1
|
Chan TYC, Hung LY, Lam TYL, Sheng B, Leung FYK, Lee HHC. SCN4A-related congenital myopathy in a Han Chinese patient: A case report and literature review. Heliyon 2024; 10:e23663. [PMID: 38187266 PMCID: PMC10770507 DOI: 10.1016/j.heliyon.2023.e23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
SCN4A mutations have been shown to be associated with myotonia, paramyotonia congenita, and periodic paralyses. More recently, loss-of-function variants in the SCN4A gene were also noted to be associated with rarer, autosomal recessive forms of congenital myasthenic syndrome and congenital myopathy. Diagnosis is challenging as the initial clinical presentation and histological features on muscle biopsies are non-specific. We report a Han Chinese patient presented with congenital myopathy with two missense SCN4A variants. The patient had an antenatal history of reduced fetal movements, polyhydramnios and a very preterm birth. At birth, she was noted to have low Apgar score, respiratory distress syndrome and hypotonia. Delayed motor development was noted in early childhood. Dysmorphic features such as an elongated face, dolichocephaly and high arched palate were present. At 16 years of age, the patient developed progressive muscle weakness and was wheelchair-bound by age 20. Muscle biopsy revealed non-specific changes only. Targeted hereditary myopathy panel testing by next generation sequencing revealed two previously unreported missense variants c.1841A > T p.(Asn614Ile) and c.4420G > A p.(Ala1474Thr) in the SCN4A gene. The clinical features of SCN4A-related congenital myopathy and myasthenic syndrome were reviewed. This case exemplifies the utility of next generation sequencing in the diagnosis of undifferentiated muscle disease.
Collapse
Affiliation(s)
- Tina Yee-Ching Chan
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong Special Administrative Region
| | - Ling-Yin Hung
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong Special Administrative Region
| | - Tiffany Yan-Lok Lam
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region
| | - Bun Sheng
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region
| | - Frank Ying-Kit Leung
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong Special Administrative Region
- Department of Pathology, Yan Chai Hospital, Hong Kong Special Administrative Region
| | - Hencher Han-Chih Lee
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong Special Administrative Region
| |
Collapse
|
2
|
Su T, Chen ML, Liu LH, Meng H, Tang B, Liu XR, Liao WP. Critical Role of E1623 Residue in S3-S4 Loop of Nav1.1 Channel and Correlation Between Nature of Substitution and Functional Alteration. Front Mol Neurosci 2022; 14:797628. [PMID: 35082603 PMCID: PMC8785683 DOI: 10.3389/fnmol.2021.797628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: An overwhelming majority of the genetic variants associated with genetic disorders are missense. The association between the nature of substitution and the functional alteration, which is critical in determining the pathogenicity of variants, remains largely unknown. With a novel missense variant (E1623A) identified from two epileptic cases, which occurs in the extracellular S3-S4 loop of Nav1.1, we studied functional changes of all latent mutations at residue E1623, aiming to understand the relationship between substitution nature and functional alteration. Methods: Six latent mutants with amino acid substitutions at E1623 were generated, followed by measurements of their electrophysiological alterations. Different computational analyses were used to parameterize the residue alterations. Results: Structural modeling indicated that the E1623 was located in the peripheral region far from the central pore, and contributed to the tight turn of the S3-S4 loop. The E1623 residue exhibited low functional tolerance to the substitutions with the most remarkable loss-of-function found in E1623A, including reduced current density, less steady-state availability of activation and inactivation, and slower recovery from fast inactivation. Correlation analysis between electrophysiological parameters and the parameterized physicochemical properties of different residues suggested that hydrophilicity of side-chain at E1623 might be a crucial contributor for voltage-dependent kinetics. However, none of the established algorithms on the physicochemical variations of residues could well predict changes in the channel conductance property indicated by peak current density. Significance: The results established the important role of the extracellular S3-S4 loop in Nav1.1 channel gating and proposed a possible effect of local conformational loop flexibility on channel conductance and kinetics. Site-specific knowledge of protein will be a fundamental task for future bioinformatics.
