1
|
Kuwabara MF, Klemptner J, Muth J, De Martino E, Oliver D, Berger TK. Zinc inhibits the voltage-gated proton channel HCNL1. Biophys J 2024; 123:4256-4265. [PMID: 39210595 DOI: 10.1016/j.bpj.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Voltage-gated ion channels allow ion flux across biological membranes in response to changes in the membrane potential. HCNL1 is a recently discovered voltage-gated ion channel that selectively conducts protons through its voltage-sensing domain (VSD), reminiscent of the well-studied depolarization-activated Hv1 proton channel. However, HCNL1 is activated by hyperpolarization, allowing the influx of protons, which leads to an intracellular acidification in zebrafish sperm. Zinc ions (Zn2+) are important cofactors in many proteins and essential for sperm physiology. Proton channels such as Hv1 and Otopetrin1 are inhibited by Zn2+. We investigated the effect of Zn2+ on heterologously expressed HCNL1 channels using electrophysiological and fluorometric techniques. Extracellular Zn2+ inhibits HCNL1 currents with an apparent half-maximal inhibition (IC50) of 26 μM. Zn2+ slows voltage-dependent current kinetics, shifts the voltage-dependent activation to more negative potentials, and alters hyperpolarization-induced conformational changes of the voltage sensor. Our data suggest that extracellular Zn2+ inhibits HCNL1 currents by multiple mechanisms, including modulation of channel gating. Two histidine residues located at the extracellular side of the VSD might weakly contribute to Zn2+ coordination: mutants with either histidine replaced with alanine show modest shifts of the IC50 values to higher concentrations. Interestingly, Zn2+ inhibits HCNL1 at even lower concentrations from the intracellular side (IC50 ≈ 0.5 μM). A histidine residue at the intracellular end of S1 (position 50) is important for Zn2+ binding: much higher Zn2+ concentrations are required to inhibit the mutant HCNL1-H50A (IC50 ≈ 106 μM). We anticipate that Zn2+ will be a useful ion to study the structure-function relationship of HCNL1 as well as the physiological role of HCNL1 in zebrafish sperm.
Collapse
Affiliation(s)
- Makoto F Kuwabara
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Joschua Klemptner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Julia Muth
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Emilia De Martino
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany
| | - Thomas K Berger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
DeCoursey TE. Transcendent Aspects of Proton Channels. Annu Rev Physiol 2024; 86:357-377. [PMID: 37931166 PMCID: PMC10938948 DOI: 10.1146/annurev-physiol-042222-023242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pHi, decrease pHo, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, USA;
| |
Collapse
|
3
|
Peña-Pichicoi A, Fernández M, Navarro-Quezada N, Alvear-Arias JJ, Carrillo CA, Carmona EM, Garate J, Lopez-Rodriguez AM, Neely A, Hernández-Ochoa EO, González C. N-terminal region is responsible for mHv1 channel activity in MDSCs. Front Pharmacol 2023; 14:1265130. [PMID: 37915407 PMCID: PMC10616795 DOI: 10.3389/fphar.2023.1265130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance-voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
Collapse
Affiliation(s)
- Antonio Peña-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Nieves Navarro-Quezada
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian A. Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Emerson M. Carmona
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jose Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | | | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
4
|
Shen Y, Luo Y, Liao P, Zuo Y, Jiang R. Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems. Neurosci Bull 2023; 39:1157-1172. [PMID: 37029856 PMCID: PMC10313628 DOI: 10.1007/s12264-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 04/09/2023] Open
Abstract
Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.
Collapse
Affiliation(s)
- Yu Shen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
5
|
Chaves G, Ayuyan AG, Cherny VV, Morgan D, Franzen A, Fieber L, Nausch L, Derst C, Mahorivska I, Jardin C, DeCoursey TE, Musset B. Unexpected expansion of the voltage-gated proton channel family. FEBS J 2023; 290:1008-1026. [PMID: 36062330 PMCID: PMC10911540 DOI: 10.1111/febs.16617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Voltage-gated ion channels, whose first identified function was to generate action potentials, are divided into subfamilies with numerous members. The family of voltage-gated proton channels (HV ) is tiny. To date, all species found to express HV have exclusively one gene that codes for this unique ion channel. Here we report the discovery and characterization of three proton channel genes in the classical model system of neural plasticity, Aplysia californica. The three channels (AcHV 1, AcHV 2, and AcHV 3) are distributed throughout the whole animal. Patch-clamp analysis confirmed proton selectivity of these channels but they all differed markedly in gating. AcHV 1 gating resembled HV in mammalian cells where it is responsible for proton extrusion and charge compensation. AcHV 2 activates more negatively and conducts extensive inward proton current, properties likely to acidify the cytosol. AcHV 3, which differs from AcHV 1 and AcHV 2 in lacking the first arginine in the S4 helix, exhibits proton selective leak currents and weak voltage dependence. We report the expansion of the proton channel family, demonstrating for the first time the expression of three functionally distinct proton channels in a single species.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Artem G Ayuyan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, MO, USA
| | - Arne Franzen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Jülich, Germany
| | - Lynne Fieber
- Department of Marine Biology and Ecology - Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | - Lydia Nausch
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
- Department of Agriculture, Food and Nutrition, Institute of Nutrition and Food Supply Management, University of Applied Sciences Weihenstephan-Triesdorf, Freising, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Iryna Mahorivska
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Alvear-Arias JJ, Pena-Pichicoi A, Carrillo C, Fernandez M, Gonzalez T, Garate JA, Gonzalez C. Role of voltage-gated proton channel (Hv1) in cancer biology. Front Pharmacol 2023; 14:1175702. [PMID: 37153807 PMCID: PMC10157179 DOI: 10.3389/fphar.2023.1175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.
Collapse
Affiliation(s)
- Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Antonio Pena-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernandez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Tania Gonzalez
- National Center for Minimally Invasive Surgery, La Habana, Cuba
| | - Jose A. Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Carlos Gonzalez,
| |
Collapse
|
7
|
Papp F, Toombes GES, Pethő Z, Bagosi A, Feher A, Almássy J, Borrego J, Kuki Á, Kéki S, Panyi G, Varga Z. Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel. Commun Biol 2022; 5:1131. [PMID: 36289443 PMCID: PMC9606259 DOI: 10.1038/s42003-022-04065-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Voltage-clamp fluorometry (VCF) supplies information about the conformational changes of voltage-gated proteins. Changes in the fluorescence intensity of the dye attached to a part of the protein that undergoes a conformational rearrangement upon the alteration of the membrane potential by electrodes constitute the signal. The VCF signal is generated by quenching and dequenching of the fluorescence as the dye traverses various local environments. Here we studied the VCF signal generation, using the Hv1 voltage-gated proton channel as a tool, which shares a similar voltage-sensor structure with voltage-gated ion channels but lacks an ion-conducting pore. Using mutagenesis and lipids added to the extracellular solution we found that the signal is generated by the combined effects of lipids during movement of the dye relative to the plane of the membrane and by quenching amino acids. Our 3-state model recapitulates the VCF signals of the various mutants and is compatible with the accepted model of two major voltage-sensor movements. Fluorometry signals indicating conformational change in an ion channel are generated by quenching amino acids and lipid effects during movement of the dye relative to the plane of the membrane.
