1
|
Diez-Zaera M, Ruiz-Calvo A, Diaz-Hernandez JI, Sebastián-Serrano A, Aivar P, Alvarez-Castelao B, Pintor J, Diaz-Hernandez M, Miras-Portugal MT. Diadenosine pentaphosphate regulates dendrite growth and number in cultured hippocampal neurons. Purinergic Signal 2024; 20:115-125. [PMID: 37246192 PMCID: PMC10997559 DOI: 10.1007/s11302-023-09944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines. We found that extracellular ATP, through its selective ionotropic P2X7 receptor (P2X7R), negatively regulates axonal growth and branching. Here, we evaluate if other purinergic compounds, such as the diadenosine pentaphosphate (Ap5A), may module the dynamics of dendritic or axonal growth and branching in cultured hippocampal neurons. Our results show that Ap5A negatively modulates the dendrite's growth and number by inducing transient intracellular calcium increases in the dendrites' growth cone. Interestingly, phenol red, commonly used as a pH indicator in culture media, also blocks the P2X1 receptors, avoided the negative modulation of Ap5A on dendrites. Subsequent pharmacological studies using a battery of selective P2X1R antagonists confirmed the involvement of this subunit. In agreement with pharmacological studies, P2X1R overexpression caused a similar reduction in dendritic length and number as that induced by Ap5A. This effect was reverted when neurons were co-transfected with the vector expressing the interference RNA for P2X1R. Despite small hairpin RNAs reverting the reduction in the number of dendrites caused by Ap5A, it did not avoid the dendritic length decrease induced by the polyphosphate, suggesting, therefore, the involvement of a heteromeric P2X receptor. Our results are indicating that Ap5A exerts a negative influence on dendritic growth.
Collapse
Affiliation(s)
- M Diez-Zaera
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - A Ruiz-Calvo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - J I Diaz-Hernandez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - A Sebastián-Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - P Aivar
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
- Departamento Ciencia de La Salud, Facultad Ciencias Biomédicas y de La Salud, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - B Alvarez-Castelao
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - J Pintor
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - M Diaz-Hernandez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
| | - M T Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| |
Collapse
|
2
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021; 118:2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.
Collapse
|
4
|
Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Front Neural Circuits 2019; 12:117. [PMID: 30728768 PMCID: PMC6352749 DOI: 10.3389/fncir.2018.00117] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that neurons contain and release multiple transmitter substances. However, we still have only limited insight into the regulation and functional effects of this co-transmission. Given that there are 200 or more neurotransmitters, the chemical complexity of the nervous system is daunting. This is made more-so by the fact that their interacting effects can generate diverse non-linear and novel consequences. The relatively poor history of pharmacological approaches likely reflects the fact that manipulating a transmitter system will not necessarily mimic its roles within the normal chemical environment of the nervous system (e.g., when it acts in parallel with co-transmitters). In this article, co-transmission is discussed in a range of systems [from invertebrate and lower vertebrate models, up to the mammalian peripheral and central nervous system (CNS)] to highlight approaches used, degree of understanding, and open questions and future directions. Finally, we offer some outlines of what we consider to be the general principles of co-transmission, as well as what we think are the most pressing general aspects that need to be addressed to move forward in our understanding of co-transmission.
Collapse
Affiliation(s)
- Erik Svensson
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - John Apergis-Schoute
- Department of Neurosciences, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Parker
- Department of Physiology, Development and Neuroscience, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Helgi B Schiöth
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
5
|
Krishnamoorthy G, Sonkusare SK, Heppner TJ, Nelson MT. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 2014; 306:H981-8. [PMID: 24508642 DOI: 10.1152/ajpheart.00866.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation by electrical field stimulation. Inhibition of BK channels with paxilline increased both myogenic and nerve-induced constrictions of pressurized, resistance-sized mesenteric arteries from mice. Inhibition of RyRs with ryanodine increased myogenic constriction, but it decreased nerve-evoked constriction along with a reduction in the amplitude of nerve-evoked increases in global intracellular Ca2+. In the presence of L-type voltage-dependent Ca2+ channel (VDCC) antagonists, nerve stimulation failed to evoke a change in arterial diameter, and BK channel and RyR inhibitors were without effect, suggesting that nerve- induced constriction is dependent on activation of VDCCs. Collectively, these results indicate that BK channels and RyRs have different roles in the regulation of myogenic versus neurogenic tone: whereas BK channels and RyRs act in concert to oppose myogenic vasoconstriction, BK channels oppose neurogenic vasoconstriction and RyRs augment it. A scheme for neurogenic vasoregulation is proposed in which RyRs act in conjunction with VDCCs to regulate nerve-evoked constriction in mesenteric resistance arteries.
