1
|
Nabiev SR, Kopylova GV, Nefedova VV, Matyushenko AM, Shchepkin DV, Bershitsky SY. The N-Terminal Mutations of cMyBP-C Affect Calcium Regulation, Kinetics, and Force of Muscle Contraction. Int J Mol Sci 2024; 25:13405. [PMID: 39769170 PMCID: PMC11677233 DOI: 10.3390/ijms252413405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers. The mutation D75N slowed the kinetics of force development but did not affect the relaxation rate. The mutation P161S slowed both the relaxation and force development. The mutation D75N increased the calcium sensitivity of force, and the mutation P161S decreased it. The mutation D75N decreased the maximal isometric tension and increased the tension and stiffness at low calcium. Both mutations studied disrupt the calcium regulation of contractile force and affect the kinetics of its development and thus may impair cardiac diastolic function and cause myocardial hypertrophy.
Collapse
Affiliation(s)
- Salavat R. Nabiev
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.N.); (A.M.M.)
| | - Alexander M. Matyushenko
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.N.); (A.M.M.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| |
Collapse
|
2
|
Main A, Mary S, Sin YY, Wright TA, Ling J, Blair CM, Smith GL, Fuller W, Baillie GS. SUMOylation of cardiac myosin binding protein-C reduces its phosphorylation and results in impaired relaxation following treatment with isoprenaline. Int J Biochem Cell Biol 2024; 176:106668. [PMID: 39321569 DOI: 10.1016/j.biocel.2024.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Systolic and diastolic functions are coordinated in the heart by myofilament proteins that influence force of contraction and calcium sensitivity. Fine control of these processes is afforded by a variety of post-translation modifications that occur on specific proteins at different times during each heartbeat. Cardiac myosin binding protein-C is a sarcomeric accessory protein whose function is to interact transiently with actin, tropomyosin and myosin. Previously many different types of post-translational modification have been shown to influence the action of myosin binding protein-C and we present the first report that the protein can be modified covalently by the small ubiquitin like modifier protein tag. Analysis by mass spectrometry suggests that there are multiple modification sites on myosin binding protein-C for this tag and single point mutations did not serve to abolish the covalent addition of the small ubiquitin like modifier protein. Functionally, our data from both model human embryonic kidney cells and transfected neonatal cardiac myocytes suggests that the modification reduces phosphorylation of the filament protein on serine 282. In cardiac myocytes, the hypo-phosphorylation coincided with a significantly slower relaxation response following isoprenaline induced contraction. We hypothesise that this novel modification of myosin binding protein-C represents a new level of control that acts to alter the relaxation kinetics of cardiac myocytes.
Collapse
Affiliation(s)
- Alice Main
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - Tom A Wright
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - Jiayue Ling
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - Connor M Blair
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - Will Fuller
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, University Avenue, Glasgow G128QQ, UK.
| |
Collapse
|
3
|
Kochurova AM, Beldiia EA, Nefedova VV, Yampolskaya DS, Koubassova NA, Kleymenov SY, Antonets JY, Ryabkova NS, Katrukha IA, Bershitsky SY, Matyushenko AM, Kopylova GV, Shchepkin DV. The D75N and P161S Mutations in the C0-C2 Fragment of cMyBP-C Associated with Hypertrophic Cardiomyopathy Disturb the Thin Filament Activation, Nucleotide Exchange in Myosin, and Actin-Myosin Interaction. Int J Mol Sci 2024; 25:11195. [PMID: 39456977 PMCID: PMC11508426 DOI: 10.3390/ijms252011195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
About half of the mutations that lead to hypertrophic cardiomyopathy (HCM) occur in the MYBPC3 gene. However, the molecular mechanisms of pathogenicity of point mutations in cardiac myosin-binding protein C (cMyBP-C) remain poorly understood. In this study, we examined the effects of the D75N and P161S substitutions in the C0 and C1 domains of cMyBP-C on the structural and functional properties of the C0-C1-m-C2 fragment (C0-C2). Differential scanning calorimetry revealed that these mutations disorder the tertiary structure of the C0-C2 molecule. Functionally, the D75N mutation reduced the maximum sliding velocity of regulated thin filaments in an in vitro motility assay, while the P161S mutation increased it. Both mutations significantly reduced the calcium sensitivity of the actin-myosin interaction and impaired thin filament activation by cross-bridges. D75N and P161S C0-C2 fragments substantially decreased the sliding velocity of the F-actin-tropomyosin filament. ADP dose-dependently reduced filament sliding velocity in the presence of WT and P161S fragments, but the velocity remained unchanged with the D75N fragment. We suppose that the D75N mutation alters nucleotide exchange kinetics by decreasing ADP affinity to the ATPase pocket and slowing the myosin cycle. Our molecular dynamics simulations mean that the D75N mutation affects myosin S1 function. Both mutations impair cardiac contractility by disrupting thin filament activation. The results offer new insights into the HCM pathogenesis caused by missense mutations in N-terminal domains of cMyBP-C, highlighting the distinct effects of D75N and P161S mutations on cardiac contractile function.