Collapse
Affiliation(s)
- Ferenc Papp
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Gilman E. S. Toombes
- grid.94365.3d0000 0001 2297 5165Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Dr., MSC 3701, Bethesda, MD 20892-3701 USA
| | - Zoltán Pethő
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary ,grid.5949.10000 0001 2172 9288Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Adrienn Bagosi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Adam Feher
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - János Almássy
- grid.7122.60000 0001 1088 8582Department of Physiology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Jesús Borrego
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Ákos Kuki
- grid.7122.60000 0001 1088 8582Department of Applied Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Sándor Kéki
- grid.7122.60000 0001 1088 8582Department of Applied Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Gyorgy Panyi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Zoltan Varga
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| |
Collapse
|
8
|
Llanos MA, Ventura C, Martín P, Enrique N, Felice JI, Gavernet L, Milesi V. Novel Dimeric hHv1 Model and Structural Bioinformatic Analysis Reveal an ATP-Binding Site Resulting in a Channel Activating Effect. J Chem Inf Model 2022; 62:3200-3212. [PMID: 35758884 DOI: 10.1021/acs.jcim.1c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human voltage-gated proton channel (hHv1) is a highly selective ion channel codified by the HVCN1 gene. It plays a fundamental role in several physiological processes such as innate and adaptive immunity, insulin secretion, and sperm capacitation. Moreover, in humans, a higher hHv1 expression/function has been reported in several types of cancer cells. Here we report a multitemplate homology model of the hHv1 channel, built and refined as a dimer in Rosetta. The model was then subjected to extensive Gaussian accelerated molecular dynamics (GaMD) for enhanced conformational sampling, and representative snapshots were extracted by clustering analysis. Combining different structure- and sequence-based methodologies, we predicted a putative ATP-binding site located on the intracellular portion of the channel. Furthermore, GaMD simulations of the ATP-bound dimeric hHv1 model showed that ATP interacts with a cluster of positively charged residues from the cytoplasmic N and C terminal segments. According to the in silico predictions, we found that 3 mM intracellular ATP significantly increases the H+ current mediated by the hHv1 channel expressed in HEK293 cells and measured by the patch-clamp technique in an inside-out configuration (2.86 ± 0.63 fold over control at +40 mV). When ATP was added on the extracellular side, it was not able to activate the channel supporting the idea that the ATP-binding site resides in the intracellular face of the hHV1 channel. In a physiological and pathophysiological context, this ATP-mediated modulation could integrate the cell metabolic state with the H+ efflux, especially in cells where hHv1 channels are relevant for pH regulation, such as pancreatic β-cells, immune cells, and cancer cells.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Fac. de Ciencias Exactas, Universidad Nacional de La Plata. La Plata B1900ADU, Buenos Aires, Argentina
| | - Clara Ventura
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Pedro Martín
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Nicolás Enrique
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Juan I Felice
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Fac. de Ciencias Exactas, Universidad Nacional de La Plata. La Plata B1900ADU, Buenos Aires, Argentina
| | - Verónica Milesi
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| |
Collapse
|
9
|
Kim JH, Chae MR, Wijerathne TD, Cooray AD, Kim CY, Lee SW, Lee KP. In vitro assessment of Prunus japonica seed extract on human spermatozoa hypermotility and intracellular alkalization. Andrologia 2022; 54:e14471. [PMID: 35590125 DOI: 10.1111/and.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Prunus japonica var. nakaii is used in traditional Korean medicine to treat various conditions; however, it has not been investigated for treating male infertility. In this study, we investigated the in vitro effects of the ethanolic extract of P. japonica seeds on human sperm motility and identified its mechanism of action. Eleven male volunteers were selected, and the effects of the extract on human spermatozoa were assessed through a computer-assisted semen analysis. The P. japonica seed extract increased the percentage of total and progressive motility of spermatozoa. To understand the mechanism of action, we monitored intracellular alkalization using flow cytometry and obtained electrophysiological recordings of human voltage-gated proton channels hHv1 that were overexpressed in HEK-293 cells. The extract shifted the activation curves in a concentration-dependent manner. Two major constituents of the extract, linoleic acid and oleic acid, exhibited proton channel activity. Our in vitro experiments suggested that P. japonica seed extract could be potentially used to rescue sperm motility in idiopathic infertility patients via pharmacological modulation of the proton channels during capacitation. Therefore, our results indicate the therapeutic potential of P. japonica seed extract for treating male infertility.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tharaka Darshana Wijerathne
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Akila Dushyantha Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
10
|
Jardin C, Ohlwein N, Franzen A, Chaves G, Musset B. The pH-dependent gating of the human voltage-gated proton channel from computational simulations. Phys Chem Chem Phys 2022; 24:9964-9977. [PMID: 35445675 DOI: 10.1039/d1cp05609c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gating of the voltage-gated proton channel HV1 is strongly controlled by pH. There is evidence that this involves the sidechains of titratable amino acids that change their protonation state with changes of the pH. Despite experimental investigations to identify the amino acids involved in pH sensing only few progress has been made, including one histidine at the cytoplasmic side of the channel that is involved in sensing cellular pH. We have used constant pH molecular dynamics simulations in symmetrical and asymmetrical pH conditions across the membrane to investigate the pH- and ΔpH-dependent gating of the human HV1 channel. Therefore, the pKa of every titratable amino acids has been assessed in single simulations. Our simulations captured initial conformational changes between a deactivated and an activated state of the channel induced solely by changes of the pH. The pH-dependent gating is accompanied by an outward displacement of the three S4 voltage sensing arginines that moves the second arginine past the hydrophobic gasket (HG) which separates the inner and outer pores of the channel. HV1 activation, when outer pH increases, involves amino acids at the extracellular entrance of the channel that extend the network of interactions from the external solution down to the HG. Whereas, amino acids at the cytoplasmic entrance of the channel are involved in activation, when inner pH decreases, and in a network of interactions that extend from the cytoplasm up to the HG.
Collapse
Affiliation(s)
- Christophe Jardin
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Niklas Ohlwein
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany. .,Klinik für Anästhesiologie und operative Intensivmedizin, Universitätklinik der Paracelsus Medizinischen Privatuniversität, Nuremberg, Germany
| | - Arne Franzen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Gustavo Chaves
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Boris Musset
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| |
Collapse
|
11
|
Wu X, Li Y, Maienschein-Cline M, Feferman L, Wu L, Hong L. RNA-Seq Analyses Reveal Roles of the HVCN1 Proton Channel in Cardiac pH Homeostasis. Front Cell Dev Biol 2022; 10:860502. [PMID: 35372367 PMCID: PMC8967321 DOI: 10.3389/fcell.2022.860502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
The voltage-gated proton channel HVCN1 is a member of the voltage-gated ion channel family. HVCN1 channel controls acid extrusion and regulates pH homeostasis in various cell types. Recent evidence indicated that the HVCN1 channel was associated with cardiac function. To investigate the role of HVCN1 in cardiac myocytes, we performed an RNA sequencing analysis of murine hearts and showed that HVCN1 null hearts exhibited a differential transcriptome profile compared with wild-type hearts. The RNA-seq data indicating impaired pH homeostasis in HVCN1 null hearts were the downregulated NADPH oxidoreductases (NOXs) and decreased expression of Cl−/HCO3− exchanger, indicating HVCN1 is a regulator of gene transcriptional networks controlling NOX signaling and CO2 homeostasis in the heart. Additionally, HVCN1 null hearts exhibited differential expression of cardiac ion channels, suggesting a potential role of HVCN1 in cardiac electrophysiological remodeling. The study highlights the importance of HVCN1 in cardiac function and may present a novel target associated with heart diseases.
Collapse
Affiliation(s)
- Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Yawei Li
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Leonid Feferman
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Longjun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Liang Hong,
| |
Collapse
|
12
|
Orts DJB, Arcisio-Miranda M. Cell glycosaminoglycans content modulates human voltage-gated proton channel (H V 1) gating. FEBS J 2021; 289:2593-2612. [PMID: 34800064 DOI: 10.1111/febs.16290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Voltage-gated proton channels (HV 1) have been found in many mammalian cells and play a crucial role in the immune system, male fertility, and cancer progression. Glycosaminoglycans play a significant role in various aspects of cell physiology, including the modulation of membrane receptors and ion channel function. We present here evidence that mechanosensitivity of the dimeric HV 1 channel transduce changes on cell membrane fluidity related to the defective biosynthesis of chondroitin sulfate and heparan sulfate in Chinese Hamster Ovary (CHO-745) cells into a leftward shift in the activation voltage dependence. This effect was accompanied by an increase in the H+ current, and an acceleration of the activation kinetics, under symmetrical or asymmetrical pH gradient (ΔpH) conditions. Similar gating alterations were evoked by two naturally occurring HV 1 N-terminal truncated isoforms expressed in wild-type CHO-K1 and CHO-745 cells. On three different monomeric HV 1 constructs, no alterations in the biophysical parameters were observed. Moreover, we have shown that HV 1 gating can be modulated by manipulating CHO-K1 cell membrane fluidity. Our results suggest that the defective biosynthesis of chondroitin sulfate and heparan sulfate on CHO-745 cell increases membrane fluidity and allosterically modulates the coupling between voltage- and ΔpH-sensing through the dimeric HV 1 channel.
