1
|
Pinto-Anwandter BI. Structural Basis for Voltage Gating and Dalfampridine Binding in the Shaker Potassium Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619486. [PMID: 39484563 PMCID: PMC11526897 DOI: 10.1101/2024.10.22.619486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The generation and propagation of action potentials in neurons depend on the coordinated activation of voltage-dependent sodium and potassium channels. Potassium channels of the Shaker family regulate neuronal excitability through voltage-dependent opening and closing of their ion conduction pore. This family of channels is an important therapeutic target, particularly in multiple sclerosis where the inhibitor dalfampridine (4-aminopyridine) is used to improve nerve conduction. The molecular details of how the voltage sensor domain drives opening of the pore domain has been limited by the lack of closed-state structures, also impairing the search for novel drugs. Using AlphaFold2-based conformational sampling methods we identify a structural model for the closed Shaker potassium channel where movement of the voltage sensor drives the opening trough interactions between the S4-S5 linker and S6 helix. We show experimentally that breakage of a backbone hydrogen bond is a critical part of the activation pathway. Through docking we identify a hydrophobic cavity formed by the pore domain helices that binds dalfampridine in the closed state. Our results demonstrate how voltage sensor movement drives pore opening and provide a structural framework for developing new therapeutic agents targeting the closed state. We anticipate this work will enable structure-based drug design efforts focused on state-dependent modulation of voltage-gated ion channels for the treatment of neurological disorders.
Collapse
|
2
|
Pinto-Anwandter BI, Bassetto CAZ, Latorre R, Bezanilla F. Turning a Kv channel into hot and cold receptor by perturbing its electromechanical coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607202. [PMID: 39149297 PMCID: PMC11326270 DOI: 10.1101/2024.08.08.607202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Voltage-dependent potassium channels (Kv) are extremely sensitive to membrane voltage and play a crucial role in membrane repolarization during action potentials. Kv channels undergo voltage-dependent transitions between closed states before opening. Despite all we have learned using electrophysiological methods and structural studies, we still lack a detailed picture of the energetics of the activation process. We show here that even a single mutation can drastically modify the temperature response of the Shaker Kv channel. Using rapid cell membrane temperature steps (Tsteps), we explored the effects of temperature on the ILT mutant (V369I, I372L, and S376T) and the I384N mutant. The ILT mutant produces a significant separation between the transitions of the voltage sensor domain (VSD) activation and the I384N uncouples its movement from the opening of the domain (PD). ILT and I384N respond to temperature in drastically different ways. In ILT, temperature facilitates the opening of the channel akin to a "hot" receptor, reflecting the temperature dependence of the voltage sensor's last transition and facilitating VSD to PD coupling (electromechanical coupling). In I384N, temperature stabilizes the channel closed configuration analogous to a "cold" receptor. Since I384N drastically uncouples the VSD from the pore opening, we reveal the intrinsic temperature dependence of the PD itself. Here, we propose that the electromechanical coupling has either a "loose" or "tight" conformation. In the loose conformation, the movement of the VSD is necessary but not sufficient to efficiently propagate the electromechanical energy to the S6 gate. In the tight conformation the VSD activation is more effectively translated into the opening of the PD. This conformational switch can be tuned by temperature and modifications of the S4 and S4-S5 linker. Our results show that we can modulate the temperature dependence of Kv channels by affecting its electromechanical coupling.
Collapse
Affiliation(s)
- Bernardo I Pinto-Anwandter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- These authors contributed equally to this work
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- These authors contributed equally to this work
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
3
|
Yang ND, Kanyo R, Zhao L, Li J, Kang PW, Dou AK, White KM, Shi J, Nerbonne JM, Kurata HT, Cui J. Electro-mechanical coupling of KCNQ channels is a target of epilepsy-associated mutations and retigabine. SCIENCE ADVANCES 2022; 8:eabo3625. [PMID: 35857840 PMCID: PMC9299555 DOI: 10.1126/sciadv.abo3625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
KCNQ2 and KCNQ3 form the M-channels that are important in regulating neuronal excitability. Inherited mutations that alter voltage-dependent gating of M-channels are associated with neonatal epilepsy. In the homolog KCNQ1 channel, two steps of voltage sensor activation lead to two functionally distinct open states, the intermediate-open (IO) and activated-open (AO), which define the gating, physiological, and pharmacological properties of KCNQ1. However, whether the M-channel shares the same mechanism is unclear. Here, we show that KCNQ2 and KCNQ3 feature only a single conductive AO state but with a conserved mechanism for the electro-mechanical (E-M) coupling between voltage sensor activation and pore opening. We identified some epilepsy-linked mutations in KCNQ2 and KCNQ3 that disrupt E-M coupling. The antiepileptic drug retigabine rescued KCNQ3 currents that were abolished by a mutation disrupting E-M coupling, suggesting that modulating the E-M coupling in KCNQ channels presents a potential strategy for antiepileptic therapy.
Collapse
Affiliation(s)
- Nien-Du Yang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Richard Kanyo
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lu Zhao
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jingru Li
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Po Wei Kang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Alex Kelly Dou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Kelli McFarland White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jeanne M. Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harley T. Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Guardiani C, Cecconi F, Chiodo L, Cottone G, Malgaretti P, Maragliano L, Barabash ML, Camisasca G, Ceccarelli M, Corry B, Roth R, Giacomello A, Roux B. Computational methods and theory for ion channel research. ADVANCES IN PHYSICS: X 2022; 7:2080587. [PMID: 35874965 PMCID: PMC9302924 DOI: 10.1080/23746149.2022.2080587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023] Open
Abstract
Ion channels are fundamental biological devices that act as gates in order to ensure selective ion transport across cellular membranes; their operation constitutes the molecular mechanism through which basic biological functions, such as nerve signal transmission and muscle contraction, are carried out. Here, we review recent results in the field of computational research on ion channels, covering theoretical advances, state-of-the-art simulation approaches, and frontline modeling techniques. We also report on few selected applications of continuum and atomistic methods to characterize the mechanisms of permeation, selectivity, and gating in biological and model channels.
Collapse
Affiliation(s)
- C. Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - F. Cecconi
- CNR - Istituto dei Sistemi Complessi, Rome, Italy and Istituto Nazionale di Fisica Nucleare, INFN, Roma1 section. 00185, Roma, Italy
| | - L. Chiodo
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| | - G. Cottone
- Department of Physics and Chemistry-Emilio Segrè, University of Palermo, Palermo, Italy
| | - P. Malgaretti
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Erlangen, Germany
| | - L. Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy, and Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - M. L. Barabash
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - G. Camisasca
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
- Dipartimento di Fisica, Università Roma Tre, Rome, Italy
| | - M. Ceccarelli
- Department of Physics and CNR-IOM, University of Cagliari, Monserrato 09042-IT, Italy
| | - B. Corry
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - R. Roth
- Institut Für Theoretische Physik, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - A. Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - B. Roux
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago IL, USA
| |
Collapse
|
5
|
Priest MF, Lee EE, Bezanilla F. Tracking the movement of discrete gating charges in a voltage-gated potassium channel. eLife 2021; 10:58148. [PMID: 34779404 PMCID: PMC8635975 DOI: 10.7554/elife.58148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1 and R2) in the Shaker potassium channel voltage sensor using a fluorescent positively charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole-Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage-sensitive phosphatase (CiVSP).