Collapse
Affiliation(s)
- Anastasia M. Kochurova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Evgenia A. Beldiia
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria S. Yampolskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Sergey Y. Kleymenov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia Y. Antonets
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | | | - Galina V. Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| |
Collapse
|
4
|
Lewalle A, Milburn G, Campbell KS, Niederer SA. Cardiac length-dependent activation driven by force-dependent thick-filament dynamics. Biophys J 2024; 123:2996-3009. [PMID: 38807364 PMCID: PMC11428202 DOI: 10.1016/j.bpj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.
Collapse
Affiliation(s)
- Alexandre Lewalle
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - Gregory Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Steven A Niederer
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Tamborrini D, Wang Z, Wagner T, Tacke S, Stabrin M, Grange M, Kho AL, Rees M, Bennett P, Gautel M, Raunser S. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 2023; 623:863-871. [PMID: 37914933 PMCID: PMC10665186 DOI: 10.1038/s41586-023-06690-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-β chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-β chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.
Collapse
Affiliation(s)
- Davide Tamborrini
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sebastian Tacke
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Martin Rees
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
6
|
Perike S, Gonzalez-Gonzalez FJ, Abu-Taha I, Damen FW, Hanft LM, Lizama KS, Aboonabi A, Capote AE, Aguilar-Sanchez Y, Levin B, Han Z, Sridhar A, Grand J, Martin J, Akar JG, Warren CM, Solaro RJ, Sang-Ging O, Darbar D, McDonald KS, Goergen CJ, Wolska BM, Dobrev D, Wehrens XH, McCauley MD. PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation. Circ Res 2023; 133:758-771. [PMID: 37737016 PMCID: PMC10616980 DOI: 10.1161/circresaha.123.322516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.
Collapse
Affiliation(s)
- Srikanth Perike
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Francisco J. Gonzalez-Gonzalez
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany
| | - Frederick W. Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Ken S. Lizama
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Andrielle E. Capote
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Yuriana Aguilar-Sanchez
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| | | | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine,University of Illinois at Chicago
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Jacob Grand
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | | | | | - Chad M. Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Ong Sang-Ging
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Pharmacology and Regenerative Medicine, College of Medicine,University of Illinois at Chicago
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Beata M. Wolska
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
- Department of Medicine, Montréal Heart Institute and Université de Montréal, Montréal, Canada
| | - Xander H.T. Wehrens
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| | - Mark D. McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
7
|
George TG, Hanft LM, Krenz M, Domeier TL, McDonald KS. Dystrophic cardiomyopathy: role of the cardiac myofilaments. Front Physiol 2023; 14:1207658. [PMID: 37362434 PMCID: PMC10288979 DOI: 10.3389/fphys.2023.1207658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Dystrophic cardiomyopathy arises from mutations in the dystrophin gene. Dystrophin forms part of the dystrophin glycoprotein complex and is postulated to act as a membrane stabilizer, protecting the sarcolemma from contraction-induced damage. Duchenne muscular dystrophy (DMD) is the most severe dystrophinopathy, caused by a total absence of dystrophin. Patients with DMD present with progressive skeletal muscle weakness and, because of treatment advances, a cardiac component of the disease (i.e., dystrophic cardiomyopathy) has been unmasked later in disease progression. The role that myofilaments play in dystrophic cardiomyopathy is largely unknown and, as such, this study aimed to address cardiac myofilament function in a mouse model of muscular dystrophy. To assess the effects of DMD on myofilament function, isolated permeabilized cardiomyocytes of wild-type (WT) littermates and Dmdmdx-4cv mice were attached