Collapse
Affiliation(s)
- Diego J B Orts
- Departamento de Biofísica, Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Universidade Federal de São Paulo - UNIFESP, Brasil
| | - Manoel Arcisio-Miranda
- Departamento de Biofísica, Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Universidade Federal de São Paulo - UNIFESP, Brasil
| |
Collapse
|
13
|
He J, Ritzel RM, Wu J. Functions and Mechanisms of the Voltage-Gated Proton Channel Hv1 in Brain and Spinal Cord Injury. Front Cell Neurosci 2021; 15:662971. [PMID: 33897377 PMCID: PMC8063047 DOI: 10.3389/fncel.2021.662971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated proton channel Hv1 is a newly discovered ion channel that is highly conserved among species. It is known that Hv1 is not only expressed in peripheral immune cells but also one of the major ion channels expressed in tissue-resident microglia of the central nervous systems (CNS). One key role for Hv1 is its interaction with NADPH oxidase 2 (NOX2) to regulate reactive oxygen species (ROS) and cytosolic pH. Emerging data suggest that excessive ROS production increases and requires proton currents through Hv1 in the injured CNS, and manipulations that ablate Hv1 expression or induce loss of function may provide neuroprotection in CNS injury models including stroke, traumatic brain injury, and spinal cord injury. Recent data demonstrating microglial Hv1-mediated signaling in the pathophysiology of the CNS injury further supports the idea that Hv1 channel may function as a key mechanism in posttraumatic neuroinflammation and neurodegeneration. In this review, we summarize the main findings of Hv1, including its expression pattern, cellular mechanism, role in aging, and animal models of CNS injury and disease pathology. We also discuss the potential of Hv1 as a therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
14
|
Kim D, Liao J, Scales NB, Martini C, Luan X, Abu-Arish A, Robert R, Luo Y, McKay GA, Nguyen D, Tewfik MA, Poirier CD, Matouk E, Ianowski JP, Frenkiel S, Hanrahan JW. Large pH oscillations promote host defense against human airways infection. J Exp Med 2021; 218:e20201831. [PMID: 33533914 PMCID: PMC7845918 DOI: 10.1084/jem.20201831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
The airway mucosal microenvironment is crucial for host defense against inhaled pathogens but remains poorly understood. We report here that the airway surface normally undergoes surprisingly large excursions in pH during breathing that can reach pH 9.0 during inhalation, making it the most alkaline fluid in the body. Transient alkalinization requires luminal bicarbonate and membrane-bound carbonic anhydrase 12 (CA12) and is antimicrobial. Luminal bicarbonate concentration and CA12 expression are both reduced in cystic fibrosis (CF), and mucus accumulation both buffers the pH and obstructs airflow, further suppressing the oscillations and bacterial-killing efficacy. Defective pH oscillations may compromise airway host defense in other respiratory diseases and explain CF-like airway infections in people with CA12 mutations.
Collapse
Affiliation(s)
- Dusik Kim
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Jie Liao
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Nathan B. Scales
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Carolina Martini
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Xiaojie Luan
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Asmahan Abu-Arish
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Renaud Robert
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Yishan Luo
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
| | - Geoffrey A. McKay
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
| | - Dao Nguyen
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
| | - Marc A. Tewfik
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
- Department of Otolaryngology–Head and Neck Surgery, McGill University Health Centre, Montréal, Québec, Canada
| | - Charles D. Poirier
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Elias Matouk
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Juan P. Ianowski
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Saul Frenkiel
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
- Department of Otolaryngology–Head and Neck Surgery, McGill University Health Centre, Montréal, Québec, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Cystic Fibrosis Translational Research Center, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Research Institute–McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
15
|
Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci 2021; 22:3384. [PMID: 33806154 PMCID: PMC8037888 DOI: 10.3390/ijms22073384] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.
Collapse
Affiliation(s)
- Miroslaw Zajac
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Elise Dreano
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Laboratoire de Physiologie rénale et Tubulopathies, CNRS ERL 8228, 75006 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, 75015 Paris, France
- Clinical Trial Network, European Cystic Fibrosis Society, BT2 Belfast, Ireland
- European Respiratory Network Lung, 75006 Paris, France
| |
Collapse
|
16
|
Okochi Y, Okamura Y. Regulation of Neutrophil Functions by Hv1/VSOP Voltage-Gated Proton Channels. Int J Mol Sci 2021; 22:ijms22052620. [PMID: 33807711 PMCID: PMC7961965 DOI: 10.3390/ijms22052620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated proton channel, Hv1, also termed VSOP, was discovered in 2006. It has long been suggested that proton transport through voltage-gated proton channels regulate reactive oxygen species (ROS) production in phagocytes by counteracting the charge imbalance caused by the activation of NADPH oxidase. Discovery of Hv1/VSOP not only confirmed this process in phagocytes, but also led to the elucidation of novel functions in phagocytes. The compensation of charge by Hv1/VSOP sustains ROS production and is also crucial for promoting Ca2+ influx at the plasma membrane. In addition, proton extrusion into neutrophil phagosomes by Hv1/VSOP is necessary to maintain neutral phagosomal pH for the effective killing of bacteria. Contrary to the function of Hv1/VSOP as a positive regulator for ROS generation, it has been revealed that Hv1/VSOP also acts to inhibit ROS production in neutrophils. Hv1/VSOP inhibits hypochlorous acid production by regulating degranulation, leading to reduced inflammation upon fungal infection, and suppresses the activation of extracellular signal-regulated kinase (ERK) signaling by inhibiting ROS production. Thus, Hv1/VSOP is a two-way player regulating ROS production. Here, we review the functions of Hv1/VSOP in neutrophils and discuss future perspectives.
Collapse
Affiliation(s)
- Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 5650871, Osaka, Japan;
- Correspondence:
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 5650871, Osaka, Japan;
- Graduate School of Frontier Bioscience, Osaka University, 2-2 Yamada-oka, Suita 5650871, Osaka, Japan
| |
Collapse
|
17
|
Voltage and pH difference across the membrane control the S4 voltage-sensor motion of the Hv1 proton channel. Sci Rep 2020; 10:21293. [PMID: 33277511 PMCID: PMC7718894 DOI: 10.1038/s41598-020-77986-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
The voltage-gated proton channel Hv1 is expressed in a variety of cells, including macrophages, sperm, and lung epithelial cells. Hv1 is gated by both the membrane potential and the difference between the intra- and extracellular pH (ΔpH). The coupling of voltage- and ∆pH-sensing is such that Hv1 opens only when the electrochemical proton gradient is outwardly directed. However, the molecular mechanism of this coupling is not known. Here, we investigate the coupling between voltage- and ΔpH-sensing of Ciona intestinalis proton channel (ciHv1) using patch-clamp fluorometry (PCF) and proton uncaging. We show that changes in ΔpH can induce conformational changes of the S4 voltage sensor. Our results are consistent with the idea that S4 can detect both voltage and ΔpH.