Collapse
Affiliation(s)
- Tao Su
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Meng-Long Chen
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Li-Hong Liu
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Hen Meng
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
- *Correspondence: Wei-Ping Liao
| |
Collapse
|
3
|
Boonamnaj P, Pandey RB, Sompornpisut P. Interaction fingerprint of transmembrane segments in voltage sensor domains. Biophys Chem 2021; 277:106649. [PMID: 34147849 DOI: 10.1016/j.bpc.2021.106649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Voltage sensor domain (VSD) in channel and non-channel membrane proteins shares a common function in the detection of changes in the transmembrane electric potential. The VSD is made of four helical transmembrane segments (S1-S4) that form a structurally conserved scaffold through inter-transmembrane residue-residue interactions. Details about these interactions are yet to be fully understood in the context of the unique structural and physical characteristics of the voltage sensor unit. In this study, molecular dynamics simulations were carried out to investigate transmembrane helix-helix interactions via residue-based nonbonding energies using the activated and resting state conformations of VSD from Hv1, CiVSP, KvAP and NavAb. Inter-transmembrane interaction energies within the VSD were determined. Analysis of electrostatic and van der Waals components revealed the strengths and weaknesses of the interactions between each pair of transmembrane segments. In all cases the S4 helix had the highest electrostatic contribution to favor the key role as the voltage sensitive segment. Electrostatic interactions for the S1-S2 pair as well as the S1-S3 pair were relatively weak. Van der Waal interaction energies between adjacent segments were on average greater than that between diagonally opposite segments. Salt bridge interactions between S4-arginines and the negatively charged residues in other segments appear to contribute more to stabilizing the energy than the van der Waals interactions between nonpolar residues. The overall behavior of residue-residue contacts is similar among the transmembrane domains, reflecting the common inter- transmembrane interaction pattern in the VSD. In addition, analysis of the residue positions suggested that subtle differences in the orientation of the salt-bridges can be attributed to the difference in the inter-transmembrane interaction strengths inside the VSDs.
Collapse
Affiliation(s)
- Panisak Boonamnaj
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - R B Pandey
- School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pornthep Sompornpisut
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Zhu Q, Du Y, Nomura Y, Gao R, Cang Z, Wei GW, Gordon D, Gurevitz M, Groome J, Dong K. Charge substitutions at the voltage-sensing module of domain III enhance actions of site-3 and site-4 toxins on an insect sodium channel. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103625. [PMID: 34358664 PMCID: PMC9376739 DOI: 10.1016/j.ibmb.2021.103625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Scorpion α-toxins bind at the pharmacologically-defined site-3 on the sodium channel and inhibit channel inactivation by preventing the outward movement of the voltage sensor in domain IV (IVS4), whereas scorpion β-toxins bind at site-4 on the sodium channel and enhance channel activation by trapping the voltage sensor of domain II (IIS4) in its outward position. However, limited information is available on the role of the voltage-sensing modules (VSM, comprising S1-S4) of domains I and III in toxin actions. We have previously shown that charge reversing substitutions of the innermost positively-charged residues in IIIS4 (R4E, R5E) increase the activity of an insect-selective site-4 scorpion toxin, Lqh-dprIT3-c, on BgNav1-1a, a cockroach sodium channel. Here we show that substitutions R4E and R5E in IIIS4 also increase the activity of two site-3 toxins, LqhαIT from Leiurusquinquestriatus hebraeus and insect-selective Av3 from Anemonia viridis. Furthermore, charge reversal of either of two conserved negatively-charged residues, D1K and E2K, in IIIS2 also increase the action of the site-3 and site-4 toxins. Homology modeling suggests that S2-D1 and S2-E2 interact with S4-R4 and S4-R5 in the VSM of domain III (III-VSM), respectively, in the activated state of the channel. However, charge swapping between S2-D1 and S4-R4 had no compensatory effects on gating or toxin actions, suggesting that charged residue interactions are complex. Collectively, our results highlight the involvement of III-VSM in the actions of both site 3 and site 4 toxins, suggesting that charge reversing substitutions in III-VSM allosterically facilitate IIS4 or IVS4 voltage sensor trapping by these toxins.