between a force transducer and motor and subjected to contractile assays. Maximal tension and rates of force development (indexed by the rate constant, k tr) were similar between WT and Dmdmdx-4cv cardiac myocyte preparations. Interestingly, Dmdmdx-4cv cardiac myocytes exhibited greater sarcomere length dependence of peak power output compared to WT myocyte preparations. These results suggest dystrophin mitigates length dependence of activation and, in the absence of dystrophin, augmented sarcomere length dependence of myocyte contractility may accelerate ventricular myocyte contraction-induced damage and contribute to dystrophic cardiomyopathy. Next, we assessed if mavacamten, a small molecule modulator of thick filament activation, would mitigate contractile properties observed in Dmdmdx-4cv permeabilized cardiac myocyte preparations. Mavacamten decreased maximal tension and k tr in both WT and Dmdmdx-4cv cardiac myocytes, while also normalizing the length dependence of peak power between WT and Dmdmdx-4cv cardiac myocyte preparations. These results highlight potential benefits of mavacamten (i.e., reduced contractility while maintaining exquisite sarcomere length dependence of power output) as a treatment for dystrophic cardiomyopathy associated with DMD.
Collapse
|
8
|
Hanft LM, Robinett JC, Kalogeris TJ, Campbell KS, Biesiadecki BJ, McDonald KS. Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts. J Gen Physiol 2023; 155:e202213290. [PMID: 37000170 PMCID: PMC10067705 DOI: 10.1085/jgp.202213290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
The heart's pumping capacity is determined by myofilament power generation. Power is work done per unit time and measured as the product of force and velocity. At a sarcomere level, these contractile properties are linked to the number of attached cross-bridges and their cycling rate, and many signaling pathways modulate one or both factors. We previously showed that power is increased in rodent permeabilized cardiac myocytes following PKA-mediated phosphorylation of myofibrillar proteins. The current study found that that PKA increased power by ∼30% in permeabilized cardiac myocyte preparations (n = 8) from human failing hearts. To address myofilament molecular specificity of PKA effects, mechanical properties were measured in rat permeabilized slow-twitch skeletal muscle fibers before and after exchange of endogenous slow skeletal troponin with recombinant human Tn complex that contains cardiac (c)TnT, cTnC and either wildtype (WT) cTnI or pseudo-phosphorylated cTnI at sites Ser23/24Asp, Tyr26Glu, or the combinatorial Ser23/24Asp and Tyr26Glu. We found that cTnI Ser23/24Asp, Tyr26Glu, and combinatorial Ser23/24Asp and Tyr26Glu were sufficient to increase power by ∼20%. Next, we determined whether pseudo-phosphorylated cTnI at Ser23/24 was sufficient to increase power in cardiac myocytes from human failing hearts. Following cTn exchange that included cTnI Ser23/24Asp, power output increased ∼20% in permeabilized cardiac myocyte preparations (n = 6) from the left ventricle of human failing hearts. These results implicate cTnI N-terminal phosphorylation as a molecular regulator of myocyte power and could serve as a regional target for small molecule therapy to unmask myocyte power reserve capacity in human failing hearts.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Turner KL, Morris HS, Awinda PO, Fitzsimons DP, Tanner BCW. RLC phosphorylation amplifies Ca2+ sensitivity of force in myocardium from cMyBP-C knockout mice. J Gen Physiol 2023; 155:213841. [PMID: 36715675 PMCID: PMC9930131 DOI: 10.1085/jgp.202213250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the leading genetic cause of heart disease. The heart comprises several proteins that work together to properly facilitate force production and pump blood throughout the body. Cardiac myosin binding protein-C (cMyBP-C) is a thick-filament protein, and mutations in cMyBP-C are frequently linked with clinical cases of HCM. Within the sarcomere, the N-terminus of cMyBP-C likely interacts with the myosin regulatory light chain (RLC); RLC is a subunit of myosin located within the myosin neck region that modulates contractile dynamics via its phosphorylation state. Phosphorylation of RLC is thought to influence myosin head position along the thick-filament backbone, making it more favorable to bind the thin filament of actin and facilitate force production. However, little is known about how these two proteins interact. We tested the effects of RLC phosphorylation on Ca2+-regulated contractility using biomechanical assays on