1
|
Golluscio A, Eldstrom J, Jowais JJ, Perez ME, Cunningham KP, De La Cruz A, Wu X, Corradi V, Tieleman DP, Fedida D, Larsson HP. PUFA stabilizes a conductive state of the selectivity filter in IKs channels. eLife 2024; 13:RP95852. [PMID: 39480699 PMCID: PMC11527429 DOI: 10.7554/elife.95852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
In cardiomyocytes, the KCNQ1/KCNE1 channel complex mediates the slow delayed-rectifier current (IKs), pivotal during the repolarization phase of the ventricular action potential. Mutations in IKs cause long QT syndrome (LQTS), a syndrome with a prolonged QT interval on the ECG, which increases the risk of ventricular arrhythmia and sudden cardiac death. One potential therapeutical intervention for LQTS is based on targeting IKs channels to restore channel function and/or the physiological QT interval. Polyunsaturated fatty acids (PUFAs) are potent activators of KCNQ1 channels and activate IKs channels by binding to two different sites, one in the voltage sensor domain - which shifts the voltage dependence to more negative voltages - and the other in the pore domain - which increases the maximal conductance of the channels (Gmax). However, the mechanism by which PUFAs increase the Gmax of the IKs channels is still poorly understood. In addition, it is unclear why IKs channels have a very small single-channel conductance and a low open probability or whether PUFAs affect any of these properties of IKs channels. Our results suggest that the selectivity filter in KCNQ1 is normally unstable, contributing to the low open probability, and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state.
Collapse
Affiliation(s)
- Alessia Golluscio
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- Department of Biomedical and Clinical Sciences, Linköping UniversityLinköpingSweden
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Jessica J Jowais
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
| | - Marta Elena Perez
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
| | - Kevin Peter Cunningham
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- School of Life Sciences, University of WestminsterLondonUnited Kingdom
| | - Alicia De La Cruz
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- Department of Biomedical and Clinical Sciences, Linköping UniversityLinköpingSweden
| | - Xiaoan Wu
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
| | - Valentina Corradi
- Department of Biological Sciences and Centre for Molecular Simulation, University of CalgaryCalgaryCanada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of CalgaryCalgaryCanada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - H Peter Larsson
- Department of Physiology and Biophysics, University of MiamiMiamiUnited States
- Department of Biomedical and Clinical Sciences, Linköping UniversityLinköpingSweden
| |
Collapse
|
2
|
Maierhofer T, Scherzer S, Carpaneto A, Müller TD, Pardo JM, Hänelt I, Geiger D, Hedrich R. Arabidopsis HAK5 under low K + availability operates as PMF powered high-affinity K + transporter. Nat Commun 2024; 15:8558. [PMID: 39362862 PMCID: PMC11450230 DOI: 10.1038/s41467-024-52963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Plants can survive in soils of low micromolar potassium (K+) concentrations. Root K+ intake is accomplished by the K+ channel AKT1 and KUP/HAK/KT type high-affinity K+ transporters. Arabidopsis HAK5 mutants impaired in low K+ acquisition have been identified already more than two decades ago, the molecular mechanism, however, is still a matter of debate also because of lack of direct measurements of HAK5-mediated K+ currents. When we expressed AtHAK5 in Xenopus oocytes together with CBL1/CIPK23, no inward currents were elicited in sufficient K+ media. Under low K+ and inward-directed proton motive force (PMF), the inward K+ current increased indicating that HAK5 energetically couples the uphill transport of K+ to the downhill flux of H+. At extracellular K+ concentrations above 25 μM, the initial rise in current was followed by a concentration-graded inactivation. When we replaced Tyr450 in AtHAK5 to Ala the K+ affinity strongly decreased, indicating that AtHAK5 position Y450 holds a key for K+ sensing and transport. When the soil K+ concentration drops toward the range that thermodynamically cannot be covered by AKT1, the AtHAK5 K+/H+ symporter progressively takes over K+ nutrition. Therefore, optimizing K+ use efficiency of crops, HAK5 could be key for low K+ tolerant agriculture.
Collapse
Affiliation(s)
- Tobias Maierhofer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany.
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
- Institute of Education and Student Affairs, University of Münster, Münster, Germany
| | - Armando Carpaneto
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy.
