1
|
Török F, Tezcan K, Filippini L, Fernández-Quintero ML, Zanetti L, Liedl KR, Drexel RS, Striessnig J, Ortner NJ. Germline de novo variant F747S extends the phenotypic spectrum of CACNA1D Ca2+ channelopathies. Hum Mol Genet 2023; 32:847-859. [PMID: 36208199 PMCID: PMC9941835 DOI: 10.1093/hmg/ddac248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Germline gain-of-function missense variants in the pore-forming Cav1.3 α1-subunit (CACNA1D gene) confer high risk for a severe neurodevelopmental disorder with or without endocrine symptoms. Here, we report a 4-week-old new-born with the novel de novo missense variant F747S with a so far not described prominent jittering phenotype in addition to symptoms previously reported for CACNA1D mutations including developmental delay, elevated aldosterone level and transient hypoglycemia. We confirmed the pathogenicity of this variant in whole-cell patch-clamp experiments with wild-type and F747S mutant channels heterologously expressed together with α2δ1 and cytosolic β3 or membrane-bound β2a subunits. Mutation F747S caused the quantitatively largest shift in the voltage dependence of activation (-28 mV) reported so far for CACNA1D germline mutations. It also shifted inactivation to more negative voltages, slowed the time course of current inactivation and slowed current deactivation upon repolarization with both co-expressed β-subunits. In silico modelling and molecular docking, simulations revealed that this gain-of-function phenotype can be explained by formation of a novel inter-domain hydrogen bond between mutant residues S747 (IIS6) with N1145 (IIIS6) stabilizing selectively the activated open channel state. F747S displayed 2-6-fold increased sensitivity for the L-type Ca2+ channel blocker isradipine compared to wild type. Our data confirm the pathogenicity of the F747S variant with very strong gain-of-function gating changes, which may contribute to the novel jittering phenotype. Increased sensitivity for isradipine suggests this drug for potential symptomatic off-label treatment for carriers of this mutation.
Collapse
Affiliation(s)
- Ferenc Török
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Kamer Tezcan
- Department of Genetics, Kaiser Permanente, Sacramento, CA 95825, USA
| | - Ludovica Filippini
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Lucia Zanetti
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Raphaela S Drexel
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
2
|
Park CG, Yu W, Suh BC. Molecular basis of the PIP2-dependent regulation of CaV2.2 channel and its modulation by CaV β subunits. eLife 2022; 11:69500. [DOI: 10.7554/elife.69500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
High-voltage-activated Ca2+ (CaV) channels that adjust Ca2+ influx upon membrane depolarization are differentially regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) in an auxiliary CaV β subunit-dependent manner. However, the molecular mechanism by which the β subunits control the PIP2 sensitivity of CaV channels remains unclear. By engineering various α1B and β constructs in tsA-201 cells, we reported that at least two PIP2-binding sites, including the polybasic residues at the C-terminal end of I–II loop and the binding pocket in S4II domain, exist in the CaV2.2 channels. Moreover, they were distinctly engaged in the regulation of channel gating depending on the coupled CaV β2 subunits. The membrane-anchored β subunit abolished the PIP2 interaction of the phospholipid-binding site in the I–II loop, leading to lower PIP2 sensitivity of CaV2.2 channels. By contrast, PIP2 interacted with the basic residues in the S4II domain of CaV2.2 channels regardless of β2 isotype. Our data demonstrated that the anchoring properties of CaV β2 subunits to the plasma membrane determine the biophysical states of CaV2.2 channels by regulating PIP2 coupling to the nonspecific phospholipid-binding site in the I–II loop.
Collapse
Affiliation(s)
- Cheon-Gyu Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)
| | - Wookyung Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)
| |
Collapse
|
3
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
4
|
Translocatable voltage-gated Ca 2+ channel β subunits in α1-β complexes reveal competitive replacement yet no spontaneous dissociation. Proc Natl Acad Sci U S A 2018; 115:E9934-E9943. [PMID: 30257950 DOI: 10.1073/pnas.1809762115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
β subunits of high voltage-gated Ca2+ (CaV) channels promote cell-surface expression of pore-forming α1 subunits and regulate channel gating through binding to the α-interaction domain (AID) in the first intracellular loop. We addressed the stability of CaV α1B-β interactions by rapamycin-translocatable CaV β subunits that allow drug-induced sequestration and uncoupling of the β subunit from CaV2.2 channel complexes in intact cells. Without CaV α1B/α2δ1, all modified β subunits, except membrane-tethered β2a and β2e, are in the cytosol and rapidly translocate upon rapamycin addition to anchors on target organelles: plasma membrane, mitochondria, or endoplasmic reticulum. In cells coexpressing CaV α1B/α2δ1 subunits, the translocatable β subunits colocalize at the plasma membrane with α1B and stay there after rapamycin application, indicating that interactions between α1B and bound β subunits are very stable. However, the interaction becomes dynamic when other competing β isoforms are coexpressed. Addition of rapamycin, then, switches channel gating and regulation by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipid. Thus, expression of free β isoforms around the channel reveals a dynamic aspect to the α1B-β interaction. On the other hand, translocatable β subunits with AID-binding site mutations are easily dissociated from CaV α1B on the addition of rapamycin, decreasing current amplitude and PI(4,5)P2 sensitivity. Furthermore, the mutations slow CaV2.2 current inactivation and shift the voltage dependence of activation to more positive potentials. Mutated translocatable β subunits work similarly in CaV2.3 channels. In sum, the strong interaction of CaV α1B-β subunits can be overcome by other free β isoforms, permitting dynamic changes in channel properties in intact cells.