Collapse
Affiliation(s)
- Qing Zhu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Yuzhe Du
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Yoshiko Nomura
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Rong Gao
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, China
| | - Zixuan Cang
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Dalia Gordon
- Department of Plant Molecular Biology & Ecology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Michael Gurevitz
- Department of Plant Molecular Biology & Ecology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | - James Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
6
|
Nakajima T, Kaneko Y, Dharmawan T, Kurabayashi M. Role of the voltage sensor module in Na v domain IV on fast inactivation in sodium channelopathies: The implication of closed-state inactivation. Channels (Austin) 2020; 13:331-343. [PMID: 31357904 PMCID: PMC6713248 DOI: 10.1080/19336950.2019.1649521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The segment 4 (S4) voltage sensor in voltage-gated sodium channels (Navs) have domain-specific functions, and the S4 segment in domain DIV (DIVS4) plays a key role in the activation and fast inactivation processes through the coupling of arginine residues in DIVS4 with residues of putative gating charge transfer center (pGCTC) in DIVS1-3. In addition, the first four arginine residues (R1-R4) in Nav DIVS4 have position-specific functions in the fast inactivation process, and mutations in these residues are associated with diverse phenotypes of Nav-related diseases (sodium channelopathies). R1 and R2 mutations commonly display a delayed fast inactivation, causing a gain-of-function, whereas R3 and R4 mutations commonly display a delayed recovery from inactivation and profound use-dependent current attenuation, causing a severe loss-of-function. In contrast, mutations of residues of pGCTC in Nav DIVS1-3 can also alter fast inactivation. Such alterations in fast inactivation may be caused by disrupted interactions of DIVS4 with DIVS1-3. Despite fast inactivation of Navs occurs from both the open-state (open-state inactivation; OSI) and closed state (closed-state inactivation; CSI), changes in CSI have received considerably less attention than those in OSI in the pathophysiology of sodium channelopathies. CSI can be altered by mutations of arginine residues in DIVS4 and residues of pGCTC in Navs, and altered CSI can be an underlying primary biophysical defect of sodium channelopathies. Therefore, CSI should receive focus in order to clarify the pathophysiology of sodium channelopathies.
Collapse
Affiliation(s)
- Tadashi Nakajima
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Yoshiaki Kaneko
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Tommy Dharmawan
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Masahiko Kurabayashi
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| |
Collapse
|
7
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
8
|
Dharmawan T, Nakajima T, Iizuka T, Tamura S, Matsui H, Kaneko Y, Kurabayashi M. Enhanced closed-state inactivation of mutant cardiac sodium channels (SCN5A N1541D and R1632C) through different mechanisms. J Mol Cell Cardiol 2019; 130:88-95. [PMID: 30935997 DOI: 10.1016/j.yjmcc.2019.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND SCN5A variants can be associated with overlapping phenotypes such as Brugada syndrome (BrS), sinus node dysfunction and supraventricular tachyarrhythmias. Our genetic screening of SCN5A in 65 consecutive BrS probands revealed two patients with overlapping phenotypes: one carried an SCN5A R1632C (in domain IV-segment 4), which we have previously reported, the other carried a novel SCN5A N1541D (in domain IV-segment 1). OBJECTIVE We sought to reveal whether or not these variants are associated with the same biophysical defects. METHODS Wild-type (WT) or mutant SCN5A was expressed in tsA201-cells, and whole-cell sodium currents (hNav1.5/INa) were recorded using patch-clamp techniques. RESULTS The N1541D-INa density, when assessed from a holding potential of -150 mV, was not different from WT-INa as with R1632C-INa, indicating that SCN5A N1541D did not cause trafficking defects. The steady-state inactivation curve of N1541D-INa was markedly shifted to hyperpolarizing potentials in comparison to WT-INa (V1/2-WT: -82.3 ± 0.9 mV, n = 15; N1541D: -108.8 ± 1.6 mV, n = 26, P < .01) as with R1632C-INa. Closed-state inactivation (CSI) was evaluated using prepulses of -90 mV for 1460 ms. Residual N1541D-INa and R1632C-INa were markedly reduced in comparison to WT-INa (WT: 63.8 ± 4.6%, n = 18; N1541D: 15.1 ± 2.3%, n = 19, P < .01 vs WT; R1632C: 5.3 ± 0.5%, n = 15, P < .01 vs WT). Entry into CSI of N1541D-INa was markedly accelerated, and that of R1632C-INa was weakly accelerated in comparison to WT-INa (tau-WT: 65.8 ± 7.4 ms, n = 18; N1541D: 13.7 ± 1.1 ms, n = 19, P < .01 vs WT; R1632C: 39.5 ± 2.9 ms, n = 15, P < .01 vs WT and N1541D). Although N1541D-INa recovered from closed-state fast inactivation at the same rate as WT-INa, R1632C-INa recovered very slowly (tau-WT: 1.90 ± 0.16 ms, n = 10; N1541D: 1.72 ± 0.12 ms, n = 10, P = .41 vs WT; R1632C: 53.0 ± 2.5 ms, n = 14, P < .01 vs WT and N1541D). CONCLUSIONS Both N1541D-INa and R1632C-INa exhibited marked enhancement of CSI, but through different mechanisms. The data provided a novel understanding of the mechanisms of CSI of INa. Clinically, the enhanced CSI of N1541D-INa leads to a severe loss-of-function of INa at voltages near the physiological resting membrane potential (~-90 mV) of cardiac myocytes; this can be attributable to the patient's phenotypic manifestations.
