1
|
Alcántara-Ortigoza MA, Rodríguez-Lozano AL, Estandía-Ortega B, González-del Angel A, Díaz-García L, Rivas-Larrauri FE, Nájera-Velázquez RG. Does the esv3587290 Copy Number Variation in the VANGL1 Gene Differ as a Genetic Factor for Developing Nephritis in Mexican Childhood-Onset Systemic Lupus Erythematosus Patients? CHILDREN (BASEL, SWITZERLAND) 2024; 11:712. [PMID: 38929291 PMCID: PMC11201895 DOI: 10.3390/children11060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
A ~3-kb deletion-type DNA copy number variation (CNV, esv3587290) located at intron 7 of the VANGL1 gene (1p13.1, MIM*610132) has been proposed as a genetic factor in lupus nephritis (LN) development in adult systemic lupus erythematosus (SLE) patients across European-descent populations, but its replication in other ethnicities has been inconsistent and its association with LN in childhood-onset SLE (cSLE) remains unknown. Here, we performed an exploratory association study in a sample of 66 unrelated cSLE Mexican patients (11 males, 55 females; ages 7.8 to 18.6 years). Two stratified groups were compared: cSLE patients with (N = 39) or without (N = 27) LN, as diagnosed by renal biopsy (N = 17), proteinuria (N = 33), urinary protein-creatinine ratio > 0.2 (N = 34), and erythrocyturia and/or granular casts in urinary sediment (N = 16). For esv3587290 CNV genotyping, we performed an end-point PCR assay with breakpoint confirmation using Sanger sequencing. We also determined the allelic frequencies of the esv3587290 CNV in 181 deidentified ethnically matched individuals (reference group). The obtained genotypes were tested for Hardy-Weinberg equilibrium using the χ2 test. Associations between LN and esv3587290 CNV were tested by calculating the odds ratio (OR) and using Pearson's χ2 tests, with a 95% confidence interval and p ≤ 0.05. The esv3587290 CNV allele (OR 0.108, 95% CI 0.034-0.33, p = 0.0003) and the heterozygous genotype (OR 0.04, 95% CI 0.119-0.9811, p = 0.002) showed a significant protective effect against LN development. Finally, we characterized the precise breakpoint of the esv3587290 CNV to be NG_016548.1(NM_138959.3):c.1314+1339_1315-897del in our population. This report supports the notion that a broad genetic heterogeneity underlies the susceptibility for developing LN.
Collapse
Affiliation(s)
- Miguel Angel Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; (B.E.-O.); (A.G.-d.A.)
| | - Ana Luisa Rodríguez-Lozano
- Servicio de Inmunología, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; (A.L.R.-L.); (F.E.R.-L.); (R.G.N.-V.)
| | - Bernardette Estandía-Ortega
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; (B.E.-O.); (A.G.-d.A.)
| | - Ariadna González-del Angel
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; (B.E.-O.); (A.G.-d.A.)
| | - Luisa Díaz-García
- Departamento de Metodología de la Investigación, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | | | - Ruth Guadalupe Nájera-Velázquez
- Servicio de Inmunología, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; (A.L.R.-L.); (F.E.R.-L.); (R.G.N.-V.)
| |
Collapse
|
2
|
Medaer L, David D, Smits M, Levtchenko E, Sampaolesi M, Gijsbers R. Residual Cystine Transport Activity for Specific Infantile and Juvenile CTNS Mutations in a PTEC-Based Addback Model. Cells 2024; 13:646. [PMID: 38607085 PMCID: PMC11011962 DOI: 10.3390/cells13070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cystinosis is a rare, autosomal recessive, lysosomal storage disease caused by mutations in the gene CTNS, leading to cystine accumulation in the lysosomes. While cysteamine lowers the cystine levels, it does not cure the disease, suggesting that CTNS exerts additional functions besides cystine transport. This study investigated the impact of infantile and juvenile CTNS mutations with discrepant genotype/phenotype correlations on CTNS expression, and subcellular localisation and function in clinically relevant cystinosis cell models to better understand the link between genotype and CTNS function. Using CTNS-depleted proximal tubule epithelial cells and patient-derived fibroblasts, we expressed a selection of CTNSmutants under various promoters. EF1a-driven expression led to substantial overexpression, resulting in CTNS protein levels that localised to the lysosomal compartment. All CTNSmutants tested also reversed cystine accumulation, indicating that CTNSmutants still exert transport activity, possibly due to the overexpression conditions. Surprisingly, even CTNSmutants expression driven by the less potent CTNS and EFS promoters reversed the cystine accumulation, contrary to the CTNSG339R missense mutant. Taken together, our findings shed new light on CTNS mutations, highlighting the need for robust assessment methodologies in clinically relevant cellular models and thus paving the way for better stratification of cystinosis patients, and advocating for the development of more personalized therapy.
Collapse
Affiliation(s)
- Louise Medaer
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
| | - Dries David
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
| | - Maxime Smits
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
- Leuven Viral Vector Core, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Department of Paediatric Nephrology & Development and Regeneration, University Hospitals Leuven & KU Leuven, 3000 Leuven, Belgium;
- Department of Paediatric Nephrology, Amsterdam University Medical Centre, 1081 Amsterdam, The Netherlands
| | - Maurilio Sampaolesi
- Translational Cardiology Laboratory, Department of Development and Regeneration, Stem Cell Institute, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Rik Gijsbers
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium; (L.M.); (M.S.)