Collapse
Affiliation(s)
- Michael F Priest
- Committee on Neurobiology and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Elizabeth El Lee
- Committee on Neurobiology and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Francisco Bezanilla
- Committee on Neurobiology and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States.,Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, United States
| |
Collapse
|
6
|
Roux B. String Method with Swarms-of-Trajectories, Mean Drifts, Lag Time, and Committor. J Phys Chem A 2021; 125:7558-7571. [PMID: 34406010 PMCID: PMC8419867 DOI: 10.1021/acs.jpca.1c04110] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Indexed: 11/29/2022]
Abstract
The kinetics of a dynamical system comprising two metastable states is formulated in terms of a finite-time propagator in phase space (position and velocity) adapted to the underdamped Langevin equation. Dimensionality reduction to a subspace of collective variables yields familiar expressions for the propagator, committor, and steady-state flux. A quadratic expression for the steady-state flux between the two metastable states can serve as a robust variational principle to determine an optimal approximate committor expressed in terms of a set of collective variables. The theoretical formulation is exploited to clarify the foundation of the string method with swarms-of-trajectories, which relies on the mean drift of short trajectories to determine the optimal transition pathway. It is argued that the conditions for Markovity within a subspace of collective variables may not be satisfied with an arbitrary short time-step and that proper kinetic behaviors appear only when considering the effective propagator for longer lag times. The effective propagator with finite lag time is amenable to an eigenvalue-eigenvector spectral analysis, as elaborated previously in the context of position-based Markov models. The time-correlation functions calculated by swarms-of-trajectories along the string pathway constitutes a natural extension of these developments. The present formulation provides a powerful theoretical framework to characterize the optimal pathway between two metastable states of a system.
Collapse
Affiliation(s)
- Benoît Roux
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Bassetto CA, Carvalho-de-Souza JL, Bezanilla F. Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in Shaker K + channels. eLife 2021; 10:63077. [PMID: 33620313 PMCID: PMC7943188 DOI: 10.7554/elife.63077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
In Shaker K+ channels, the S4-S5 linker couples the voltage sensor (VSD) and pore domain (PD). Another coupling mechanism is revealed using two W434F-containing channels: L361R:W434F and L366H:W434F. In L361R:W434F, W434F affects the L361R VSD seen as a shallower charge-voltage (Q-V) curve that crosses the conductance-voltage (G-V) curve. In L366H:W434F, L366H relieves the W434F effect converting a non-conductive channel in a conductive one. We report a chain of residues connecting the VSD (S4) to the selectivity filter (SF) in the PD of an adjacent subunit as the molecular basis for voltage sensor selectivity filter gate (VS-SF) coupling. Single alanine substitutions in this region (L409A, S411A, S412A, or F433A) are enough to disrupt the VS-SF coupling, shown by the absence of Q-V and G-V crossing in L361R:W434F mutant and by the lack of ionic conduction in the L366H:W434F mutant. This residue chain defines a new coupling between the VSD and the PD in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos Az Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - João Luis Carvalho-de-Souza
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Department of Anesthesiology, University of Arizona, Tucson, United States
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
8
|
Catacuzzeno L, Sforna L, Franciolini F, Eisenberg RS. Multiscale modeling shows that dielectric differences make NaV channels faster than KV channels. J Gen Physiol 2021; 153:211724. [PMID: 33502441 PMCID: PMC7845922 DOI: 10.1085/jgp.202012706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
The generation of action potentials in excitable cells requires different activation kinetics of voltage-gated Na (NaV) and K (KV) channels. NaV channels activate much faster and allow the initial Na+ influx that generates the depolarizing phase and propagates the signal. Recent experimental results suggest that the molecular basis for this kinetic difference is an amino acid side chain located in the gating pore of the voltage sensor domain, which is a highly conserved isoleucine in KV channels but an equally highly conserved threonine in NaV channels. Mutagenesis suggests that the hydrophobicity of this side chain in Shaker KV channels regulates the energetic barrier that gating charges cross as they move through the gating pore and control the rate of channel opening. We use a multiscale modeling approach to test this hypothesis. We use high-resolution molecular dynamics to study the effect of the mutation on polarization charge within the gating pore. We then incorporate these results in a lower-resolution model of voltage gating to predict the effect of the mutation on the movement of gating charges. The predictions of our hierarchical model are fully consistent with the tested hypothesis, thus suggesting that the faster activation kinetics of NaV channels comes from a stronger dielectric polarization by threonine (NaV channel) produced as the first gating charge enters the gating pore compared with isoleucine (KV channel).
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Robert S Eisenberg
- Department of Physiology and Biophysics, Rush University, Chicago, IL.,Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL
| |
Collapse
|
9
|
Wu X, Larsson HP. Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation. Int J Mol Sci 2020; 21:ijms21249440. [PMID: 33322401 PMCID: PMC7763278 DOI: 10.3390/ijms21249440] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The delayed rectifier potassium IKs channel is an important regulator of the duration of the ventricular action potential. Hundreds of mutations in the genes (KCNQ1 and KCNE1) encoding the IKs channel cause long QT syndrome (LQTS). LQTS is a heart disorder that can lead to severe cardiac arrhythmias and sudden cardiac death. A better understanding of the IKs channel (here called the KCNQ1/KCNE1 channel) properties and activities is of great importance to find the causes of LQTS and thus potentially treat LQTS. The KCNQ1/KCNE1 channel belongs to the superfamily of voltage-gated potassium channels. The KCNQ1/KCNE1 channel consists of both the pore-forming subunit KCNQ1 and the modulatory subunit KCNE1. KCNE1 regulates the function of the KCNQ1 channel in several ways. This review aims to describe the current structural and functional knowledge about the cardiac KCNQ1/KCNE1 channel. In addition, we focus on the modulation of the KCNQ1/KCNE1 channel and its potential as a target therapeutic of LQTS.
Collapse
|
10
|
Structure of the human sodium leak channel NALCN. Nature 2020; 587:313-318. [DOI: 10.1038/s41586-020-2570-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023]
|
11
|
Guidelli R, Becucci L, Aloisi G. Role of the time dependence of Boltzmann open probability in voltage-gated proton channels. Bioelectrochemistry 2020; 134:107520. [PMID: 32279034 DOI: 10.1016/j.bioelechem.2020.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
Abstract
The modeling and simulation of experimental families of current-time (I-t) curves of dimeric voltage-gated proton channels and of proton-conducting voltage sensing domains (VSDs) with a minimum of free parameters requires the movement of protons to be controlled by the rate of increase of the Boltzmann open probability p over time in passing from the holding to the depolarizing potential. Families of I-t curves of protomers and proton-conducting VSDs can be satisfactorily fitted by the use of a single free parameter expressing the rate constant kp for the increase of p over time. Families of I-t curves of dimeric Hv1 channels can be fitted by a model that assumes an initial proton current I1 flowing along the two monomeric units, while they are still operating separately; I1 is gradually replaced by a slower and more potential-dependent current I2 flowing when the two monomers start operating jointly under the control of the coiled-coil domain. Here too, p is assumed to increase over time with a rate constant kp that doubles in passing from I1 to I2, with fit requiring three free parameters. Chord conductance yields erroneously high gating charges when fitted by the Boltzmann function, differently from slope conductance.