Collapse
Affiliation(s)
- Tommy Dharmawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Takashi Iizuka
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
9
|
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, Payandeh J. Structural basis of α-scorpion toxin action on Na v channels. Science 2019; 363:eaav8573. [PMID: 30733386 DOI: 10.1126/science.aav8573] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Alexander Cloake
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - José P Llongueras
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Zhong Rong Li
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Yuwen Jian
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, LNC, UMR 7291, 13003 Marseille, France
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - David H Hackos
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
10
|
In Silico Analysis of the Subtype Selective Blockage of KCNA Ion Channels through the µ-Conotoxins PIIIA, SIIIA, and GIIIA. Mar Drugs 2019; 17:md17030180. [PMID: 30893914 PMCID: PMC6471588 DOI: 10.3390/md17030180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding subtype specific ion channel pore blockage by natural peptide-based toxins is crucial for developing such compounds into promising drug candidates. Herein, docking and molecular dynamics simulations were employed in order to understand the dynamics and binding states of the µ-conotoxins, PIIIA, SIIIA, and GIIIA, at the voltage-gated potassium channels of the KV1 family, and they were correlated with their experimental activities recently reported by Leipold et al. Their different activities can only adequately be understood when dynamic information about the toxin-channel systems is available. For all of the channel-bound toxins investigated herein, a certain conformational flexibility was observed during the molecular dynamic simulations, which corresponds to their bioactivity. Our data suggest a similar binding mode of µ-PIIIA at KV1.6 and KV1.1, in which a plethora of hydrogen bonds are formed by the Arg and Lys residues within the α-helical core region of µ-PIIIA, with the central pore residues of the channel. Furthermore, the contribution of the K+ channel’s outer and inner pore loops with respect to the toxin binding. and how the subtype specificity is induced, were proposed.
Collapse
|
11
|
Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E, Estevez A, Kugel C, Franke Y, Chen J, Ciferri C, Hackos DH, Koth CM, Payandeh J. Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin. Cell 2019; 176:702-715.e14. [PMID: 30661758 DOI: 10.1016/j.cell.2018.12.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.
Collapse
Affiliation(s)
- Hui Xu
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Tianbo Li
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| | | | - Foteini Tzakoniati
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Evera Wong
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Alberto Estevez
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Christine Kugel
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - David H Hackos
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA.
| | - Christopher M Koth
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
12
|
Hypokalaemic periodic paralysis and myotonia in a patient with homozygous mutation p.R1451L in Na V1.4. Sci Rep 2018; 8:9714. [PMID: 29946067 PMCID: PMC6018793 DOI: 10.1038/s41598-018-27822-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022] Open
Abstract
Dominantly inherited channelopathies of the skeletal muscle voltage-gated sodium channel NaV1.4 include hypokalaemic and hyperkalaemic periodic paralysis (hypoPP and hyperPP) and myotonia. HyperPP and myotonia are caused by NaV1.4 channel overactivity and overlap clinically. Instead, hypoPP is caused by gating pore currents through the voltage sensing domains (VSDs) of NaV1.4 and seldom co-exists clinically with myotonia. Recessive loss-of-function NaV1.4 mutations have been described in congenital myopathy and myasthenic syndromes. We report two families with the NaV1.4 mutation p.R1451L, located in VSD-IV. Heterozygous carriers in both families manifest with myotonia and/or hyperPP. In contrast, a homozygous case presents with both hypoPP and myotonia, but unlike carriers of recessive NaV1.4 mutations does not manifest symptoms of myopathy or myasthenia. Functional analysis revealed reduced current density and enhanced closed state inactivation of the mutant channel, but no evidence for gating pore currents. The rate of recovery from inactivation was hastened, explaining the myotonia in p.R1451L carriers and the absence of myasthenic presentations in the homozygous proband. Our data suggest that recessive loss-of-function NaV1.4 variants can present with hypoPP without congenital myopathy or myasthenia and that myotonia can present even in carriers of homozygous NaV1.4 loss-of-function mutations.
