at high concentrations (2 mM). Explaining these observations, kinetic modeling suggests concurrent destabilization of closed states and low-affinity open channel block. We propose that the multiple effects of sevoflurane on NaChBac result from simultaneous interactions at multiple sites with distinct affinities. This multiple-site, multiple-mode hypothesis offers a framework to study the structural basis of general anesthetic action.
Collapse
|
44
|
Sarangi S, Mahapatra APK, Kundu AK, Mohapatra S. Functional biology of ion channels: a review. Vet World 2014. [DOI: 10.14202/vetworld.2014.13-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Scheuer T. Bacterial sodium channels: models for eukaryotic sodium and calcium channels. Handb Exp Pharmacol 2014; 221:269-91. [PMID: 24737241 DOI: 10.1007/978-3-642-41588-3_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.
Collapse
Affiliation(s)
- Todd Scheuer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA,
| |
Collapse
|
46
|
Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron 2013; 79:651-7. [PMID: 23972594 DOI: 10.1016/j.neuron.2013.05.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 11/21/2022]
Abstract
Most action potentials are produced by the sequential activation of voltage-gated sodium (Nav) and potassium (Kv) channels. This is mainly achieved by the rapid conformational rearrangement of voltage-sensor (VS) modules in Nav channels, with activation kinetics up to 6-fold faster than Shaker-type Kv channels. Here, using mutagenesis and gating current measurements, we show that a 3-fold acceleration of the VS kinetics in Nav versus Shaker Kv channels is produced by the hydrophilicity of two "speed-control" residues located in the S2 and S4 segments in Nav domains I-III. An additional 2-fold acceleration of the Nav VS kinetics is provided by the coexpression of the β1 subunit, ubiquitously found in mammal tissues. This study uncovers the molecular bases responsible for the differential activation of Nav versus Kv channels, a fundamental prerequisite for the genesis of action potentials.
Collapse
|
47
|
Zhang X, Yan N. The conformational shifts of the voltage sensing domains between Na(v)Rh and Na(v)Ab. Cell Res 2012; 23:444-7. [PMID: 23147793 DOI: 10.1038/cr.2012.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
48
|
Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations. Proc Natl Acad Sci U S A 2012; 109:21336-41. [PMID: 23150565 DOI: 10.1073/pnas.1218087109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The X-ray structure of the bacterial voltage-gated sodium channel NavAb has been reported in a conformation with a closed conduction pore. Comparison between this structure and the activated-open and resting-closed structures of the voltage-gated Kv1.2 potassium channel suggests that the voltage-sensor domains (VSDs) of the reported structure are not fully activated. Using the aforementioned structures of Kv1.2 as templates, molecular dynamics simulations are used to identify analogous functional conformations of NavAb. Specifically, starting from the NavAb crystal structure, conformations of the membrane-bound channel are sampled along likely pathways for activation of the VSD and opening of the pore domain. Gating charge computations suggest that a structural rearrangement comparable to that occurring between activated-open and resting-closed states is required to explain experimental values of the gating charge, thereby confirming that the reported VSD structure is likely an intermediate along the channel activation pathway. Our observation that the X-ray structure exhibits a low pore domain-opening propensity further supports this notion. The present molecular dynamics study also identifies conformations of NavAb that are seemingly related to the resting-closed and activated-open states. Our findings are consistent with recent structural and functional studies of the orthologous channels NavRh, NaChBac, and NavMs and offer possible structures for the functionally relevant conformations of NavAb.
Collapse
|
49
|
Paldi T. RETRACTED ARTICLE: Deprotonation of Arginines in S4 is Involved in NaChBac Gating. J Membr Biol 2012; 245:761. [DOI: 10.1007/s00232-012-9430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/01/2012] [Indexed: 11/29/2022]
|
50
|
Labro AJ, Lacroix JJ, Villalba-Galea CA, Snyders DJ, Bezanilla F. Molecular mechanism for depolarization-induced modulation of Kv channel closure. ACTA ACUST UNITED AC 2012; 140:481-93. [PMID: 23071266 PMCID: PMC3483114 DOI: 10.1085/jgp.201210817] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-dependent potassium (Kv) channels provide the repolarizing power that shapes the action potential duration and helps control the firing frequency of neurons. The K+ permeation through the channel pore is controlled by an intracellularly located bundle-crossing (BC) gate that communicates with the voltage-sensing domains (VSDs). During prolonged membrane depolarizations, most Kv channels display C-type inactivation that halts K+ conduction through constriction of the K+ selectivity filter. Besides triggering C-type inactivation, we show that in Shaker and Kv1.2 channels (expressed in Xenopus laevis oocytes), prolonged membrane depolarizations also slow down the kinetics of VSD deactivation and BC gate closure during the subsequent membrane repolarization. Measurements of deactivating gating currents (reporting VSD movement) and ionic currents (BC gate status) showed that the kinetics of both slowed down in two distinct phases with increasing duration of the depolarizing prepulse. The biphasic slowing in VSD deactivation and BC gate closure was strongly correlated in time and magnitude. Simultaneous recordings of ionic currents and fluorescence from a probe tracking VSD movement in Shaker directly demonstrated that both processes were synchronized. Whereas the first slowing originates from a stabilization imposed by BC gate opening, the subsequent slowing reflects the rearrangement of the VSD toward its relaxed state (relaxation). The VSD relaxation was observed in the Ciona intestinalis voltage-sensitive phosphatase and in its isolated VSD. Collectively, our results show that the VSD relaxation is not kinetically related to C-type inactivation and is an intrinsic property of the VSD. We propose VSD relaxation as a general mechanism for depolarization-induced slowing of BC gate closure that may enable Kv1.2 channels to modulate the firing frequency of neurons based on the depolarization history.
Collapse
Affiliation(s)
- Alain J Labro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|