Collapse
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Lucia Becucci
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Giovanni Aloisi
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
12
|
Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, Sanders CR. Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state. eLife 2020; 9:e53901. [PMID: 32096762 PMCID: PMC7069725 DOI: 10.7554/elife.53901] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated ion channels feature voltage sensor domains (VSDs) that exist in three distinct conformations during activation: resting, intermediate, and activated. Experimental determination of the structure of a potassium channel VSD in the intermediate state has previously proven elusive. Here, we report and validate the experimental three-dimensional structure of the human KCNQ1 voltage-gated potassium channel VSD in the intermediate state. We also used mutagenesis and electrophysiology in Xenopus laevisoocytes to functionally map the determinants of S4 helix motion during voltage-dependent transition from the intermediate to the activated state. Finally, the physiological relevance of the intermediate state KCNQ1 conductance is demonstrated using voltage-clamp fluorometry. This work illuminates the structure of the VSD intermediate state and demonstrates that intermediate state conductivity contributes to the unusual versatility of KCNQ1, which can function either as the slow delayed rectifier current (IKs) of the cardiac action potential or as a constitutively active epithelial leak current.
Collapse
Affiliation(s)
- Keenan C Taylor
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Po Wei Kang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Panpan Hou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Nien-Du Yang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Departments of Chemistry and Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Jarrod A Smith
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Hui Huang
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Kelli McFarland White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Dungeng Peng
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Departments of Chemistry and Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Department of Bioinformatics, Vanderbilt University Medical CenterNashvilleUnited States
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama in HuntsvilleHuntsvilleUnited States
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
13
|
Lev B, Allen TW. Simulating ion channel activation mechanisms using swarms of trajectories. J Comput Chem 2020; 41:387-401. [PMID: 31743478 DOI: 10.1002/jcc.26102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Atomic-level studies of protein activity represent a significant challenge as a result of the complexity of conformational changes occurring on wide-ranging timescales, often greatly exceeding that of even the longest simulations. A prime example is the elucidation of protein allosteric mechanisms, where localized perturbations transmit throughout a large macromolecule to generate a response signal. For example, the conversion of chemical to electrical signals during synaptic neurotransmission in the brain is achieved by specialized membrane proteins called pentameric ligand-gated ion channels. Here, the binding of a neurotransmitter results in a global conformational change to open an ion-conducting pore across the nerve cell membrane. X-ray crystallography has produced static structures of the open and closed states of the proton-gated GLIC pentameric ligand-gated ion channel protein, allowing for atomistic simulations that can uncover changes related to activation. We discuss a range of enhanced sampling approaches that could be used to explore activation mechanisms. In particular, we describe recent application of an atomistic string method, based on Roux's "swarms of trajectories" approach, to elucidate the sequence and interdependence of conformational changes during activation. We illustrate how this can be combined with transition analysis and Brownian dynamics to extract thermodynamic and kinetic information, leading to understanding of what controls ion channel function. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
14
|
Noncanonical mechanism of voltage sensor coupling to pore revealed by tandem dimers of Shaker. Nat Commun 2019; 10:3584. [PMID: 31395867 PMCID: PMC6687735 DOI: 10.1038/s41467-019-11545-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In voltage-gated potassium channels (VGKC), voltage sensors (VSD) endow voltage-sensitivity to pore domains (PDs) through a not fully understood mechanism. Shaker-like VGKC show domain-swapped configuration: VSD of one subunit is covalently connected to its PD by the protein backbone (far connection) and non-covalently to the PD of the next subunit (near connection). VSD-to-PD coupling is not fully explained by far connection only, therefore an additional mechanistic component may be based on near connection. Using tandem dimers of Shaker channels we show functional data distinguishing VSD-to-PD far from near connections. Near connections influence both voltage-dependence of C-type inactivation at the selectivity filter and overall PD open probability. We speculate a conserved residue in S5 (S412 in Shaker), within van der Waals distance from next subunit S4 residues is key for the noncanonical VSD-to-PD coupling. Natural mutations of S412-homologous residues in brain and heart VGKC are related to neurological and cardiac diseases.
Collapse
|
15
|
Hou P, Shi J, White KM, Gao Y, Cui J. ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling. eLife 2019; 8:e48576. [PMID: 31329101 PMCID: PMC6684268 DOI: 10.7554/elife.48576] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage-sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form IKs channels that regulate heart rhythm. KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Here, we tested modulations of human KCNQ1 channels by an activator ML277 in Xenopus oocytes. It exclusively changes the pore opening properties of the AO state without altering the IO state, but does not affect VSD activation. These observations support a distinctive mechanism responsible for the VSD-pore coupling at the AO state that is sensitive to ML277 modulation. ML277 provides insights and a tool to investigate the gating mechanism of KCNQ1 channels, and our study reveals a new strategy for treating long QT syndrome by specifically enhancing the AO state of native IKs currents.
Collapse
Affiliation(s)
- Panpan Hou
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | - Jingyi Shi
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | - Kelli McFarland White
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | | | - Jianmin Cui
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| |
Collapse
|
16
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
17
|
Carvalho-de-Souza JL, Bezanilla F. Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K + channels. J Gen Physiol 2018; 150:307-321. [PMID: 29321262 PMCID: PMC5806678 DOI: 10.1085/jgp.201711882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022] Open
Abstract
Voltage-dependent gating in ion channels is achieved by the movement of voltage-sensing arginine residues across an electric field. Carvalho-de-Souza and Bezanilla reveal that the size and hydrophobicity of two non–voltage-sensing residues (L358 and L361) affect voltage dependence in Shaker K+ channels. Voltage sensitivity in ion channels is a function of highly conserved arginine residues in their voltage-sensing domains (VSDs), but this conservation does not explain the diversity in voltage dependence among different K+ channels. Here we study the non–voltage-sensing residues 353 to 361 in Shaker K+ channels and find that residues 358 and 361 strongly modulate the voltage dependence of the channel. We mutate these two residues into all possible remaining amino acids (AAs) and obtain Q-V and G-V curves. We introduced the nonconducting W434F mutation to record sensing currents in all mutants except L361R, which requires K+ depletion because it is affected by W434F. By fitting Q-Vs with a sequential three-state model for two voltage dependence–related parameters (V0, the voltage-dependent transition from the resting to intermediate state and V1, from the latter to the active state) and G-Vs with a two-state model for the voltage dependence of the pore domain parameter (V1/2), Spearman’s coefficients denoting variable relationships with hydrophobicity, available area, length, width, and volume of the AAs in 358 and 361 positions could be calculated. We find that mutations in residue 358 shift Q-Vs and G-Vs along the voltage axis by affecting V0, V1, and V1/2 according to the hydrophobicity of the AA. Mutations in residue 361 also shift both curves, but V0 is affected by the hydrophobicity of the AA in position 361, whereas V1 and V1/2 are affected by size-related AA indices. Small-to-tiny AAs have opposite effects on V1 and V1/2 in position 358 compared with 361. We hypothesize possible coordination points in the protein that residues 358 and 361 would temporarily and differently interact with in an intermediate state of VSD activation. Our data contribute to the accumulating knowledge of voltage-dependent ion channel activation by adding functional information about the effects of so-called non–voltage-sensing residues on VSD dynamics.