Collapse
|
6
|
Nausch LWM, Bonev AD, Heppner TJ, Tallini Y, Kotlikoff MI, Nelson MT. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries. Am J Physiol Heart Circ Physiol 2012; 302:H594-602. [PMID: 22140050 PMCID: PMC3353782 DOI: 10.1152/ajpheart.00773.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/28/2011] [Indexed: 12/18/2022]
Abstract
It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Signaling/physiology
- Connexins/genetics
- Endothelium, Vascular/metabolism
- Feedback, Physiological/physiology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism
- Mesenteric Arteries/innervation
- Mesenteric Arteries/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Receptors, Adrenergic, alpha/metabolism
- Sympathetic Nervous System/physiology
- Vasoconstriction/physiology
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Lydia W M Nausch
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT05405, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Amobi NIB, Guillebaud J, Smith ICH. Perspective on the role of P2X-purinoceptor activation in human vas deferens contractility. Exp Physiol 2012; 97:583-602. [PMID: 22227201 DOI: 10.1113/expphysiol.2011.063206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contractile actions of α,β-methylene ATP (α,β-meATP) and ATP and the effects of K(+) channel blockers in longitudinal and circular muscles of human vas deferens were investigated with a view to clarifying the functional importance of P2X(1)-purinoceptor activation and K(+) channels in modulating contractility of the tissues. The results provide an experiment-based perspective for resolving differing reports on purinergic activation of the tissues and uncertain roles of large-conductance Ca(2+)-activated K(+) (BK(Ca)) and voltage-gated delayed rectifier K(+) (K(V)) channels. α,β-Methylene ATP (3-100 μm) evoked suramin-sensitive contractions of longitudinal muscle but rarely of circular muscle. ATP (0.1-3 mm) less reliably activated only longitudinal muscle contractions. These were enhanced by ARL 67156 (100 μm), but a different ectonucleotidase inhibitor, POM 1, was ineffective. Both muscle types were unresponsive to ADP-βS (100 μm), a P2Y-purinoceptor agonist. Longitudinal muscle contractions in response to α,β-meATP were enhanced by FPL 64176 (1 μm), an L-type Ca(2+) agonist, TEA (1 mm), a non-specific K(+) channel blocker, 4-aminopyridine (0.3 mm), a selective blocker of K(V) channels, and iberiotoxin (0.1 μm), a selective blocker of BK(Ca) channels. Quiescent circular muscles responded to α,β-meATP reliably in the presence of FPL 64176 or iberiotoxin. Apamin (0.1 μm), a selective blocker of small conductance Ca(2+)-activated K(+) (SK(Ca)) channels had no effect in both muscle types. Y-27632 (1-10 μm) reduced longitudinal muscle contractions in response to α,β-meATP, suggesting involvement of Rho-kinase-dependent contractile mechanisms. The results indicate that P2X(1)-purinoceptor stimulation elicits excitatory effects that: (a) lead to longitudinal muscle contraction and secondary activation of 4-aminopyridine-sensitive (K(V)) and iberiotoxin-sensitive (BK(Ca)) K(+) channels; and (b) are subcontractile in circular muscle due to ancillary activation of BK(Ca) channels. The novel finding of differential action by P2X(1)-purinoceptor agonists in the muscle types has functional implication in terms of the purinergic contribution to overall contractile function of human vas deferens. The modulatory effects of K(V) and BK(Ca) channels following P2X(1)-purinoceptor activation may be pivotal in providing the crucial physiological mechanism that ensures temporal co-ordination of longitudinal and circular muscle contractility.
Collapse
|
8
|
Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 2011; 3:a004549. [PMID: 21709182 DOI: 10.1101/cshperspect.a004549] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).
Collapse
Affiliation(s)
- David C Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
9
|
Sugihara M, Morita H, Matsuda M, Umebayashi H, Kajioka S, Ito S, Nishida M, Inoue R, Futatsuki T, Yamazaki J, Mori Y, Inoue R, Ito Y, Abe K, Hirata M. Dual signaling pathways of arterial constriction by extracellular uridine 5'-triphosphate in the rat. J Pharmacol Sci 2011; 115:293-308. [PMID: 21350312 DOI: 10.1254/jphs.10281fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We investigated actions of uridine 5'-triphosphate (UTP) in rat aorta, cerebral and mesenteric arteries, and their single myocytes. UTP (≥10 µM) elicited an inward-rectifying current strongly reminiscent of activation of P2X(1) receptor, and a similar current was also induced by α,β-methylene adenosine 5'-triphosphate (ATP) (≥100 nM). UTP desensitized α,β-methylene ATP-evoked current, and vice versa. The UTP-activated current was insensitive to G-protein modulators, TRPC3 inhibitors, or TRPC3 antibody, but was sensitive to P2-receptor inhibitors or P2X(1)-receptor antibody. Both UTP (1 mM) and α,β-methylene ATP (10 µM) elicited similar conductance single channel activities. UTP (≥10 µM) provoked a dose-dependent contraction of de-endothelialized aortic ring preparation consisting of phasic and tonic components. Removal of extracellular Ca(2+) or bath-applied 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) (30 µM) or nifedipine (10 µM) completely inhibited the phasic contraction while only partially reducing the tonic one. The tonic contraction was almost completely abolished by additional application of thapsigargin (2 µM). Similar biphasic rises in [Ca(2+)](i) were also evoked by UTP in rat aortic myocytes. In contrast to the low expression of TRPC3, significant expression of P2X(1) receptor was detected in all arteries by RT-PCR and immunoblotting, and its localization was limited to plasma membrane of myocytes as indicated by immunohistochemistry. These results suggest that UTP dually activates P2X(1)-like and P2Y receptors, but not TRPC3.
Collapse
Affiliation(s)
- Megumi Sugihara
- Special Patient Oral Care Unit, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|