skinned papillary muscle strips isolated from cMyBP-C KO mice and WT mice. RLC phosphorylation increased Ca2+ sensitivity of contraction (i.e., pCa50) from 5.80 ± 0.02 to 5.95 ± 0.03 in WT strips, whereas RLC phosphorylation increased Ca2+ sensitivity of contraction from 5.86 ± 0.02 to 6.15 ± 0.03 in cMyBP-C KO strips. These data suggest that the effects of RLC phosphorylation on Ca2+ sensitivity of contraction are amplified when cMyBP-C is absent from the sarcomere. This implies that cMyBP-C and RLC act in concert to regulate contractility in healthy hearts, and mutations to these proteins that lead to HCM (or a loss of phosphorylation with disease progression) may disrupt important interactions between these thick-filament regulatory proteins.
Collapse
Affiliation(s)
- Kyrah L Turner
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Haley S Morris
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| | - Daniel P Fitzsimons
- Department of Animal, Veterinary and Food Sciences, University of Idaho , Moscow, ID, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| |
Collapse
|
10
|
Tanner BCW, Awinda PO, Agonias KB, Attili S, Blair CA, Thompson MS, Walker LA, Kampourakis T, Campbell KS. Sarcomere length affects Ca2+ sensitivity of contraction in ischemic but not non-ischemic myocardium. J Gen Physiol 2023; 155:213800. [PMID: 36633584 PMCID: PMC9859763 DOI: 10.1085/jgp.202213200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In healthy hearts, myofilaments become more sensitive to Ca2+ as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank-Starling mechanism. Few studies have measured length-dependent activation in the myocardium from failing human hearts. We investigated whether ischemic and non-ischemic heart failure results in different length-dependent activation responses at physiological temperature (37°C). Myocardial strips from the left ventricular free wall were chemically permeabilized and Ca2+-activated at sarcomere lengths (SLs) of 1.9 and 2.3 µm. Data were acquired from 12 hearts that were explanted from patients receiving cardiac transplants; 6 had ischemic heart failure and 6 had non-ischemic heart failure. Another 6 hearts were obtained from organ donors. Maximal Ca2+-activated force increased at longer SL for all groups. Ca2+ sensitivity increased with SL in samples from donors (P < 0.001) and patients with ischemic heart failure (P = 0.003) but did not change with SL in samples from patients with non-ischemic heart failure. Compared with donors, troponin I phosphorylation decreased in ischemic samples and even more so in non-ischemic samples; cardiac myosin binding protein-C (cMyBP-C) phosphorylation also decreased with heart failure. These findings support the idea that troponin I and cMyBP-C phosphorylation promote length-dependent activation and show that length-dependent activation of contraction is blunted, yet extant, in the myocardium from patients with ischemic heart failure and further reduced in the myocardium from patients with non-ischemic heart failure. Patients who have a non-ischemic disease may exhibit a diminished contractile response to increased ventricular filling.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Keinan B Agonias
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Cheavar A Blair
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Mindy S Thompson
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky , Lexington, KY, USA.,Division of Cardiovascular Medicine, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
11
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Han J, Taberner AJ, Loiselle DS, Tran K. Cardiac efficiency and Starling's Law of the Heart. J Physiol 2022; 600:4265-4285. [PMID: 35998082 PMCID: PMC9826111 DOI: 10.1113/jp283632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023] Open
Abstract
The formulation by Starling of The Law of the Heart states that 'the [mechanical] energy of contraction, however measured, is a function of the length of the muscle fibre'. Starling later also stated that 'the oxygen consumption of the isolated heart … is determined by its diastolic volume, and therefore by the initial length of its muscular fibres'. This phrasing has motivated us to extend Starling's Law of the Heart to include consideration of the efficiency of contraction. In this study, we assessed both mechanical efficiency and crossbridge efficiency by studying the heat output of isolated rat ventricular trabeculae performing force-length work-loops over ranges of preload and afterload. The combination of preload and afterload allowed us, using