Collapse
|
18
|
Smith RY, Morgan D, Sharma L, Cherny VV, Tidswell N, Molo MW, DeCoursey TE. Voltage-gated proton channels exist in the plasma membrane of human oocytes. Hum Reprod 2020; 34:1974-1983. [PMID: 31633762 DOI: 10.1093/humrep/dez178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Do human oocytes express voltage-gated proton channels? SUMMARY ANSWER Human oocytes exhibit voltage-gated proton currents. WHAT IS KNOWN ALREADY Voltage-gated proton currents have been reported in human sperm, where they contribute to capacitation and motility. No such studies of human oocytes exist. STUDY DESIGN, SIZE, DURATION Voltage-clamp studies were undertaken using entire oocytes and vesicles derived from oocytes and in excised patches of membrane from oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS Frozen, thawed human metaphase II oocytes were obtained from material donated to the gamete repository at the Rush Center for Advanced Reproductive Care. Prior to patch clamping, oocytes were warmed and equilibrated. Formation of an electrically tight seal requires exposing bare oolemma. Sections of the zona pellucida (ZP) were removed using a laser, followed by repeated pipetting, to further separate the oocyte from the ZP. Patch-clamp studies were performed using the whole-cell configuration on oocytes or vesicles derived from oocytes, and using inside-out patches of membrane, under conditions optimized to detect voltage-gated proton currents. MAIN RESULTS AND THE ROLE OF CHANCE Proton currents are present at significant levels in human oocytes where they exhibit properties similar to those reported in other human cells, as well as those in heterologous expression systems transfected with the HVCN1 gene that codes for the voltage-gated proton channel. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Human oocytes are large cells, which limits our ability to control the intracellular solution. Subtle effects of cryopreservation by vitrification and subsequent warming on properties of HVCN1, the HVCN1 gene product, cannot be ruled out. WIDER IMPLICATIONS OF THE FINDINGS Possible functions for voltage-gated proton channels in human oocytes may now be contemplated. STUDY FUNDING/COMPETING INTEREST(S) NIH R35GM126902 (TED), Bears Care (DM). No competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- R Ya Smith
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - D Morgan
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - L Sharma
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - V V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - N Tidswell
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - M W Molo
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - T E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Voltage-dependent structural models of the human Hv1 proton channel from long-timescale molecular dynamics simulations. Proc Natl Acad Sci U S A 2020; 117:13490-13498. [PMID: 32461356 DOI: 10.1073/pnas.1920943117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The voltage-gated Hv1 proton channel is a ubiquitous membrane protein that has roles in a variety of cellular processes, including proton extrusion, pH regulation, production of reactive oxygen species, proliferation of cancer cells, and increased brain damage during ischemic stroke. A crystal structure of an Hv1 construct in a putative closed state has been reported, and structural models for the channel open state have been proposed, but a complete characterization of the Hv1 conformational dynamics under an applied membrane potential has been elusive. We report structural models of the Hv1 voltage-sensing domain (VSD), both in a hyperpolarized state and a depolarized state resulting from voltage-dependent conformational changes during a 10-μs-timescale atomistic molecular dynamics simulation in an explicit membrane environment. In response to a depolarizing membrane potential, the S4 helix undergoes an outward displacement, leading to changes in the VSD internal salt-bridge network, resulting in a reshaping of the permeation pathway and a significant increase in hydrogen bond connectivity throughout the channel. The total gating charge displacement associated with this transition is consistent with experimental estimates. Molecular docking calculations confirm the proposed mechanism for the inhibitory action of 2-guanidinobenzimidazole (2GBI) derived from electrophysiological measurements and mutagenesis. The depolarized structural model is also consistent with the formation of a metal bridge between residues located in the core of the VSD. Taken together, our results suggest that these structural models are representative of the closed and open states of the Hv1 channel.
Collapse
|
20
|
Okochi Y, Umemoto E, Okamura Y. Hv1/VSOP regulates neutrophil directional migration and ERK activity by tuning ROS production. J Leukoc Biol 2020; 107:819-831. [DOI: 10.1002/jlb.2a0320-110rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine Osaka University Osaka Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology School of Pharmaceutical Sciences University of Shizuoka Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine Osaka University Osaka Japan
- Graduate School of Frontier Biosciences Osaka University Osaka Japan
| |
Collapse
|
21
|
Chaves G, Bungert-Plümke S, Franzen A, Mahorivska I, Musset B. Zinc modulation of proton currents in a new voltage-gated proton channel suggests a mechanism of inhibition. FEBS J 2020; 287:4996-5018. [PMID: 32160407 PMCID: PMC7754295 DOI: 10.1111/febs.15291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/10/2020] [Accepted: 03/10/2020] [Indexed: 02/03/2023]
Abstract
The HV1 voltage‐gated proton (HV1) channel is a key component of the cellular proton extrusion machinery and is pivotal for charge compensation during the respiratory burst of phagocytes. The best‐described physiological inhibitor of HV1 is Zn2+. Externally applied ZnCl2 drastically reduces proton currents reportedly recorded in Homo sapiens, Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Rana esculenta, Helix aspersa, Ciona intestinalis, Coccolithus pelagicus, Emiliania huxleyi, Danio rerio, Helisoma trivolvis, and Lingulodinium polyedrum, but with considerable species variability. Here, we report the effects of Zn2+ and Cd2+ on HV1 from Nicoletia phytophila, NpHV1. We introduced mutations at potential Zn2+ coordination sites and measured Zn2+ inhibition in different extracellular pH, with Zn2+ concentrations up to 1000 μm. Zn2+ inhibition in NpHV1 was quantified by the slowing of the activation time constant and a positive shift of the conductance–voltage curve. Replacing aspartate in the S3‐S4 loop with histidine (D145H) enhanced both the slowing of activation kinetics and the shift in the voltage–conductance curve, such that Zn2+ inhibition closely resembled that of the human channel. Histidine is much more effective than aspartate in coordinating Zn2+ in the S3‐S4 linker. A simple Hodgkin Huxley model of NpHV1 suggests a decrease in the opening rate if it is inhibited by zinc or cadmium. Limiting slope measurements and high‐resolution clear native gel electrophoresis (hrCNE) confirmed that NpHV1 functions as a dimer. The data support the hypothesis that zinc is coordinated in between the dimer instead of the monomer. Zinc coordination sites may be potential targets for drug development.
Collapse
Affiliation(s)
- Gustavo Chaves
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Iryna Mahorivska
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Boris Musset
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| |
Collapse
|
22
|
Proton channel blockers inhibit Duox activity independent of Hv1 effects. Redox Biol 2019; 28:101346. [PMID: 31678720 PMCID: PMC6920136 DOI: 10.1016/j.redox.2019.101346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
The NADPH oxidase reaction produces protons. In the case of the NADPH oxidase, NOX2, activity depends on secretion of these protons and is inhibited by blockade of the voltage-gated proton channel (Hv1). Duox1 and Duox2 activities similarly produce intracellular protons but synthesize hydrogen peroxide directly instead of superoxide. Hv1 contributes to acid secretion in some epithelia that express Duox. To test the hypothesis that Duox activity is also sensitive to Hv1 channel blockers, Duox was assayed in the presence of either Zn2+ or 5-chloro-2-guanidinobenzimidazole (ClGBI). Both compounds inhibited Duox activity in normal human bronchial epithelial cells but with an IC50 over 10-fold higher than that reported for Hv1 (IC50 Zn2+ = 0.68 mM; IC50 ClGBI = 0.07–0.14 mM). Homogenized HEK293T cells expressing either Duox1 or Duox2 showed similar IC50 values for ClGBI suggesting these compounds inhibit the enzymes through alternate mechanisms independent of Hv1 proton secretion. Inclusion of superoxide dismutase did not restore Duox hydrogen peroxide synthesis. Addition of nigericin to eliminate any possible transmembrane pH gradients in intracellular membrane-localized Duox did not alter activity in HEK293T homogenates. Extracellular Zn2+ blocked intracellular Ca2+ increases needed for Duox activity. Together the data suggest that Duox enzyme activities in epithelia are inhibited by compounds that block Hv1 but inhibition occurs through Hv1-independent mechanisms and support the idea that Hv1 is not required for Duox activity. Hv1 proton channel inhibitors block Duox in differentiated bronchial epithelial cells. Zinc blocks Duox activity concurrently with reduction of calcium transients. ClGBI, an inhibitor of Hv1, blocks Duox activity in homogenates of cells lacking Hv1. In differentiated bronchial epithelia, Hv1 blockers did not alter intracellular pH. H+/K+ ATPase inhibition acidified cytoplasm but did not block Duox activity.