Collapse
Affiliation(s)
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL .,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| |
Collapse
|
18
|
Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening. Nat Commun 2017; 8:1730. [PMID: 29167462 PMCID: PMC5700111 DOI: 10.1038/s41467-017-01911-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/25/2017] [Indexed: 12/04/2022] Open
Abstract
In voltage-activated ion channels, voltage sensor (VSD) activation induces pore opening via VSD-pore coupling. Previous studies show that the pore in KCNQ1 channels opens when the VSD activates to both intermediate and fully activated states, resulting in the intermediate open (IO) and activated open (AO) states, respectively. It is also well known that accompanying KCNQ1 channel opening, the ionic current is suppressed by a rapid process called inactivation. Here we show that inactivation of KCNQ1 channels derives from the different mechanisms of the VSD-pore coupling that lead to the IO and AO states, respectively. When the VSD activates from the intermediate state to the activated state, the VSD-pore coupling has less efficacy in opening the pore, producing inactivation. These results indicate that different mechanisms, other than the canonical VSD-pore coupling, are at work in voltage-dependent ion channel activation. KCNQ1 is a voltage-gated potassium channel that is important in cardiac and epithelial function. Here the authors present a mechanism for KCNQ1 activation and inactivation in which voltage sensor activation promotes pore opening more effectively in the intermediate open state than the fully open state, generating inactivation.
Collapse
|
19
|
Lv D, Gong W, Zhang Y, Liu Y, Li C. A coarse-grained method to predict the open-to-closed behavior of glutamine binding protein. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Bargiello TA, Oh S, Tang Q, Bargiello NK, Dowd TL, Kwon T. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:22-39. [PMID: 28476631 DOI: 10.1016/j.bbamem.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022]
Abstract
Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (Vm or Vi-o). These transjunctional voltage dependent processes have been termed Vj- or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use the resulting information to derive a consensus atomic structure that is then subjected to rigorous validation. In this paper, we summarize our efforts to obtain and validate atomic models of the open and voltage-driven closed states of undocked connexin hemichannels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Thaddeus A Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Seunghoon Oh
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Qingxiu Tang
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Nicholas K Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Terry L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States
| | - Taekyung Kwon
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
21
|
Phan K, Ng CA, David E, Shishmarev D, Kuchel PW, Vandenberg JI, Perry MD. The S1 helix critically regulates the finely tuned gating of Kv11.1 channels. J Biol Chem 2017; 292:7688-7705. [PMID: 28280240 DOI: 10.1074/jbc.m117.779298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/26/2017] [Indexed: 11/06/2022] Open
Abstract
Congenital mutations in the cardiac Kv11.1 channel can cause long QT syndrome type 2 (LQTS2), a heart rhythm disorder associated with sudden cardiac death. Mutations act either by reducing protein expression at the membrane and/or by perturbing the intricate gating properties of Kv11.1 channels. A number of clinical LQTS2-associated mutations have been reported in the first transmembrane segment (S1) of Kv11.1 channels, but the role of this region of the channel is largely unexplored. In part, this is due to problems defining the extent of the S1 helix, as a consequence of its low sequence homology with other Kv family members. Here, we used NMR spectroscopy and electrophysiological characterization to show that the S1 of Kv11.1 channels extends seven helical turns, from Pro-405 to Phe-431, and is flanked by unstructured loops. Functional analysis suggests that pre-S1 loop residues His-402 and Tyr-403 play an important role in regulating the kinetics and voltage dependence of channel activation and deactivation. Multiple residues within the S1 helix also play an important role in fine-tuning the voltage dependence of activation, regulating slow deactivation, and modulating C-type inactivation of Kv11.1 channels. Analyses of LQTS2-associated mutations in the pre-S1 loop or S1 helix of Kv11.1 channels demonstrate perturbations to both protein expression and most gating transitions. Thus, S1 region mutations would reduce both the action potential repolarizing current passed by Kv11.1 channels in cardiac myocytes, as well as the current passed in response to premature depolarizations that normally helps protect against the formation of ectopic beats.
Collapse
Affiliation(s)
- Kevin Phan
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010.,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| | - Chai Ann Ng
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010.,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| | - Erikka David
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010
| | - Dmitry Shishmarev
- the School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip W Kuchel
- the School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jamie I Vandenberg
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010.,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| | - Matthew D Perry
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, .,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| |
Collapse
|
22
|
Bocksteins E, Snyders DJ, Holmgren M. Independent movement of the voltage sensors in K V2.1/K V6.4 heterotetramers. Sci Rep 2017; 7:41646. [PMID: 28139741 PMCID: PMC5282584 DOI: 10.1038/srep41646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/20/2016] [Indexed: 01/11/2023] Open
Abstract
Heterotetramer voltage-gated K+ (KV) channels KV2.1/KV6.4 display a gating charge-voltage (QV) distribution composed by two separate components. We use state dependent chemical accessibility to cysteines substituted in either KV2.1 or KV6.4 to assess the voltage sensor movements of each subunit. By comparing the voltage dependences of chemical modification and gating charge displacement, here we show that each gating charge component corresponds to a specific subunit forming the heterotetramer. The voltage sensors from KV6.4 subunits move at more negative potentials than the voltage sensors belonging to KV2.1 subunits. These results indicate that the voltage sensors from the tetrameric channels move independently. In addition, our data shows that 75% of the total charge is attributed to KV2.1, while 25% to KV6.4. Thus, the most parsimonious model for KV2.1/KV6.4 channels’ stoichiometry is 3:1.
Collapse
Affiliation(s)
- Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department for Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Molecular Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department for Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Miguel Holmgren
- Molecular Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Cui J. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels. Biophys J 2016; 110:14-25. [PMID: 26745405 DOI: 10.1016/j.bpj.2015.11.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/26/2022] Open
Abstract
Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications.