our modelling frameworks for the end-systolic zone and the heat-force zone, to simulate cases by recreating physiologically feasible loading conditions. We found that across all cases examined, both work output and change of enthalpy increased with initial muscle length; hence it can only be that the former increases more than the latter to yield increased mechanical efficiency. In contrast, crossbridge efficiency increased with initial muscle length in cases where the extent of muscle shortening varied greatly with preload. We conclude that the efficiency of cardiac contraction increases with increasing initial muscle length and preload. An implication of our conclusion is that the length-dependent activation mechanism underlying the cellular basis of Starling's Law of the Heart is an energetically favourable process that increases the efficiency of cardiac contraction. KEY POINTS: Ernest Starling in 1914 formulated the Law of the Heart to describe the mechanical property of cardiac muscle whereby force of contraction increases with muscle length. He subsequently, in 1927, showed that the oxygen consumption of the heart is also a function of the length of the muscle fibre, but left the field unclear as to whether cardiac efficiency follows the same dependence. A century later, the field has gained an improved understanding of the factors, including the distinct effects of preload and afterload, that affect cardiac efficiency. This understanding presents an opportunity for us to investigate the elusive length-dependence of cardiac efficiency. We found that, by simulating physiologically feasible loading conditions using a mechano-energetics framework, cardiac efficiency increased with initial muscle length. A broader physiological importance of our findings is that the underlying cellular basis of Starling's Law of the Heart is an energetically favourable process that yields increased efficiency.
Collapse
Affiliation(s)
- June‐Chiew Han
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
- Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Kenneth Tran
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
13
|
Khokhlova A, Myachina T, Butova X, Kochurova A, Polyakova E, Galagudza M, Solovyova O, Kopylova G, Shchepkin D. The Acute Effects of Leptin on the Contractility of Isolated Rat Atrial and Ventricular Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23158356. [PMID: 35955485 PMCID: PMC9369024 DOI: 10.3390/ijms23158356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Leptin is a pleiotropic peptide playing an important role in the regulation of cardiac functions. It is not clear whether leptin directly modulates the mechanical function of atrial cardiomyocytes. We compared the acute effects of leptin on the characteristics of mechanically non-loaded sarcomere shortening and cytosolic Ca2+ concentration ([Ca2+]i) transients in single rat atrial and ventricular cardiomyocytes. We also studied the functional properties of myosin obtained from cardiomyocytes using an in vitro motility assay and assessed the sarcomeric protein phosphorylation. Single cardiomyocytes were exposed to 5, 20, and 60 nM leptin for 60 min. In ventricular cardiomyocytes, 60 nM leptin depressed sarcomere shortening amplitude and decreased the rates of shortening and relaxation. These effects were accompanied by a decrease in the phosphorylation of cMyBP-C, an increase in Tpm phosphorylation, and a slowdown of the sliding velocity of thin filaments over myosin in the in vitro motility assay. In contrast, in atrial cardiomyocytes, the phosphorylation of cMyBP-C and TnI increased, and the characteristics of sarcomere shortening did not change. Leptin had no effect on the characteristics of [Ca2+]i transients in ventricular cardiomyocytes, while 5 nM leptin prolonged [Ca2+]i transients in atrial cardiomyocytes. Thus, leptin-induced changes in contractility of ventricular cardiomyocytes may be attributed to the direct effects of leptin on cross-bridge kinetics and sarcomeric protein properties rather than changes in [Ca2+]i. We also suggest that the observed differences between atrial and ventricular cardiomyocytes may be associated with the peculiarities of the expression of leptin receptors, as well as signaling pathways in the atrial and ventricular myocardium.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
- Correspondence:
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Ekaterina Polyakova
- Almazov National Medical Research Centre, Institute of Experimental Medicine, Akkuratova Str. 2, 197341 Saint-Petersburg, Russia; (E.P.); (M.G.)