Collapse
|
13
|
Substitutions of the S4DIV R2 residue (R1451) in Na V1.4 lead to complex forms of paramyotonia congenita and periodic paralyses. Sci Rep 2018; 8:2041. [PMID: 29391559 PMCID: PMC5794747 DOI: 10.1038/s41598-018-20468-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/18/2018] [Indexed: 01/19/2023] Open
Abstract
Mutations in NaV1.4, the skeletal muscle voltage-gated Na+ channel, underlie several skeletal muscle channelopathies. We report here the functional characterization of two substitutions targeting the R1451 residue and resulting in 3 distinct clinical phenotypes. The R1451L is a novel pathogenic substitution found in two unrelated individuals. The first individual was diagnosed with non-dystrophic myotonia, whereas the second suffered from an unusual phenotype combining hyperkalemic and hypokalemic episodes of periodic paralysis (PP). The R1451C substitution was found in one individual with a single attack of hypoPP induced by glucocorticoids. To elucidate the biophysical mechanism underlying the phenotypes, we used the patch-clamp technique to study tsA201 cells expressing WT or R1451C/L channels. Our results showed that both substitutions shifted the inactivation to hyperpolarized potentials, slowed the kinetics of inactivation, slowed the recovery from slow inactivation and reduced the current density. Cooling further enhanced these abnormalities. Homology modeling revealed a disruption of hydrogen bonds in the voltage sensor domain caused by R1451C/L. We concluded that the altered biophysical properties of R1451C/L well account for the PMC-hyperPP cluster and that additional factors likely play a critical role in the inter-individual differences of clinical expression resulting from R1451C/L.
Collapse
|
14
|
Bednarz M, Stunnenberg BC, Kusters B, Kamsteeg EJ, Saris CG, Groome J, Winston V, Meola G, Jurkat-Rott K, Voermans NC. A novel Ile1455Thr variant in the skeletal muscle sodium channel alpha-subunit in a patient with a severe adult-onset proximal myopathy with electrical myotonia and a patient with mild paramyotonia phenotype. Neuromuscul Disord 2016; 27:175-182. [PMID: 28024841 DOI: 10.1016/j.nmd.2016.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022]
Abstract
In sodium channelopathies, a severe fixed myopathy caused by a dominant mutation is rare. We describe two unrelated patients with a novel variant, p.Ile1455Thr, with phenotypes of paramyotonia in one case and fixed proximal myopathy with latent myotonia in another. In-vitro whole cell patch-clamp studies show that the mutation slows inactivation and accelerates recovery, in line with other paramyotonia variants with destabilized fast inactivation as pathomechanism. Additionally, p.IleI1455 causes a loss-of-function by reduced membrane insertion, right-shift of activation, and slowed kinetics. Molecular dynamics simulations comparing wild type and mutant Nav1.4 showed that threonine substitution hindered D4S4 mobility in response to membrane depolarization, consistent with effects of the mutation on channel inactivation. The fixed myopathy is likely to be associated to gain-of-function leading to sodium accumulation, regional edema, T-tubular swelling and mitochondrial stress. A possible contribution of the loss-of-function features towards myotonia and myopathy is discussed.
Collapse
Affiliation(s)
- Marcin Bednarz
- Division of Neurophysiology, Ulm University, Ulm, Germany
| | - Bas C Stunnenberg
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan G Saris
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Vern Winston
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Italy
| | | | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
DeMarco KR, Clancy CE. Cardiac Na Channels: Structure to Function. CURRENT TOPICS IN MEMBRANES 2016; 78:287-311. [PMID: 27586288 DOI: 10.1016/bs.ctm.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heart rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. Opening of the primary cardiac voltage-gated sodium (NaV1.5) channel initiates cellular depolarization and the propagation of an electrical action potential that promotes coordinated contraction of the heart. The regularity of these contractile waves is critically important since it drives the primary function of the heart: to act as a pump that delivers blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. Perturbations to NaV1.5 may alter the structure, and hence the function, of the ion channel and are associated downstream with a wide variety of cardiac conduction pathologies, such as arrhythmias.