Collapse
Affiliation(s)
- Jianmin Cui
- Department of Biomedical Engineering, Cardiac Bioelectricity and Arrhythmia Center and Center for the Investigation of Membrane Excitability Disorders, Washington University, St. Louis, Missouri.
| |
Collapse
|
24
|
Lueck JD, Mackey AL, Infield DT, Galpin JD, Li J, Roux B, Ahern CA. Atomic mutagenesis in ion channels with engineered stoichiometry. eLife 2016; 5. [PMID: 27710770 PMCID: PMC5092047 DOI: 10.7554/elife.18976] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022] Open
Abstract
C-type inactivation of potassium channels fine-tunes the electrical signaling in excitable cells through an internal timing mechanism that is mediated by a hydrogen bond network in the channels' selectively filter. Previously, we used nonsense suppression to highlight the role of the conserved Trp434-Asp447 indole hydrogen bond in Shaker potassium channels with a non-hydrogen bonding homologue of tryptophan, Ind (Pless et al., 2013). Here, molecular dynamics simulations indicate that the Trp434Ind hydrogen bonding partner, Asp447, unexpectedly 'flips out' towards the extracellular environment, allowing water to penetrate the space behind the selectivity filter while simultaneously reducing the local negative electrostatic charge. Additionally, a protein engineering approach is presented whereby split intein sequences are flanked by endoplasmic reticulum retention/retrieval motifs (ERret) are incorporated into the N- or C- termini of Shaker monomers or within sodium channels two-domain fragments. This system enabled stoichiometric control of Shaker monomers and the encoding of multiple amino acids within a channel tetramer. DOI:http://dx.doi.org/10.7554/eLife.18976.001
Collapse
Affiliation(s)
- John D Lueck
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Adam L Mackey
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| | - Jing Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, United States
| |
Collapse
|
25
|
Perkett MR, Mirijanian DT, Hagan MF. The allosteric switching mechanism in bacteriophage MS2. J Chem Phys 2016; 145:035101. [PMID: 27448905 PMCID: PMC4947040 DOI: 10.1063/1.4955187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/16/2023] Open
Abstract
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Dina T Mirijanian
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
26
|
Allosteric substrate switching in a voltage-sensing lipid phosphatase. Nat Chem Biol 2016; 12:261-7. [PMID: 26878552 PMCID: PMC4798927 DOI: 10.1038/nchembio.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022]
Abstract
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis.
Collapse
|
27
|
Moreau A, Gosselin-Badaroudine P, Delemotte L, Klein ML, Chahine M. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. ACTA ACUST UNITED AC 2015; 145:93-106. [PMID: 25624448 PMCID: PMC4306709 DOI: 10.1085/jgp.201411304] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nav1.5 channels bearing voltage-sensor domain mutations associated with atypical cardiac arrhythmias and dilated cardiomyopathy generate gating pore currents. The gating pore current, also called omega current, consists of a cation leak through the typically nonconductive voltage-sensor domain (VSD) of voltage-gated ion channels. Although the study of gating pore currents has refined our knowledge of the structure and the function of voltage-gated ion channels, their implication in cardiac disorders has not been established. Two Nav1.5 mutations (R222Q and R225W) located in the VSD are associated with atypical clinical phenotypes involving complex arrhythmias and dilated cardiomyopathy. Using the patch-clamp technique, in silico mutagenesis, and molecular dynamic simulations, we tested the hypothesis that these two mutations may generate gating pore currents, potentially accounting for their clinical phenotypes. Our findings suggest that the gating pore current generated by the R222Q and R225W mutations could constitute the underlying pathological mechanism that links Nav1.5 VSD mutations with human cardiac arrhythmias and dilatation of cardiac chambers.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Pascal Gosselin-Badaroudine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Lucie Delemotte
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Mohamed Chahine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada Department of Medicine, Université Laval, Québec City, Québec G1K 7P4, Canada
| |
Collapse
|
28
|
Kim RY, Yau MC, Galpin JD, Seebohm G, Ahern CA, Pless SA, Kurata HT. Atomic basis for therapeutic activation of neuronal potassium channels. Nat Commun 2015; 6:8116. [PMID: 26333338 PMCID: PMC4561856 DOI: 10.1038/ncomms9116] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/21/2015] [Indexed: 12/25/2022] Open
Abstract
Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2–5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators. The antiepileptic drug retigabine potentiates neuronal KCNQ potassium channels. Here, the authors use a combination of unnatural amino acid mutagenesis and electrophysiology to show that retigabine acts by hydrogen bonding with a tryptophan indole nitrogen in the channel pore.
Collapse
Affiliation(s)
- Robin Y Kim
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Michael C Yau
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, 285 Newton Road, Iowa City, Iowa 52242, USA
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1 (Gebäude D3), D-48149 Münster, Germany
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, 285 Newton Road, Iowa City, Iowa 52242, USA
| | - Stephan A Pless
- Department of Drug Design and Pharmacology (Center for Biopharmaceuticals), University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
29
|
Gamal El-Din TM, Scheuer T, Catterall WA. Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. ACTA ACUST UNITED AC 2015; 144:147-57. [PMID: 25070432 PMCID: PMC4113903 DOI: 10.1085/jgp.201411210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Comparison of the kinetics and voltage dependence of gating pore current conducted by S4 gating charge mutants supports the sliding-helix model of voltage sensor function and elucidates the pathogenic mechanisms underlying periodic paralysis syndromes. Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.
Collapse
Affiliation(s)
| | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
30
|
Zhang RS, Wright JD, Pless SA, Nunez JJ, Kim RY, Li JBW, Yang R, Ahern CA, Kurata HT. A Conserved Residue Cluster That Governs Kinetics of ATP-dependent Gating of Kir6.2 Potassium Channels. J Biol Chem 2015; 290:15450-15461. [PMID: 25934393 DOI: 10.1074/jbc.m114.631960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 12/13/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels are heteromultimeric complexes of an inwardly rectifying Kir channel (Kir6.x) and sulfonylurea receptors. Their regulation by intracellular ATP and ADP generates electrical signals in response to changes in cellular metabolism. We investigated channel elements that control the kinetics of ATP-dependent regulation of KATP (Kir6.2 + SUR1) channels using rapid concentration jumps. WT Kir6.2 channels re-open after rapid washout of ATP with a time constant of ∼60 ms. Extending similar kinetic measurements to numerous mutants revealed fairly modest effects on gating kinetics despite significant changes in ATP sensitivity and open probability. However, we identified a pair of highly conserved neighboring amino acids (Trp-68 and Lys-170) that control the rate of channel opening and inhibition in response to ATP. Paradoxically, mutations of Trp-68 or Lys-170 markedly slow the kinetics of channel opening (500 and 700 ms for W68L and K170N, respectively), while increasing channel open probability. Examining the functional effects of these residues using φ value analysis revealed a steep negative slope. This finding implies that these residues play a role in lowering the transition state energy barrier between open and closed channel states. Using unnatural amino acid incorporation, we demonstrate the requirement for a planar amino acid at Kir6.2 position 68 for normal channel gating, which is potentially necessary to localize the ϵ-amine of Lys-170 in the phosphatidylinositol 4,5-bisphosphate-binding site. Overall, our findings identify a discrete pair of highly conserved residues with an essential role for controlling gating kinetics of Kir channels.