Collapse
|
23
|
Bayrhuber M, Maslennikov I, Kwiatkowski W, Sobol A, Wierschem C, Eichmann C, Frey L, Riek R. Nuclear Magnetic Resonance Solution Structure and Functional Behavior of the Human Proton Channel. Biochemistry 2019; 58:4017-4027. [PMID: 31365236 DOI: 10.1021/acs.biochem.9b00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human voltage-gated proton channel [Hv1(1) or VSDO(2)] plays an important role in the human innate immune system. Its structure differs considerably from those of other cation channels. It is built solely of a voltage-sensing domain and thus lacks the central pore domain, which is essential for other cation channels. Here, we determined the solution structure of an N- and C-terminally truncated human Hv1 (Δ-Hv1) in the resting state by nuclear magnetic resonance (NMR) spectroscopy. Δ-Hv1 comprises the typical voltage-sensing antiparallel four-helix bundle (S1-S4) preceded by an amphipathic helix (S0). The solution structure corresponds to an intermediate state between resting and activated forms of voltage-sensing domains. Furthermore, Zn2+-induced closing of proton channel Δ-Hv1 was studied with two-dimensional NMR spectroscopy, which showed that characteristic large scale dynamics of open Δ-Hv1 are absent in the closed state of the channel. Additionally, pH titration studies demonstrated that a higher H+ concentration is required for the protonation of side chains in the Zn2+-induced closed state than in the open state. These observations demonstrate both structural and dynamical changes involved in the process of voltage gating of the Hv1 channel and, in the future, may help to explain the unique properties of unidirectional conductance and the exceptional ion selectivity of the channel.
Collapse
Affiliation(s)
- Monika Bayrhuber
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland.,Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Innokentiy Maslennikov
- Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States.,School of Pharmacy , Chapman University , 9401 Jeronimo Road , Irvine , California 92618 , United States
| | - Witek Kwiatkowski
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland.,Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Alexander Sobol
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Christoph Wierschem
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Cédric Eichmann
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland.,Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
24
|
Ratanayotha A, Kawai T, Okamura Y. Real-time functional analysis of Hv1 channel in neutrophils: a new approach from zebrafish model. Am J Physiol Regul Integr Comp Physiol 2019; 316:R819-R831. [PMID: 30943046 DOI: 10.1152/ajpregu.00326.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-gated proton channel (Hv1) has been studied in various immune cells, including neutrophils. However, most studies have taken an in vitro approach using isolated cells or primary cultured cells of mammals; therefore, limited evidence is available on the function of Hv1 in a physiological context. In this study, we have developed the in vivo system that enables real-time functional analysis of Hv1 using zebrafish embryos (Danio rerio). Hvcn1-deficiency (hvcn1-/-) in zebrafish completely abolished voltage-gated proton current, which is typically observed in wild-type neutrophils. Importantly, hvcn1-deficiency significantly reduced reactive oxygen species production and calcium response of zebrafish neutrophils, comparable to the results observed in mammalian models. These findings verify zebrafish Hv1 (DrHv1) as the primary contributor for native Hv1-derived proton current in neutrophils and suggest the conserved function of Hv1 in the immune cells across vertebrate animals. Taking advantage of Hv1 zebrafish model, we compared real-time behaviors of neutrophils between wild-type and hvcn1-/- zebrafish in response to tissue injury and acute bacterial infection. Notably, we observed a significant increase in the number of phagosomes in hvcn1-/- neutrophils, raising a possible link between Hv1 and phagosomal maturation. Furthermore, survival analysis of zebrafish larvae potentially supports a protective role of Hv1 in the innate immune response against systemic bacterial infection. This study represents the influence of Hv1 on neutrophil behaviors and highlights the benefits of in vivo approach toward the understanding of Hv1 in a physiological context.
Collapse
Affiliation(s)
- Adisorn Ratanayotha
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| |
Collapse
|
25
|
Zeng C, Vanoni S, Wu D, Caldwell JM, Wheeler JC, Arora K, Noah TK, Waggoner L, Besse JA, Yamani AN, Uddin J, Rochman M, Wen T, Chehade M, Collins MH, Mukkada VA, Putnam PE, Naren AP, Rothenberg ME, Hogan SP. Solute carrier family 9, subfamily A, member 3 (SLC9A3)/sodium-hydrogen exchanger member 3 (NHE3) dysregulation and dilated intercellular spaces in patients with eosinophilic esophagitis. J Allergy Clin Immunol 2018; 142:1843-1855. [PMID: 29729938 PMCID: PMC6448407 DOI: 10.1016/j.jaci.2018.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is characterized by histopathologic modifications of esophageal tissue, including eosinophil-rich inflammation, basal zone hyperplasia, and dilated intercellular spaces (DIS). The underlying molecular processes that drive the histopathologic features of EoE remain largely unexplored. OBJECTIVE We sought to investigate the involvement of solute carrier family 9, subfamily A, member 3 (SLC9A3) in esophageal epithelial intracellular pH (pHi) and DIS formation and the histopathologic features of EoE. METHODS We examined expression of esophageal epithelial gene networks associated with regulation of pHi in the EoE transcriptome of primary esophageal epithelial cells and an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI). Molecular and cellular analyses and ion transport assays were used to evaluate the expression and function of SLC9A3. RESULTS We identified altered expression of gene networks associated with regulation of pHi and acid-protective mechanisms in esophageal biopsy specimens from pediatric patients with EoE (healthy subjects, n = 6; patients with EoE, n = 10). The most dysregulated gene central to regulating pHi was SLC9A3. SLC9A3 expression was increased within the basal layer of esophageal biopsy specimens from patients with EoE, and expression positively correlated with disease severity (eosinophils/high-power field) and DIS (healthy subjects, n = 10; patients with EoE, n = 10). Analyses of esophageal epithelial cells revealed IL-13-induced, signal transducer and activator of transcription 6-dependent SLC9A3 expression and Na+-dependent proton secretion and that SLC9A3 activity correlated positively with DIS formation. Finally, we showed that IL-13-mediated, Na+-dependent proton secretion was the primary intracellular acid-protective mechanism within the esophageal epithelium and that blockade of SLC9A3 transport abrogated IL-13-induced DIS formation. CONCLUSIONS SLC9A3 plays a functional role in DIS formation, and pharmacologic interventions targeting SLC9A3 function may suppress the histopathologic manifestations in patients with EoE.
Collapse
Affiliation(s)
- Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Justin C Wheeler
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Taeko K Noah
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amnah N Yamani
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jazib Uddin
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Margaret H Collins
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent A Mukkada
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Philip E Putnam
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
26
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Sellers ZM, Illek B, Figueira MF, Hari G, Joo NS, Sibley E, Souza-Menezes J, Morales MM, Fischer H, Wine JJ. Impaired PGE2-stimulated Cl- and HCO3- secretion contributes to cystic fibrosis airway disease. PLoS One 2017; 12:e0189894. [PMID: 29281691 PMCID: PMC5744969 DOI: 10.1371/journal.pone.0189894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. Aim To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. Methods We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. Results PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. Conclusions PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.
Collapse
Affiliation(s)
- Zachary M. Sellers
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
- * E-mail:
| | - Beate Illek
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Miriam Frankenthal Figueira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Gopika Hari
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| | - Eric Sibley
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
| | - Jackson Souza-Menezes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Marcelo M. Morales
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| |
Collapse
|
28
|
Abstract
The voltage-gated proton channel Hv1 is expressed in various human cell types, including macrophages, epithelial cells, and sperm. Hv1 opening leads to proton efflux that alkalizes the cytosol. Here, we describe light-activated Hv1 inhibitors (photoswitches) that allow controlling its activity with high spatiotemporal precision. The photoswitches comprise a light-sensitive azobenzene moiety and 2-guanidinobenzimidazole (2GBI), a known Hv1 inhibitor. In the dark, photoGBI inhibits heterologously expressed Hv1 channels. Blue light, which isomerizes the azobenzene group from trans to cis conformation, releases inhibition. We demonstrate photocontrol of native proton currents in human macrophages and sperm using photoGBI, underlining their use as valuable optochemical tools to study the function of Hv1 channels.