- Institute of Biophysics, National Research Council, Genova, Italy.
| | - Thomas D Müller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Jose M Pardo
- Instituto de Bioquimica Vegetal y Fotosintesis (IBVF), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| |
Collapse
|
3
|
Bernhard FP, Schütte S, Heidenblut M, Oehme M, Rinné S, Decher N. A novel KCNC3 gene variant in the voltage-dependent Kv3.3 channel in an atypical form of SCA13 with dominant central vertigo. Front Cell Neurosci 2024; 18:1441257. [PMID: 39416683 PMCID: PMC11480015 DOI: 10.3389/fncel.2024.1441257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Potassium channel mutations play an important role in neurological diseases, such as spinocerebellar ataxia (SCA). SCA is a heterogeneous autosomal-dominant neurodegenerative disorder with multiple sub-entities, such as SCA13, which is characterized by mutations in the voltage-gated potassium channel Kv3.3 (KCNC3). In this study, we present a rare and atypical case of SCA13 with a predominant episodic central rotational vertigo, while the patient suffered only from mild progressive cerebellar symptoms, such as dysarthria, ataxia of gait and stand, and recently a cognitive impairment. In this patient, we identified a heterozygous variant in KCNC3 (c.2023G > A, p.Glu675Lys) by next-generation sequencing. This Kv3.3E675K variant was studied using voltage-clamp recordings in Xenopus oocytes. While typical SCA13 variants are dominant-negative, show shifts in the voltage-dependence of activation or an altered TBK1 regulation, the Kv3.3E675K variant caused only a reduction in current amplitude and a more pronounced cumulative inactivation. Thus, the differences to phenotypes observed in patients with classical SCA13 mutations may be related to the mechanism of the observed Kv3.3 loss-of-function. Treatment of our patient with riluzole, a drug that is known to also activate potassium channels, turned out to be partly beneficial. Strikingly, we found that the Kv3.3 and Kv3.3E675K inactivation and the frequency-dependent cumulative inactivation was antagonized by increased extracellular potassium levels. Thus, and most importantly, carefully elevated plasma potassium levels in the physiological range, or novel drugs attenuating Kv3.3 inactivation might provide novel therapeutic approaches to rescue potassium currents of SCA13 variants per se. In addition, our findings broaden the phenotypic spectrum of Kv3.3 variants, expanding it to atypical phenotypes of Kv3.3-associated neurological disorders.
Collapse
Affiliation(s)
- Felix P. Bernhard
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Heidenblut
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Oehme
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Fedida D, Sastre D, Dou Y, Westhoff M, Eldstrom J. Evaluating sequential and allosteric activation models in IKs channels with mutated voltage sensors. J Gen Physiol 2024; 156:e202313465. [PMID: 38294435 PMCID: PMC10829594 DOI: 10.1085/jgp.202313465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The ion-conducting IKs channel complex, important in cardiac repolarization and arrhythmias, comprises tetramers of KCNQ1 α-subunits along with 1-4 KCNE1 accessory subunits and calmodulin regulatory molecules. The E160R mutation in individual KCNQ1 subunits was used to prevent activation of voltage sensors and allow direct determination of transition rate data from complexes opening with a fixed number of 1, 2, or 4 activatable voltage sensors. Markov models were used to test the suitability of sequential versus allosteric models of IKs activation by comparing simulations with experimental steady-state and transient activation kinetics, voltage-sensor fluorescence from channels with two or four activatable domains, and limiting slope currents at negative potentials. Sequential Hodgkin-Huxley-type models approximately describe IKs currents but cannot explain an activation delay in channels with only one activatable subunit or the hyperpolarizing shift in the conductance-voltage relationship with more activatable voltage sensors. Incorporating two voltage sensor activation steps in sequential models and a concerted step in opening via rates derived from fluorescence measurements improves models but does not resolve fundamental differences with experimental data. Limiting slope current data that show the opening of channels at negative potentials and very low open probability are better simulated using allosteric models of activation with one transition per voltage sensor, which implies that movement of all four sensors is not required for IKs conductance. Tiered allosteric models with two activating transitions per voltage sensor can fully account for IKs current and fluorescence activation kinetics in constructs with different numbers of activatable voltage sensors.
Collapse
Affiliation(s)
- David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Daniel Sastre
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Maartje Westhoff
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Farrell S, Dates J, Ramirez N, Hausknecht-Buss H, Kolosov D. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance. J Exp Biol 2024; 227:jeb246486. [PMID: 38197515 PMCID: PMC10912814 DOI: 10.1242/jeb.246486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.
Collapse
Affiliation(s)
- Serena Farrell
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Nancy Ramirez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Hannah Hausknecht-Buss
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| |
Collapse
|
6
|
Barro-Soria R. Sensing its own permeant ion: KCNQ1 channel inhibition by external K. J Gen Physiol 2023; 155:e202313337. [PMID: 36961346 PMCID: PMC10072219 DOI: 10.1085/jgp.202313337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
External potassium inhibits KCNQ1 channel through a mechanism involving increased occupancy of the filter S0 site by K+o.
Collapse
Affiliation(s)
- Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|