Collapse
Affiliation(s)
- Roger S Zhang
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jordan D Wright
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - John-Jose Nunez
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robin Y Kim
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jenny B W Li
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Runying Yang
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52246
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
31
|
Zaydman MA, Kasimova MA, McFarland K, Beller Z, Hou P, Kinser HE, Liang H, Zhang G, Shi J, Tarek M, Cui J. Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel. eLife 2014; 3:e03606. [PMID: 25535795 PMCID: PMC4381907 DOI: 10.7554/elife.03606] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/19/2014] [Indexed: 01/22/2023] Open
Abstract
Voltage-gated ion channels generate electrical currents that control muscle
contraction, encode neuronal information, and trigger hormonal release.
Tissue-specific expression of accessory (β) subunits causes these channels to
generate currents with distinct properties. In the heart, KCNQ1 voltage-gated
potassium channels coassemble with KCNE1 β-subunits to generate the
IKs current (Barhanin et al.,
1996; Sanguinetti et al., 1996),
an important current for maintenance of stable heart rhythms. KCNE1 significantly
modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et
al., 2012; Abbott, 2014). These
changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years
of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here
we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent
interactions that functionally couple the voltage-sensing domains (VSDs) to the
pore. DOI:http://dx.doi.org/10.7554/eLife.03606.001 Cells are surrounded by a membrane that prevents charged molecules from flowing
directly into or out of the cell. Instead ions move through channel proteins within
the cell membrane. Most ion channel proteins are selective and only allow one or a
few types of ion to cross. Ion channels can also be ‘gated’, and have a
central pore that can open or close to allow or stop the flow of selected ions. This
gating can be affected by the channel sensing changes in conditions, such as changes
in the voltage across the cell membrane. Research conducted more than half a century ago—before the discovery of
channel proteins—led to a mathematical model of the flow of potassium ions
across a membrane in response to changes in voltage. This model made a number of
assumptions, many of which are still widely accepted. However, Zaydman et al. have
now called into question some of the assumptions of this model. Based on the original model, it has been long assumed that the voltage-sensing
domains that open or close the central pore in response to changes in voltage must be
fully activated to allow the channel to open. It had also been assumed that the
voltage-sensing domains do not affect the flow of ions once the channel is open.
Zaydman et al. have now shown that these assumptions are not valid for a specific
voltage-gated potassium channel called KCNQ1. Instead, this ion channel opens when
its voltage-sensing domains are either partially or fully activated. Zaydman found
that the intermediate-open and activated-open states had different preferences for
passing various types of ion; therefore, the gating of the channel and the flow of
ions through the open channel are both dependent on the state of the voltage-sensing
domains. This is in direct contrast to what had previously been assumed. The original model cannot reproduce the gating of KCNQ1, nor can any other
established model. Therefore, Zaydman et al. devised a new model to understand how
the interactions between different states of the voltage-sensing domains and the pore
lead to gating. Zaydman et al. then used their model to address how another protein
called KCNE1 is able to alter properties of the KCNQ1 channel. KCNE1 is a protein that is expressed in the heart muscle cell and mutations affecting
KCNQ1 or KCNE1 have been associated with potentially fatal heart conditions. Based on
the assumptions of the original model, it had been difficult to understand how KCNE1
was able to affect different properties of the KCNQ1 channel. Thus, for nearly 20
years it has been debated whether KCNE1 primarily affects the activation of the
voltage-sensing domains or the opening of the pore. Zaydman et al. found instead that
KCNE1 alters the interactions between the voltage-sensing domains and the pore, which
prevented the intermediate-open state and modified the properties of the
activated-open state. This mechanism provides one of the most complete explanations
for the action of the KCNE1 protein. DOI:http://dx.doi.org/10.7554/eLife.03606.002
Collapse
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Marina A Kasimova
- Theory, Modeling, and Simulations, UMR 7565, Université de Lorraine, Nancy, France
| | - Kelli McFarland
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Zachary Beller
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Panpan Hou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Holly E Kinser
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Hongwu Liang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Mounir Tarek
- Theory, Modeling, and Simulations, UMR 7565, Université de Lorraine, Nancy, France
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| |
Collapse
|
32
|
Pless SA, Elstone FD, Niciforovic AP, Galpin JD, Yang R, Kurata HT, Ahern CA. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. ACTA ACUST UNITED AC 2014; 143:645-56. [PMID: 24778431 PMCID: PMC4003186 DOI: 10.1085/jgp.201311036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conserved acidic and aromatic residues in the four sodium channel voltage-sensor domains make domain-specific functional contributions. Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation–pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.
Collapse
Affiliation(s)
- Stephan A Pless
- Department of Anesthesiology, Pharmacology and Therapeutics, and 2 Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Gourgy-Hacohen O, Kornilov P, Pittel I, Peretz A, Attali B, Paas Y. Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain. ACTA ACUST UNITED AC 2014; 144:513-27. [PMID: 25385787 PMCID: PMC4242811 DOI: 10.1085/jgp.201411221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although crystal structures of various voltage-gated K(+) (Kv) and Na(+) channels have provided substantial information on the activated conformation of the voltage-sensing domain (VSD), the topology of the VSD in its resting conformation remains highly debated. Numerous studies have investigated the VSD resting state in the Kv Shaker channel; however, few studies have explored this issue in other Kv channels. Here, we investigated the VSD resting state of KCNQ2, a K(+) channel subunit belonging to the KCNQ (Kv7) subfamily of Kv channels. KCNQ2 can coassemble with the KCNQ3 subunit to mediate the IM current that regulates neuronal excitability. In humans, mutations in KCNQ2 are associated with benign neonatal forms of epilepsy or with severe epileptic encephalopathy. We introduced cysteine mutations into the S4 transmembrane segment of the KCNQ2 VSD and determined that external application of Cd(2+) profoundly reduced the current amplitude of S4 cysteine mutants S195C, R198C, and R201C. Based on reactivity with the externally accessible endogenous cysteine C106 in S1, we infer that each of the above S4 cysteine mutants forms Cd(2+) bridges to stabilize a channel closed state. Disulfide bonds and metal bridges constrain the S4 residues S195, R198, and R201 near C106 in S1 in the resting state, and experiments using concatenated tetrameric constructs indicate that this occurs within the same VSD. KCNQ2 structural models suggest that three distinct resting channel states have been captured by the formation of different S4-S1 Cd(2+) bridges. Collectively, this work reveals that residue C106 in S1 can be very close to several N-terminal S4 residues for stabilizing different KCNQ2 resting conformations.
Collapse
Affiliation(s)
- Orit Gourgy-Hacohen
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Polina Kornilov
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilya Pittel
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
34
|
Bende NS, Dziemborowicz S, Mobli M, Herzig V, Gilchrist J, Wagner J, Nicholson GM, King GF, Bosmans F. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. Nat Commun 2014; 5:4350. [PMID: 25014760 PMCID: PMC4115291 DOI: 10.1038/ncomms5350] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1–S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, aconcept that will be valuable for the design of insect-selective insecticides.