Collapse
Affiliation(s)
- Andreas Rennhack
- Department of Molecular Sensory
Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Elena Grahn
- Department of Molecular Sensory
Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - U. Benjamin Kaupp
- Department of Molecular Sensory
Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Thomas K. Berger
- Department of Molecular Sensory
Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| |
Collapse
|
29
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
30
|
Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, Kim CY, Lee SW. Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltage-gated proton channel. Andrology 2017; 5:979-989. [PMID: 28805023 DOI: 10.1111/andr.12406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Onion (Allium cepa L.) and quercetin protect against oxidative damage and have positive effects on multiple functional parameters of spermatozoa, including viability and motility. However, the associated underlying mechanisms of action have not yet been identified. The aim of this study was to investigate the effect of onion peel extract (OPE) on voltage-gated proton (Hv1) channels, which play a critical role in rapid proton extrusion. This process underlies a wide range of physiological processes, particularly male fertility. The whole-cell patch-clamp technique was used to record the changes in Hv1 currents in HEK293 cells transiently transfected with human Hv1 (HVCN1). The effects of OPE on human sperm motility were also analyzed. OPE significantly activated the outward-rectifying proton currents in a concentration-dependent manner, with an EC50 value of 30 μg/mL. This effect was largely reversible upon washout. Moreover, OPE induced an increase in the proton current amplitude and decreased the time constant of activation at 0 mV from 4.9 ± 1.7 to 0.6 ± 0.1 sec (n = 6). In the presence of OPE, the half-activation voltage (V1/2 ) shifted in the negative direction, from 20.1 ± 5.8 to 5.2 ± 8.7 mV (n = 6), but the slope was not significantly altered. The OPE-induced current was profoundly inhibited by 10 μm Zn2+ , the most potent Hv1 channel inhibitor, and was also inhibited by treatment with GF109203X, a specific protein kinase C (PKC) inhibitor. Furthermore, sperm motility was significantly increased in the OPE-treated groups. OPE exhibits protective effects on sperm motility, at least partially via regulation of the proton channel. Moreover, similar effects were exerted by quercetin, the major flavonoid in OPE. These results suggest OPE, which is rich in the potent Hv1 channel activator quercetin, as a possible new candidate treatment for human infertility.
Collapse
Affiliation(s)
- M R Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S J Kang
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K P Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - B R Choi
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - H K Kim
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - J K Park
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - C Y Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - S W Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Berger TK, Fußhöller DM, Goodwin N, Bönigk W, Müller A, Dokani Khesroshahi N, Brenker C, Wachten D, Krause E, Kaupp UB, Strünker T. Post-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating. J Physiol 2017; 595:1533-1546. [PMID: 27859356 DOI: 10.1113/jp273189] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In human sperm, proton flux across the membrane is controlled by the voltage-gated proton channel Hv1. We show that sperm harbour both Hv1 and an N-terminally cleaved isoform termed Hv1Sper. The pH-control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm. ABSTRACT In human sperm, the voltage-gated proton channel Hv1 controls the flux of protons across the flagellar membrane. Here, we show that sperm harbour Hv1 and a shorter isoform, termed Hv1Sper. Hv1Sper is generated from Hv1 by removal of 68 amino acids from the N-terminus by post-translational proteolytic cleavage. The pH-dependent gating of the channel isoforms is distinctly different. In both Hv1 and Hv1Sper, the conductance-voltage relationship is determined by the pH difference across the membrane (∆pH). However, simultaneous changes in intracellular and extracellular pH that leave ΔpH constant strongly shift the activation curve of Hv1Sper but not that of Hv1, demonstrating that cleavage of the N-terminus tunes pH sensing in Hv1. Moreover, we show that Hv1 and Hv1Sper assemble as heterodimers that combine features of both constituents. We suggest that cleavage and heterodimerization of Hv1 represents an adaptation to the specific requirements of pH control in sperm.
Collapse
Affiliation(s)
- Thomas K Berger
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - David M Fußhöller
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Normann Goodwin
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Wolfgang Bönigk
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Astrid Müller
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Nasim Dokani Khesroshahi
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Christoph Brenker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany.,Center of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Dagmar Wachten
- Max-Planck Research Group Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Eberhard Krause
- Leibniz-Institute for Molecular Pharmacology, Berlin, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Timo Strünker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany.,Center of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| |
Collapse
|
32
|
De-la-Rosa V, Suárez-Delgado E, Rangel-Yescas GE, Islas LD. Currents through Hv1 channels deplete protons in their vicinity. ACTA ACUST UNITED AC 2016; 147:127-36. [PMID: 26809792 PMCID: PMC4727945 DOI: 10.1085/jgp.201511496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Proton channels have evolved to provide a pH regulatory mechanism, affording the extrusion of protons from the cytoplasm at all membrane potentials. Previous evidence has suggested that channel-mediated acid extrusion could significantly change the local concentration of protons in the vicinity of the channel. In this work, we directly measure the proton depletion caused by activation of Hv1 proton channels using patch-clamp fluorometry recordings from channels labeled with the Venus fluorescent protein at intracellular domains. The fluorescence of the Venus protein is very sensitive to pH, thus behaving as a genetically encoded sensor of local pH. Eliciting outward proton currents increases the fluorescence intensity of Venus. This dequenching is related to the magnitude of the current and not to channel gating and is dependent on the pH gradient. Our results provide direct evidence of local proton depletion caused by flux through the proton-selective channel.
Collapse
Affiliation(s)
- Víctor De-la-Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Esteban Suárez-Delgado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Gisela E Rangel-Yescas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF 04510, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF 04510, México
| |
Collapse
|
33
|
Pathak MM, Tran T, Hong L, Joós B, Morris CE, Tombola F. The Hv1 proton channel responds to mechanical stimuli. J Gen Physiol 2016; 148:405-418. [PMID: 27799320 PMCID: PMC5089936 DOI: 10.1085/jgp.201611672] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
The voltage-gated proton channel, Hv1, is expressed in tissues throughout the body and plays important roles in pH homeostasis and regulation of NADPH oxidase. Hv1 operates in membrane compartments that experience strong mechanical forces under physiological or pathological conditions. In microglia, for example, Hv1 activity is potentiated by cell swelling and causes an increase in brain damage after stroke. The channel complex consists of two proton-permeable voltage-sensing domains (VSDs) linked by a cytoplasmic coiled-coil domain. Here, we report that these VSDs directly respond to mechanical stimuli. We find that membrane stretch facilitates Hv1 channel opening by increasing the rate of activation and shifting the steady-state activation curve to less depolarized potentials. In the presence of a transmembrane pH gradient, membrane stretch alone opens the channel without the need for strong depolarizations. The effect of membrane stretch persists for several minutes after the mechanical stimulus is turned off, suggesting that the channel switches to a "facilitated" mode in which opening occurs more readily and then slowly reverts to the normal mode observed in the absence of membrane stretch. Conductance simulations with a six-state model recapitulate all the features of the channel's response to mechanical stimulation. Hv1 mechanosensitivity thus provides a mechanistic link between channel activation in microglia and brain damage after stroke.
Collapse
Affiliation(s)
- Medha M Pathak
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Truc Tran
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Liang Hong
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Béla Joós
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
34
|
Sakata S, Miyawaki N, McCormack TJ, Arima H, Kawanabe A, Özkucur N, Kurokawa T, Jinno Y, Fujiwara Y, Okamura Y. Comparison between mouse and sea urchin orthologs of voltage-gated proton channel suggests role of S3 segment in activation gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2972-2983. [PMID: 27637155 DOI: 10.1016/j.bbamem.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The voltage-gated proton channel, Hv1, is expressed in blood cells, airway epithelium, sperm and microglia, playing important roles in diverse biological contexts including phagocytosis or sperm maturation through its regulation of membrane potential and pH. The gene encoding Hv1, HVCN1, is widely found across many species and is also conserved in unicellular organisms such as algae or dinoflagellates where Hv1 plays role in calcification or bioluminescence. Voltage-gated proton channels exhibit a large variation of activation rate among different species. Here we identify an Hv1 ortholog from sea urchin, Strongylocentrotus purpuratus, SpHv1. SpHv1 retains most of key properties of Hv1 but exhibits 20-60 times more rapid activation kinetics than mammalian orthologs upon heterologous expression in HEK293T cells. Comparison between SpHv1 and mHv1 highlights novel roles of the third transmembrane segment S3 in activation gating of Hv1.
Collapse
Affiliation(s)
- Souhei Sakata
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Academic Initiative, Osaka University, Suita, Osaka 565-0871, Japan; National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Nana Miyawaki
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Thomas J McCormack
- Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan
| | - Hiroki Arima
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nurdan Özkucur
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Anatomy, Medical Theoretical Center, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Tatsuki Kurokawa
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan
| | - Yuka Jinno
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Fujiwara
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan; National Institute of Natural Sciences, Okazaki, Aichi, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
35
|
Vijftigschild LAW, Berkers G, Dekkers JF, Zomer-van Ommen DD, Matthes E, Kruisselbrink E, Vonk A, Hensen CE, Heida-Michel S, Geerdink M, Janssens HM, van de Graaf EA, Bronsveld I, de Winter-de Groot KM, Majoor CJ, Heijerman HGM, de Jonge HR, Hanrahan JW, van der Ent CK, Beekman JM. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis. Eur Respir J 2016; 48:768-79. [PMID: 27471203 DOI: 10.1183/13993003.01661-2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/11/2016] [Indexed: 01/12/2023]
Abstract
We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration.