Collapse
|
5
|
Qiao X, Yang L, Zhang T, Zhou Q, Wang Y, Xu J, Xue C. Synthesis, stability and bioavailability of astaxanthin succinate diester. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3182-3189. [PMID: 29230828 DOI: 10.1002/jsfa.8824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND We synthesized astaxanthin succinate diester (ASD), a novel astaxanthin (AST) derivate, with succinic anhydride and free AST. ASD was purified and characterized using silica gel column chromatography and spectrometry, respectively. RESULTS The ASD final synthesis rate was 82.63%. A stability test revealed a high AST and ASD retention rate at pH 5.0-7.0. ASD showed better stability than did AST under acidic conditions. Both sample ions showed lower retention rates under Fe2+ and Fe3+ states. The ASD metabolic curve showed serum and liver area under the curve from 0 h to time t (AUC0-t ) values of 45.05 ± 4.58 and 120.38 ± 23.66 µg h-1 mL-1 , respectively. The long-term accumulation was significantly higher in the ASD group than in the AST group, which showed higher accumulation in the heart, muscle and spleen than in other tissues in vivo. CONCLUSION The thermal stability and bioavailability of ASD were higher than that of the non-esterified free AST and common free AST, respectively. Additionally, AST accumulation in different tissues of the ASD group was multifold higher than that of free AST. These results prove that ASD may serve as a better source of AST for human nutrition than does free AST. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, Province, PR China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, Province, PR China
| | - Ting Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, Province, PR China
| | - Qingxin Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, Province, PR China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, Province, PR China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, Province, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, Province, PR China
| |
Collapse
|
6
|
|
7
|
Park CG, Suh BC. The HOOK region of β subunits controls gating of voltage-gated Ca 2+ channels by electrostatically interacting with plasma membrane. Channels (Austin) 2017; 11:467-475. [PMID: 28569643 DOI: 10.1080/19336950.2017.1335841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Recently, we showed that the HOOK region of the β2 subunit electrostatically interacts with the plasma membrane and regulates the current inactivation and phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of voltage-gated Ca2+ (CaV) 2.2 channels. Here, we report that voltage-dependent gating and current density of the CaV2.2 channels are also regulated by the HOOK region of the β2 subunit. The HOOK region can be divided into 3 domains: S (polyserine), A (polyacidic), and B (polybasic). We found that the A domain shifted the voltage-dependent inactivation and activation of CaV2.2 channels to more hyperpolarized and depolarized voltages, respectively, whereas the B domain evoked these responses in the opposite directions. In addition, the A domain decreased the current density of the CaV2.2 channels, while the B domain increased it. Together, our data demonstrate that the flexible HOOK region of the β2 subunit plays an important role in determining the overall CaV channel gating properties.
Collapse
Affiliation(s)
- Cheon-Gyu Park
- a Department of Brain and Cognitive Sciences , DGIST , Daegu , South Korea
| | - Byung-Chang Suh
- a Department of Brain and Cognitive Sciences , DGIST , Daegu , South Korea
| |
Collapse
|
8
|
Park CG, Park Y, Suh BC. The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate. J Gen Physiol 2017; 149:261-276. [PMID: 28087621 PMCID: PMC5299622 DOI: 10.1085/jgp.201611677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
The β subunit of voltage-gated Ca2+ (CaV) channels plays an important role in regulating gating of the α1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular localization of the CaV β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of CaV biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of CaV channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane.