Collapse
Affiliation(s)
- Niraj S Bende
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland QLD 4072, Australia
| | - Sławomir Dziemborowicz
- School of Medical and Molecular Biosciences, University of Technology, Sydney, New South Wales 2007, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland QLD 4072, Australia
| | - John Gilchrist
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jordan Wagner
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Graham M Nicholson
- School of Medical and Molecular Biosciences, University of Technology, Sydney, New South Wales 2007, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland QLD 4072, Australia
| | - Frank Bosmans
- 1] Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA [2] Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
35
|
Tempkin JOB, Qi B, Saunders MG, Roux B, Dinner AR, Weare J. Using multiscale preconditioning to accelerate the convergence of iterative molecular calculations. J Chem Phys 2014; 140:184114. [PMID: 24832260 PMCID: PMC11450774 DOI: 10.1063/1.4872021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/09/2014] [Indexed: 11/14/2022] Open
Abstract
Iterative procedures for optimizing properties of molecular models often converge slowly owing to the computational cost of accurately representing features of interest. Here, we introduce a preconditioning scheme that allows one to use a less expensive model to guide exploration of the energy landscape of a more expensive model and thus speed the discovery of locally stable states of the latter. We illustrate our approach in the contexts of energy minimization and the string method for finding transition pathways. The relation of the method to other multilevel simulation techniques and possible extensions are discussed.
Collapse
Affiliation(s)
- Jeremy O B Tempkin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bo Qi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Marissa G Saunders
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Benoit Roux
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R Dinner
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan Weare
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Moving gating charges through the gating pore in a Kv channel voltage sensor. Proc Natl Acad Sci U S A 2014; 111:E1950-9. [PMID: 24782544 DOI: 10.1073/pnas.1406161111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage sensor domains (VSDs) regulate ion channels and enzymes by transporting electrically charged residues across a hydrophobic VSD constriction called the gating pore or hydrophobic plug. How the gating pore controls the gating charge movement presently remains debated. Here, using saturation mutagenesis and detailed analysis of gating currents from gating pore mutations in the Shaker Kv channel, we identified statistically highly significant correlations between VSD function and physicochemical properties of gating pore residues. A necessary small residue at position S240 in S1 creates a "steric gap" that enables an intracellular access pathway for the transport of the S4 Arg residues. In addition, the stabilization of the depolarized VSD conformation, a hallmark for most Kv channels, requires large side chains at positions F290 in S2 and F244 in S1 acting as "molecular clamps," and a hydrophobic side chain at position I237 in S1 acting as a local intracellular hydrophobic barrier. Finally, both size and hydrophobicity of I287 are important to control the main VSD energy barrier underlying transitions between resting and active states. Taken together, our study emphasizes the contribution of several gating pore residues to catalyze the gating charge transfer. This work paves the way toward understanding physicochemical principles underlying conformational dynamics in voltage sensors.
Collapse
|
37
|
Das A, Gur M, Cheng MH, Jo S, Bahar I, Roux B. Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model. PLoS Comput Biol 2014; 10:e1003521. [PMID: 24699246 PMCID: PMC3974643 DOI: 10.1371/journal.pcbi.1003521] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/01/2014] [Indexed: 11/19/2022] Open
Abstract
Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results. Many biomolecules are like tiny molecular machines that need to change their shapes and visit many states to perform their biological functions. For a complete molecular understanding of a biological process, one needs to have information on the relevant stable states of the system in question, as well as the pathways by which the system travels from one state to another. We report here an efficient computational method that uses the knowledge of experimental structures of a pair of stable states in order to construct an energetically favoravle pathway between them. We adopt a simple representation of the molecular system by replacing the atoms with beads connected by springs and constructing an energy function with two minima around the end-states. We searched for the structure with highest energy that the system is most likely to visit during the transition and created two paths starting from this structure and proceeding toward the end-states. The combined result of these two paths is the minimum energy pathway between the two stable states. We apply this method to study important structural changes in one enzyme and three large proteins that transport small molecules and ions across the cell membrane.
Collapse
Affiliation(s)
- Avisek Das
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
| | - Mert Gur
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary Hongying Cheng
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sunhwan Jo
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
| | - Ivet Bahar
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Maragliano L, Roux B, Vanden-Eijnden E. Comparison between Mean Forces and Swarms-of-Trajectories String Methods. J Chem Theory Comput 2014; 10:524-33. [PMID: 26580029 PMCID: PMC6980172 DOI: 10.1021/ct400606c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The original formulation of the string method in collective variable space is compared with a recent variant called string method with swarms-of-trajectories. The assumptions made in the original method are revisited and the significance of the minimum free energy path (MFEP) is discussed in the context of reactive events. These assumptions are compared to those made in the string method with swarms-of-trajectories, and shown to be equivalent in a certain regime: in particular an expression for the path identified by the swarms-of-trajectories method is given and shown to be closely related to the MFEP. Finally, the algorithmic aspects of both methods are compared.