Collapse
Affiliation(s)
- Lodewijk A W Vijftigschild
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands These two authors contributed equally to this work
| | - Gitte Berkers
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands These two authors contributed equally to this work
| | - Johanna F Dekkers
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands These two authors contributed equally to this work
| | - Domenique D Zomer-van Ommen
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands These two authors contributed equally to this work
| | - Elizabeth Matthes
- CF Translational Research Centre, Dept of Physiology, McGill University, Montréal, QC, Canada
| | - Evelien Kruisselbrink
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Annelotte Vonk
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Chantal E Hensen
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands
| | - Sabine Heida-Michel
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands
| | - Margot Geerdink
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands
| | - Hettie M Janssens
- Dept of Pediatric Pulmonology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Inez Bronsveld
- Dept of Pulmonology, University Medical Center, Utrecht, The Netherlands
| | | | - Christof J Majoor
- Dept of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harry G M Heijerman
- Dept of Pulmonology and Cystic Fibrosis, Haga Teaching Hospital, The Hague, The Netherlands
| | - Hugo R de Jonge
- Dept of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W Hanrahan
- CF Translational Research Centre, Dept of Physiology, McGill University, Montréal, QC, Canada
| | | | - Jeffrey M Beekman
- Dept of Pediatric Pulmonology, University Medical Center, Utrecht, The Netherlands Regenerative Medicine Center Utrecht, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
36
|
Hsieh H, Vignesh KS, Deepe GS, Choubey D, Shertzer HG, Genter MB. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora. Toxicol In Vitro 2016; 35:24-30. [PMID: 27179668 DOI: 10.1016/j.tiv.2016.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 11/15/2022]
Abstract
Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200μM ZG for 0-24h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons.
Collapse
Affiliation(s)
- Heidi Hsieh
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, United States
| | | | - George S Deepe
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0557, United States; Veterans Affairs Medical Center, Cincinnati, OH 45220, United States
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, United States
| | - Howard G Shertzer
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, United States
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, United States.
| |
Collapse
|
37
|
Chaves G, Derst C, Franzen A, Mashimo Y, Machida R, Musset B. Identification of an HV
1 voltage-gated proton channel in insects. FEBS J 2016; 283:1453-64. [DOI: 10.1111/febs.13680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Gustavo Chaves
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
| | - Christian Derst
- Zoologisches Institut; Biozentrum Universität zu Köln; Germany
| | - Arne Franzen
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
| | - Yuta Mashimo
- Sugadaira Montane Research Center; University of Tsukuba; Ueda Japan
| | - Ryuichiro Machida
- Sugadaira Montane Research Center; University of Tsukuba; Ueda Japan
| | - Boris Musset
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
- Institut für Physiologie und Pathophysiologie; Paracelsus Universität Salzburg Standort Nürnberg; Nuremberg Germany
| |
Collapse
|
38
|
Shah VS, Meyerholz DK, Tang XX, Reznikov L, Abou Alaiwa M, Ernst SE, Karp PH, Wohlford-Lenane CL, Heilmann KP, Leidinger MR, Allen PD, Zabner J, McCray PB, Ostedgaard LS, Stoltz DA, Randak CO, Welsh MJ. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 2016; 351:503-7. [PMID: 26823428 DOI: 10.1126/science.aad5589] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H(+) secretion by the nongastric H(+)/K(+) adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H(+); consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Xiao Xiao Tang
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Leah Reznikov
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Sarah E Ernst
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Philip H Karp
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | - Patrick D Allen
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Zabner
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray
- Department of Pediatrics University of Iowa, Iowa City, IA 52242, USA. Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | - David A Stoltz
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | - Michael J Welsh
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
39
|
Abstract
Hv1 is a voltage-gated proton-selective channel that plays critical parts in host defense, sperm motility, and cancer progression. Hv1 contains a conserved voltage-sensor domain (VSD) that is shared by a large family of voltage-gated ion channels, but it lacks a pore domain. Voltage sensitivity and proton conductivity are conferred by a unitary VSD that consists of four transmembrane helices. The architecture of Hv1 differs from that of cation channels that form a pore in the center among multiple subunits (as in most cation channels) or homologous repeats (as in voltage-gated sodium and calcium channels). Hv1 forms a dimer in which a cytoplasmic coiled coil underpins the two protomers and forms a single, long helix that is contiguous with S4, the transmembrane voltage-sensing segment. The closed-state structure of Hv1 was recently solved using X-ray crystallography. In this article, we discuss the gating mechanism of Hv1 and focus on cooperativity within dimers and their sensitivity to metal ions.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; , ,
| | | | | |
Collapse
|
40
|
Cherny VV, Morgan D, Musset B, Chaves G, Smith SME, DeCoursey TE. Tryptophan 207 is crucial to the unique properties of the human voltage-gated proton channel, hHV1. ACTA ACUST UNITED AC 2015; 146:343-56. [PMID: 26458876 PMCID: PMC4621752 DOI: 10.1085/jgp.201511456] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/18/2015] [Indexed: 01/19/2023]
Abstract
Part of the "signature sequence" that defines the voltage-gated proton channel (H(V1)) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence H(V1) genes. Replacing Trp207 in human HV1 (hH(V1)) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30-38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hH(V1). Cation-π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo >8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of H(V1) that is essential to its biological functions, was compromised. In the WT hH(V1), ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in H(V1) from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in H(V1) of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating.
Collapse
Affiliation(s)
- Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institute of Complex Systems 4 Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gustavo Chaves
- Institute of Complex Systems 4 Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
41
|
Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling. Sci Rep 2015; 5:14077. [PMID: 26365828 PMCID: PMC4568520 DOI: 10.1038/srep14077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
The Hv1 voltage-gated proton channel is a dimeric complex consisting of two voltage-sensing domains (VSDs), each containing a gated proton permeation pathway. Dimerization is controlled by a cytoplasmic coiled-coil domain. The transitions from the closed to the open state in the two VSDs are known to occur cooperatively; however, the underlying mechanism is poorly understood. Intersubunit interfaces play a critical role in allosteric processes; but, such interfaces have not been determined in the open Hv1 channel. Here we show that 2-guanidinothiazole derivatives block the two Hv1 VSDs in a cooperative way, and use one of the compounds as a probe of allosteric coupling between open subunits. We find that the extracellular ends of the first transmembrane segments of the VSDs form the intersubunit interface that mediates coupling between binding sites, while the coiled-coil domain does not directly participate in the process. We also find strong evidence that the channel’s proton selectivity filter controls blocker binding cooperativity.
Collapse
|
42
|
Seredenina T, Demaurex N, Krause KH. Voltage-Gated Proton Channels as Novel Drug Targets: From NADPH Oxidase Regulation to Sperm Biology. Antioxid Redox Signal 2015; 23:490-513. [PMID: 24483328 PMCID: PMC4543398 DOI: 10.1089/ars.2013.5806] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Voltage-gated proton channels are increasingly implicated in cellular proton homeostasis. Proton currents were originally identified in snail neurons less than 40 years ago, and subsequently shown to play an important auxiliary role in the functioning of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Molecular identification of voltage-gated proton channels was achieved less than 10 years ago. Interestingly, so far, only one gene coding for voltage-gated proton channels has been identified, namely hydrogen voltage-gated channel 1 (HVCN1), which codes for the HV1 proton channel protein. Over the last years, the first picture of putative physiological functions of HV1 has been emerging. RECENT ADVANCES The best-studied role remains charge and pH compensation during the respiratory burst of the phagocyte NADPH oxidase (NOX). Strong evidence for a role of HV1 is also emerging in sperm biology, but the relationship with the sperm NOX5 remains unclear. Probably in many instances, HV1 functions independently of NOX: for example in snail neurons, basophils, osteoclasts, and cancer cells. CRITICAL ISSUES Generally, ion channels are good drug targets; however, this feature has so far not been exploited for HV1, and hitherto no inhibitors compatible with clinical use exist. However, there are emerging indications for HV1 inhibitors, ranging from diseases with a strong activation of the phagocyte NOX (e.g., stroke) to infertility, osteoporosis, and cancer. FUTURE DIRECTIONS Clinically useful HV1-active drugs should be developed and might become interesting drugs of the future.