Collapse
Affiliation(s)
- K R DeMarco
- University of California, Davis, Davis, CA, United States
| | - C E Clancy
- University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Fohlmeister JF. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature. J Neurophysiol 2015; 113:3759-77. [PMID: 25867741 DOI: 10.1152/jn.00551.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation.
Collapse
Affiliation(s)
- Jürgen F Fohlmeister
- Department of Integrative Biology and Physiology and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
17
|
Pless SA, Elstone FD, Niciforovic AP, Galpin JD, Yang R, Kurata HT, Ahern CA. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. ACTA ACUST UNITED AC 2014; 143:645-56. [PMID: 24778431 PMCID: PMC4003186 DOI: 10.1085/jgp.201311036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conserved acidic and aromatic residues in the four sodium channel voltage-sensor domains make domain-specific functional contributions. Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation–pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.
Collapse
Affiliation(s)
- Stephan A Pless
- Department of Anesthesiology, Pharmacology and Therapeutics, and 2 Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Groome JR, Lehmann-Horn F, Fan C, Wolf M, Winston V, Merlini L, Jurkat-Rott K. NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery. ACTA ACUST UNITED AC 2014; 137:998-1008. [PMID: 24549961 PMCID: PMC3959555 DOI: 10.1093/brain/awu015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypokalaemic periodic paralysis is typically associated with mutations of voltage sensor residues in calcium or sodium channels of skeletal muscle. To date, causative sodium channel mutations have been studied only for the two outermost arginine residues in S4 voltage sensor segments of domains I to III. These mutations produce depolarization of skeletal muscle fibres in response to reduced extracellular potassium, owing to an inward cation-selective gating pore current activated by hyperpolarization. Here, we describe mutations of the third arginine, R3, in the domain III voltage sensor i.e. an R1135H mutation which was found in two patients in separate families and a novel R1135C mutation identified in a third patient in another family. Muscle fibres from a patient harbouring the R1135H mutation showed increased depolarization tendency at normal and reduced extracellular potassium compatible with the diagnosis. Additionally, amplitude and rise time of action potentials were reduced compared with controls, even for holding potentials at which all NaV1.4 are fully recovered from inactivation. These findings may be because of an outward omega current activated at positive potentials. Expression of R1135H/C in mammalian cells indicates further gating defects that include significantly enhanced entry into inactivation and prolonged recovery that may additionally contribute to action potential inhibition at the physiological resting potential. After S4 immobilization in the outward position, mutant channels produce an inward omega current that most likely depolarizes the resting potential and produces the hypokalaemia-induced weakness. Gating current recordings reveal that mutations at R3 inhibit S4 deactivation before recovery, and molecular dynamics simulations suggest that this defect is caused by disrupted interactions of domain III S2 countercharges with S4 arginines R2 to R4 during repolarization of the membrane. This work reveals a novel mechanism of disrupted S4 translocation for hypokalaemic periodic paralysis mutations at arginine residues located below the gating pore constriction of the voltage sensor module.
Collapse
Affiliation(s)
- James R Groome
- 1 Department of Biological Sciences, Idaho State University, Pocatello, ID USA 83209, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The mechanism by which voltage-gated ion channels respond to changes in membrane polarization during action potential signaling in excitable cells has been the subject of research attention since the original description of voltage-dependent sodium and potassium flux in the squid giant axon. The cloning of ion channel genes and the identification of point mutations associated with channelopathy diseases in muscle and brain has facilitated an electrophysiological approach to the study of ion channels. Experimental approaches to the study of voltage gating have incorporated the use of thiosulfonate reagents to test accessibility, fluorescent probes, and toxins to define domain-specific roles of voltage-sensing S4 segments. Crystallography, structural and homology modeling, and molecular dynamics simulations have added computational approaches to study the relationship of channel structure to function. These approaches have tested models of voltage sensor translocation in response to membrane depolarization and incorporate the role of negative countercharges in the S1 to S3 segments to define our present understanding of the mechanism by which the voltage sensor module dictates gating particle permissiveness in excitable cells.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA,
| |
Collapse
|