Collapse
Affiliation(s)
- Luca Maragliano
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Eric Vanden-Eijnden
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| |
Collapse
|
39
|
Abstract
The mechanism by which voltage-gated ion channels respond to changes in membrane polarization during action potential signaling in excitable cells has been the subject of research attention since the original description of voltage-dependent sodium and potassium flux in the squid giant axon. The cloning of ion channel genes and the identification of point mutations associated with channelopathy diseases in muscle and brain has facilitated an electrophysiological approach to the study of ion channels. Experimental approaches to the study of voltage gating have incorporated the use of thiosulfonate reagents to test accessibility, fluorescent probes, and toxins to define domain-specific roles of voltage-sensing S4 segments. Crystallography, structural and homology modeling, and molecular dynamics simulations have added computational approaches to study the relationship of channel structure to function. These approaches have tested models of voltage sensor translocation in response to membrane depolarization and incorporate the role of negative countercharges in the S1 to S3 segments to define our present understanding of the mechanism by which the voltage sensor module dictates gating particle permissiveness in excitable cells.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA,
| |
Collapse
|
40
|
Pless SA, Galpin JD, Niciforovic AP, Kurata HT, Ahern CA. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels. eLife 2013; 2:e01289. [PMID: 24327560 PMCID: PMC3852034 DOI: 10.7554/elife.01289] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated potassium (Kv) channels enable potassium efflux and membrane repolarization in excitable tissues. Many Kv channels undergo a progressive loss of ion conductance in the presence of a prolonged voltage stimulus, termed slow inactivation, but the atomic determinants that regulate the kinetics of this process remain obscure. Using a combination of synthetic amino acid analogs and concatenated channel subunits we establish two H-bonds near the extracellular surface of the channel that endow Kv channels with a mechanism to time the entry into slow inactivation: an intra-subunit H-bond between Asp447 and Trp434 and an inter-subunit H-bond connecting Tyr445 to Thr439. Breaking of either interaction triggers slow inactivation by means of a local disruption in the selectivity filter, while severing the Tyr445–Thr439 H-bond is likely to communicate this conformational change to the adjacent subunit(s). DOI:http://dx.doi.org/10.7554/eLife.01289.001 Proteins are made from long chains of smaller molecules, called amino acids. These chains twist and bend into complex three-dimensional shapes, and sometimes two or more chains, or ‘subunits’, are packed into a protein. These shapes are often held together by hydrogen bonds between some of the amino acids. Moreover, since the shape of a protein defines its function, some proteins must be able to switch between different shapes to function properly. Ion channels are proteins that form pores through cell membranes, allowing ions to flow in and out of the cell. Potassium ion channels, which are found in neurons and heart muscle cells, have four subunits that move to open or close the central pore in response to various signals. The closing of the channels can be ‘fast’ or ‘slow’. When the channels are closed quickly (called fast inactivation), a small part of the protein ‘plugs’ the pore from the inside of the cell. However, the mechanism behind slow inactivation remained obscure. It was thought to involve hydrogen bonds between some of the bulky amino acids that are found at the edge the pore. However, testing this hypothesis—by replacing these amino acids with alternatives that cannot form hydrogen bonds—was tricky because none of the 20 naturally occurring amino acids were alike enough to be suitable replacements. Now, Pless et al. have overcome this limitation by using synthetic amino acids that form hydrogen bonds that are stronger or weaker than those formed by the amino acids they are replacing. The results suggest that two types of hydrogen bond keep the pore open: one is a bond between two amino acids in the same subunit, and the other is an inter-subunit bond between amino acids in neighbouring subunits. Pless et al. suggest that opening the channel causes small movements that gradually weaken, and eventually break, these bonds in one of the four subunits. Specific amino acids within the pore are then free to twist and—via a cascade of similar movements in the other three subunits—block the pore and halt the flow of ions. As such, these networks of hydrogen bonds act as pre-set breaking points allowing channels to close, even in response to continued stimulation. Since regulated potassium channel activity underpins healthy neurons and heart muscles; understanding what controls their inactivation rate may lead to new approaches to tune their activity and treatments for important diseases. DOI:http://dx.doi.org/10.7554/eLife.01289.002
Collapse
Affiliation(s)
- Stephan A Pless
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
41
|
Bezanilla F, Villalba-Galea CA. The gating charge should not be estimated by fitting a two-state model to a Q-V curve. ACTA ACUST UNITED AC 2013; 142:575-8. [PMID: 24218396 PMCID: PMC3840919 DOI: 10.1085/jgp.201311056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The voltage dependence of charges in voltage-sensitive proteins, typically displayed as charge versus voltage (Q-V) curves, is often quantified by fitting it to a simple two-state Boltzmann function. This procedure overlooks the fact that the fitted parameters, including the total charge, may be incorrect if the charge is moving in multiple steps. We present here the derivation of a general formulation for Q-V curves from multistate sequential models, including the case of infinite number of states. We demonstrate that the commonly used method to estimate the charge per molecule using a simple Boltzmann fit is not only inadequate, but in most cases, it underestimates the moving charge times the fraction of the field.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
42
|
Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron 2013; 79:651-7. [PMID: 23972594 DOI: 10.1016/j.neuron.2013.05.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 11/21/2022]
Abstract
Most action potentials are produced by the sequential activation of voltage-gated sodium (Nav) and potassium (Kv) channels. This is mainly achieved by the rapid conformational rearrangement of voltage-sensor (VS) modules in Nav channels, with activation kinetics up to 6-fold faster than Shaker-type Kv channels. Here, using mutagenesis and gating current measurements, we show that a 3-fold acceleration of the VS kinetics in Nav versus Shaker Kv channels is produced by the hydrophilicity of two "speed-control" residues located in the S2 and S4 segments in Nav domains I-III. An additional 2-fold acceleration of the Nav VS kinetics is provided by the coexpression of the β1 subunit, ubiquitously found in mammal tissues. This study uncovers the molecular bases responsible for the differential activation of Nav versus Kv channels, a fundamental prerequisite for the genesis of action potentials.
Collapse
|
43
|
Villalba-Galea CA, Frezza L, Sandtner W, Bezanilla F. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase. ACTA ACUST UNITED AC 2013; 142:543-55. [PMID: 24127524 PMCID: PMC3813379 DOI: 10.1085/jgp.201310993] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | | | | | | |
Collapse
|
44
|
Vargas E, Yarov-Yarovoy V, Khalili-Araghi F, Catterall WA, Klein ML, Tarek M, Lindahl E, Schulten K, Perozo E, Bezanilla F, Roux B. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. ACTA ACUST UNITED AC 2013. [PMID: 23183694 PMCID: PMC3514734 DOI: 10.1085/jgp.201210873] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Developing an understanding of the mechanism of voltage-gated ion channels in molecular terms requires knowledge of the structure of the active and resting conformations. Although the active-state conformation is known from x-ray structures, an atomic resolution structure of a voltage-dependent ion channel in the resting state is not currently available. This has motivated various efforts at using computational modeling methods and molecular dynamics (MD) simulations to provide the missing information. A comparison of recent computational results reveals an emerging consensus on voltage-dependent gating from computational modeling and MD simulations. This progress is highlighted in the broad context of preexisting work about voltage-gated channels.
Collapse
Affiliation(s)
- Ernesto Vargas
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang L, Roux B. AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. J Chem Theory Comput 2013; 9. [PMID: 24223528 DOI: 10.1021/ct4003477] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Classical molecular dynamics (MD) simulations based on atomistic models are increasingly used to study a wide range of biological systems. A prerequisite for meaningful results from such simulations is an accurate molecular mechanical force field. Most biomolecular simulations are currently based on the widely used AMBER and CHARMM force fields, which were parameterized and optimized to cover a small set of basic compounds corresponding to the natural amino acids and nucleic acid bases. Atomic models of additional compounds are commonly generated by analogy to the parameter set of a given force field. While this procedure yields models that are internally consistent, the accuracy of the resulting models can be limited. In this work, we propose a method, General Automated Atomic Model Parameterization (GAAMP), for generating automatically the parameters of atomic models of small molecules using the results from ab initio quantum mechanical (QM) calculations as target data. Force fields that were previously developed for a wide range of model compounds serve as initial guess, although any of the final parameter can be optimized. The electrostatic parameters (partial charges, polarizabilities and shielding) are optimized on the basis of QM electrostatic potential (ESP) and, if applicable, the interaction energies between the compound and water molecules. The soft dihedrals are automatically identified and parameterized by targeting QM dihedral scans as well as the energies of stable conformers. To validate the approach, the solvation free energy is calculated for more than 200 small molecules and MD simulations of 3 different proteins are carried out.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biochemistry and Molecular Biology University of Chicago 929 East 57th Street, Chicago, IL 60637
| | | |
Collapse
|