Collapse
Affiliation(s)
- Tamara Seredenina
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Nicolas Demaurex
- 2 Department of Cellular Physiology and Metabolism, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Karl-Heinz Krause
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland .,3 Department of Genetic and Laboratory Medicine, Geneva University Hospitals , Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
43
|
Miller MR, Mansell SA, Meyers SA, Lishko PV. Flagellar ion channels of sperm: similarities and differences between species. Cell Calcium 2015; 58:105-13. [DOI: 10.1016/j.ceca.2014.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
44
|
Hv1 proton channel opening is preceded by a voltage-independent transition. Biophys J 2015; 107:1564-72. [PMID: 25296308 DOI: 10.1016/j.bpj.2014.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/31/2023] Open
Abstract
The voltage sensing domain (VSD) of the voltage-gated proton channel Hv1 mediates a H(+)-selective conductance that is coordinately controlled by the membrane potential (V) and the transmembrane pH gradient (ΔpH). Allosteric control of Hv1 channel opening by ΔpH (V-ΔpH coupling) is manifested by a characteristic shift of approximately 40 mV per ΔpH unit in the activation. To further understand the mechanism for V-ΔpH coupling in Hv1, H(+) current kinetics of activation and deactivation in excised membrane patches were analyzed as a function of the membrane potential and the pH in the intracellular side of the membrane (pHI). In this study, it is shown for the first time to our knowledge that the opening of Hv1 is preceded by a voltage-independent transition. A similar process has been proposed to constitute the step involving coupling between the voltage-sensing and pore domains in tetrameric voltage-gated channels. However, for Hv1, the VSD functions as both the voltage sensor and the conduction pathway, suggesting that the voltage independent transition is intrinsic to the voltage-sensing domain. Therefore, this article proposes that the underlying mechanism for the activation of Hv1 involves a process similar to VSD relaxation, a process previously described for voltage-gated channels and voltage-controlled enzymes. Finally, deactivation seemingly occurs as a strictly voltage dependent process, implying that the kinetic event leading to opening of the proton conductance are different than those involved in the closing. Thus, from this work it is proposed that Hv1 activity displays hysteresis.
Collapse
|
45
|
Pupo A, Baez-Nieto D, Martínez A, Latorre R, González C. Proton channel models filling the gap between experimental data and the structural rationale. Channels (Austin) 2015; 8:180-92. [PMID: 24755912 PMCID: PMC4203746 DOI: 10.4161/chan.28665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins.
Collapse
|
46
|
Abstract
The main properties of the voltage-gated proton channel (HV1) are described in this review, along with what is known about how the channel protein structure accomplishes its functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage and the pH gradient and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O(+) to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures HV1 channel opening only when acid extrusion will result, which is crucial to most of its biological functions. An exception occurs in dinoflagellates in which influx of H(+) through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer's disease, autoimmune diseases, and numerous other conditions await future progress.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago IL, 60612 USA
| |
Collapse
|
47
|
Selectivity Mechanism of the Voltage-gated Proton Channel, HV1. Sci Rep 2015; 5:10320. [PMID: 25955978 PMCID: PMC4429351 DOI: 10.1038/srep10320] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
Voltage-gated proton channels, HV1, trigger bioluminescence in dinoflagellates, enable calcification in coccolithophores, and play multifarious roles in human health. Because the proton concentration is minuscule, exquisite selectivity for protons over other ions is critical to HV1 function. The selectivity of the open HV1 channel requires an aspartate near an arginine in the selectivity filter (SF), a narrow region that dictates proton selectivity, but the mechanism of proton selectivity is unknown. Here we use a reduced quantum model to elucidate how the Asp-Arg SF selects protons but excludes other ions. Attached to a ring scaffold, the Asp and Arg side chains formed bidentate hydrogen bonds that occlude the pore. Introducing H3O(+) protonated the SF, breaking the Asp-Arg linkage and opening the conduction pathway, whereas Na(+) or Cl(-) was trapped by the SF residue of opposite charge, leaving the linkage intact, thus preventing permeation. An Asp-Lys SF behaved like the Asp-Arg one and was experimentally verified to be proton-selective, as predicted. Hence, interacting acidic and basic residues form favorable AspH(0)-H2O(0)-Arg(+) interactions with hydronium but unfavorable Asp(-)-X(-)/X(+)-Arg(+) interactions with anions/cations. This proposed mechanism may apply to other proton-selective molecules engaged in bioenergetics, homeostasis, and signaling.
Collapse
|
48
|
A specialized molecular motion opens the Hv1 voltage-gated proton channel. Nat Struct Mol Biol 2015; 22:283-290. [PMID: 25730777 PMCID: PMC4385474 DOI: 10.1038/nsmb.2978] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
The Hv1 proton channel is unique among voltage-gated channels for containing the pore and gate within its voltage-sensing domain. Pore opening has been proposed to include assembly of the selectivity filter between an arginine (R3) of segment S4 and an aspartate (D1) of segment S1. We determined whether gating involves motion of S1, using Ciona intestinalis Hv1. We found that channel opening is concomitant with solution access to the pore-lining face of S1, from the cytoplasm to deep inside the pore. Voltage- and patch-clamp fluorometry showed that this involves a motion of S1 relative to its surroundings. S1 motion and the S4 motion that precedes it are each influenced by residues on the other helix, thus suggesting a dynamic interaction between S1 and S4. Our findings suggest that the S1 of Hv1 has specialized to function as part of the channel's gate.
Collapse
|
49
|
Enhanced activation of an amino-terminally truncated isoform of the voltage-gated proton channel HVCN1 enriched in malignant B cells. Proc Natl Acad Sci U S A 2014; 111:18078-83. [PMID: 25425665 DOI: 10.1073/pnas.1411390111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HVCN1 (Hydrogen voltage-gated channel 1) is the only mammalian voltage-gated proton channel. In human B lymphocytes, HVCN1 associates with the B-cell receptor (BCR) and is required for optimal BCR signaling and redox control. HVCN1 is expressed in malignant B cells that rely on BCR signaling, such as chronic lymphocytic leukemia (CLL) cells. However, little is known about its regulation in these cells. We found that HVCN1 was expressed in B cells as two protein isoforms. The shorter isoform (HVCN1S) was enriched in B cells from a cohort of 76 CLL patients. When overexpressed in a B-cell lymphoma line, HVCN1S responded more profoundly to protein kinase C-dependent phosphorylation. This more potent enhanced gating response was mediated by increased phosphorylation of the same residue responsible for enhanced gating in HVCN1L, Thr(29). Furthermore, the association of HVCN1S with the BCR was weaker, which resulted in its diminished internalization upon BCR stimulation. Finally, HVCN1S conferred a proliferative and migratory advantage as well as enhanced BCR-dependent signaling. Overall, our data show for the first time, to our knowledge, the existence of a shorter isoform of HVCN1 with enhanced gating that is specifically enriched in malignant B cells. The properties of HVCN1S suggest that it may contribute to the pathogenesis of BCR-dependent B-cell malignancies.
Collapse
|
50
|
Capasso M. Regulation of immune responses by proton channels. Immunology 2014; 143:131-7. [PMID: 24890927 DOI: 10.1111/imm.12326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 12/27/2022] Open
Abstract
The identification of the HVCN1 gene, encoding the only mammalian voltage-gated proton channel, prompted a number of studies on how proton channels affect cellular functions. As their expression is mainly restricted to immune cells, it is not surprising that proton channels regulate different aspects of immune responses. In this review, I will examine the current knowledge of voltage-gated proton channels in both innate and adaptive responses and assess the remaining outstanding questions.
Collapse
Affiliation(s)
- Melania Capasso
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|