Collapse
Affiliation(s)
- Cheon-Gyu Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Yongsoo Park
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, 35340 Balcova, Izmir, Turkey
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
9
|
Chen L, Zhang YH, Zheng M, Huang T, Cai YD. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds. Mol Genet Genomics 2016; 291:2065-2079. [PMID: 27530612 DOI: 10.1007/s00438-016-1240-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Abstract
Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Mingyue Zheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, 201203, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
10
|
Kim DI, Kweon HJ, Park Y, Jang DJ, Suh BC. Ca2+ controls gating of voltage-gated calcium channels by releasing the β2e subunit from the plasma membrane. Sci Signal 2016; 9:ra67. [PMID: 27382026 DOI: 10.1126/scisignal.aad7247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Voltage-gated calcium (Cav) channels, which are regulated by membrane potential, cytosolic Ca(2+), phosphorylation, and membrane phospholipids, govern Ca(2+) entry into excitable cells. Cav channels contain a pore-forming α1 subunit, an auxiliary α2δ subunit, and a regulatory β subunit, each encoded by several genes in mammals. In addition to a domain that interacts with the α1 subunit, β2e and β2a also interact with the cytoplasmic face of the plasma membrane through an electrostatic interaction for β2e and posttranslational acylation for β2a. We found that an increase in cytosolic Ca(2+) promoted the release of β2e from the membrane without requiring substantial depletion of the anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) from the plasma membrane. Experiments with liposomes indicated that Ca(2+) disrupted the interaction of the β2e amino-terminal peptide with membranes containing PIP2 Ca(2+) binding to calmodulin (CaM) leads to CaM-mediated inactivation of Cav currents. Although Cav2.2 coexpressed with β2a required Ca(2+)-dependent activation of CaM for Ca(2+)-mediated reduction in channel activity, Cav2.2 coexpressed with β2e exhibited Ca(2+)-dependent inactivation of the channel even in the presence of Ca(2+)-insensitive CaM. Inducible depletion of PIP2 reduced Cav2.2 currents, and in cells coexpressing β2e, but not a form that lacks the polybasic region, increased intracellular Ca(2+) further reduced Cav2.2 currents. Many hormone- or neurotransmitter-activated receptors stimulate PIP2 hydrolysis and increase cytosolic Ca(2+); thus, our findings suggest that β2e may integrate such receptor-mediated signals to limit Cav activity.
Collapse
Affiliation(s)
- Dong-Il Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hae-Jin Kweon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yongsoo Park
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Kyungbuk 742-711, Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| |
Collapse
|
11
|
Nanoscale analysis reveals agonist-sensitive and heterogeneous pools of phosphatidylinositol 4-phosphate in the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1298-305. [DOI: 10.1016/j.bbamem.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
|
12
|
Jeong JY, Kweon HJ, Suh BC. Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors. Mol Cells 2016; 39:322-9. [PMID: 26923189 PMCID: PMC4844939 DOI: 10.14348/molcells.2016.2292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/27/2022] Open
Abstract
Voltage-gated Ca(2+) (CaV) channels are dynamically modulated by G protein-coupled receptors (GPCR). The M1 muscarinic receptor stimulation is known to enhance CaV2.3 channel gating through the activation of protein kinase C (PKC). Here, we found that M1 receptors also inhibit CaV2.3 currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated CaV2.3 currents by ∼two-fold. After the PMA-induced potentiation, stimulation of M1 receptors decreased the CaV2.3 currents by 52 ± 8%. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is responsible for the muscarinic suppression of CaV2.3 currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed CaV2.3 currents, by 53 ± 3%. Next, dephosphorylation of both PI(4)P and PI(4,5)P2 to PI by PJ translocation further decreased the current by up to 66 ± 3%. The results suggest that CaV2.3 currents are modulated by the M1 receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane PI(4,5)P2. Our results also suggest that there is rapid turnover between PI(4)P and PI(4,5)P2 in the plasma membrane.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Hae-Jin Kweon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
13
|
Kim DI, Suh BC. Differential interaction of β2e with phosphoinositides: A comparative study between β2e and MARCKS. Channels (Austin) 2015; 10:238-46. [PMID: 26650714 DOI: 10.1080/19336950.2015.1124311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Voltage-gated calcium (CaV) channels are responsible for Ca(2+) influx in excitable cells. As one of the auxiliary subunits, the CaV β subunit plays a pivotal role in the membrane expression and receptor modulation of CaV channels. In particular, the subcellular localization of the β subunit is critical for determining the biophysical properties of CaV channels. Recently, we showed that the β2e isotype is tethered to the plasma membrane. Such a feature of β2e is due to the reversible electrostatic interaction with anionic membrane phospholipids. Here, we further explored the membrane interaction property of β2e by comparing it with that of myristoylated alanine-rich C kinase substrate (MARCKS). First, the charge neutralization of the inner leaf of the plasma membrane induced the translocation of both β2e and MARCKS to the cytosol, while the transient depletion of poly-phosphoinositides (poly-PIs) by translocatable pseudojanin (PJ) systems induced the cytosolic translocation of β2e but not MARCKS. Second, the activation of protein kinase C (PKC) induced the translocation of MARCKS but not β2e. We also found that after the cytosolic translocation of MARCKS by receptor activation, depletion of poly-PIs slowed the recovery of MARCKS to the plasma membrane. Together, our data demonstrate that both β2e and MARCKS bind to the membrane through electrostatic interaction but with different binding affinity, and thus, they are differentially regulated by enzymatic degradation of membrane PIs.
Collapse
Affiliation(s)
- Dong-Il Kim
- a Department of Brain and Cognitive Sciences, DGIST , Daegu , Korea
| | - Byung-Chang Suh
- a Department of Brain and Cognitive Sciences, DGIST , Daegu , Korea
| |
Collapse
|