| | - Michael Galagudza
- Almazov National Medical Research Centre, Institute of Experimental Medicine, Akkuratova Str. 2, 197341 Saint-Petersburg, Russia; (E.P.); (M.G.)
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| |
Collapse
|
14
|
Stachowski-Doll MJ, Papadaki M, Martin TG, Ma W, Gong HM, Shao S, Shen S, Muntu NA, Kumar M, Perez E, Martin JL, Moravec CS, Sadayappan S, Campbell SG, Irving T, Kirk JA. GSK-3β Localizes to the Cardiac Z-Disc to Maintain Length Dependent Activation. Circ Res 2022; 130:871-886. [PMID: 35168370 PMCID: PMC8930626 DOI: 10.1161/circresaha.121.319491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3β (glycogen synthase kinase 3β) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3β's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance. METHODS Inducible cardiomyocyte-specific GSK-3β knockout mice and left ventricular myocardium from nonfailing and failing human hearts were studied. RESULTS Skinned cardiomyocytes from knockout mice failed to exhibit calcium sensitization with stretch indicating a loss of length-dependent activation (LDA), the mechanism underlying the Frank-Starling Law. Titin acts as a length sensor for LDA, and knockout mice had decreased titin stiffness compared with control mice, explaining the lack of LDA. Knockout mice exhibited no changes in titin isoforms, titin phosphorylation, or other thin filament phosphorylation sites known to affect passive tension or LDA. Mass spectrometry identified several z-disc proteins as myofilament phospho-substrates of GSK-3β. Agreeing with the localization of its targets, GSK-3β that is phosphorylated at Y216 binds to the z-disc. We showed pY216 was necessary and sufficient for z-disc binding using adenoviruses for wild-type, Y216F, and Y216E GSK-3β in neonatal rat ventricular cardiomyocytes. One of GSK-3β's z-disc targets, abLIM-1 (actin-binding LIM protein 1), binds to the z-disc domains of titin that are important for maintaining passive tension. Genetic knockdown of abLIM-1 via siRNA in human engineered heart tissues resulted in enhancement of LDA, indicating abLIM-1 may act as a negative regulator that is modulated by GSK-3β. Last, GSK-3β myofilament localization was reduced in left ventricular myocardium from failing human hearts, which correlated with depressed LDA. CONCLUSIONS We identified a novel mechanism by which GSK-3β localizes to the myofilament to modulate LDA. Importantly, z-disc GSK-3β levels were reduced in patients with heart failure, indicating z-disc localized GSK-3β is a possible therapeutic target to restore the Frank-Starling mechanism in patients with heart failure.
Collapse
Affiliation(s)
- Marisa J Stachowski-Doll
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Weikang Ma
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Henry M Gong
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Stephanie Shao
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Shi Shen
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Nitha Aima Muntu
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Jody L Martin
- Department of Pharmacology, Cardiovascular Research Institute, UC Davis School of Medicine, CA (J.L.M.)
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (C.S.M.)
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Stuart G Campbell
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT (S.G.C.)
| | - Thomas Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| |
Collapse
|
15
|
Cremo C, Moss RL, Granzier H. Further progress in understanding of myofibrillar function in health and disease. J Gen Physiol 2021; 153:212438. [PMID: 34170286 PMCID: PMC8238634 DOI: 10.1085/jgp.202112972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Christine Cremo
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV
| | - Richard L Moss
- Cardiovascular Research Center, Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Henk Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|