- Leuven Viral Vector Core, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Mohammadi Chermahini Z, Salehi M, Gheissari A, Ahmadi Beni F, Khosravian F, Kazemi M. CTNS Mutations Causing Autosomal Recessive Cystinosis in a Subset of Iranian Population: Report of Two New Variants. Adv Biomed Res 2024; 13:2. [PMID: 38525388 PMCID: PMC10958734 DOI: 10.4103/abr.abr_149_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 03/26/2024] Open
Abstract
Background Nephropathic cystinosis (NC) is an uncommon autosomal recessive disease with abnormality in lysosomal storage that appearances in patients with mutations in the CTNS gene encoding a lysosomal transporter cystinosin. Disrupted function of this transporter is followed by accumulation of cysteine crystals in cells of many various organs. This study aimed to investigate the mutations of the CTNS gene in 20 Iranian patients suffering from NC. Materials and Methods Twenty Iranian cystinosis patients referring to Imam Hossein Hospital of Isfahan were employed in this case-series study. After extraction of genomic DNA, the promoter and entire coding regions of CTNS were analysed using sanger sequencing in all patients. Gap-Polymerase Chain Reaction was used to detect 57 kb deletion in the CTNS gene. In silico study was performed to analyse variants. Results The large deletion was not seen in any NC patients. Molecular analysis which conducted to screen the CTNS gene of patients, identified eight different mutations, including two new mutations, c.971_972insC and c.956_956delA, which have not been reported before, and c.681G>A mutation, which was identified as a frequently founded mutation in the Middle East and was observed in 35% of patients. In this study, five other mutations including c.1015G>A, c.922G>A, c.323_323delA, c.433C>T, and c.18_21delGACT were also observed, which have been reported in previous studies. Conclusion The mutational spectrum in the Iranian patients is the same as previously reported mutations except that two new mutations were found. The present findings will present suggestions for regular molecular diagnosis of cystinosis in Iran.
Collapse
Affiliation(s)
- Zahra Mohammadi Chermahini
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alaleh Gheissari
- Department of Pediatrics, School of Medicine, Kidney Diseases Research Center, Imam Hossein Children’s Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faeze Ahmadi Beni
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Khosravian
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Venkatarangan V, Zhang W, Yang X, Thoene J, Hahn SH, Li M. ER-associated degradation in cystinosis pathogenesis and the prospects of precision medicine. J Clin Invest 2023; 133:e169551. [PMID: 37561577 PMCID: PMC10541201 DOI: 10.1172/jci169551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Cystinosis is a lysosomal storage disease that is characterized by the accumulation of dipeptide cystine within the lumen. It is caused by mutations in the cystine exporter, cystinosin. Most of the clinically reported mutations are due to the loss of transporter function. In this study, we identified a rapidly degrading disease variant, referred to as cystinosin(7Δ). We demonstrated that this mutant is retained in the ER and degraded via the ER-associated degradation (ERAD) pathway. Using genetic and chemical inhibition methods, we elucidated the roles of HRD1, p97, EDEMs, and the proteasome complex in cystinosin(7Δ) degradation pathway. Having understood the degradation mechanisms, we tested some chemical chaperones previously used for treating CFTR F508Δ and demonstrated that they could facilitate the folding and trafficking of cystinosin(7Δ). Strikingly, chemical chaperone treatment can reduce the lumenal cystine level by approximately 70%. We believe that our study conclusively establishes the connection between ERAD and cystinosis pathogenesis and demonstrates the possibility of using chemical chaperones to treat cystinosin(7Δ).
Collapse
Affiliation(s)
- Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jess Thoene
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Si Houn Hahn
- University of Washington School of Medicine, Department of Pediatrics, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Dong F, Amlal H, Venkatakrishnan J, Zhang J, Fry M, Yuan Y, Cheng YC, Hu YC, Kao WWY. The gene therapy for corneal pathology with novel nonsense cystinosis mouse lines created by CRISPR Gene Editing. Ocul Surf 2023; 29:432-443. [PMID: 37355021 PMCID: PMC10725217 DOI: 10.1016/j.jtos.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Cystinosis is an autosomal recessive lysosomal storage disease (LSDs) caused by mutations in the gene encoding cystinosin (CTNS) that leads to cystine crystal accumulation in the lysosome that compromises cellular functions resulting in tissue damage and organ failure, especially in kidneys and eyes. However, the underlying molecular mechanism of its pathogenesis remains elusive. Two novel mice lines created via CRISPR are used to examine the pathogenesis of cystinosis in the kidney and cornea and the treatment efficacy of corneal pathology using self-complimentary Adeno-associated viral (scAAV-CTNS) vector. METHODS The CRISPR technique generated two novel cystinotic mouse lines, Ctnsis1 (an insertional mutation) and Ctnsis2 (a nonsense mutation). Immune histochemistry, renal functions test and HRT2 in vivo confocal microscopy were used to evaluate the age-related renal pathogenesis and treatment efficacy of the scAAV-CTNS virus in corneal pathology. RESULTS Both mutations lead to the production of truncated Ctns proteins. Ctnsis1 and Ctnsis 2 mice exhibit the characteristic of cystinotic corneal crystal phenotype at four-week-old. Treatment with the scAAV-CTNS viral vector decreased the corneal crystals in the treated mice cornea. Ctnsis 1 show renal abnormalities manifested by increased urine volume, reduced urine osmolality, and the loss of response to Desmopressin (dDAVP) at 22-month-old but Ctnsis2 don't manifest renal pathology up to 2 years of age. CONCLUSIONS Both Ctnsis1 and Ctnsis2 mice exhibit phenotypes resembling human intermediate nephropathic and ocular cystinosis, respectively. scAAV-CTNS viral vectors reduce the corneal cystine crystals and have a great potential as a therapeutic strategy for treating patients suffering from cystinosis.
Collapse
Affiliation(s)
- Fei Dong
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Hassane Amlal
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Matthew Fry
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yong Yuan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Chia Cheng
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Singh A, Patel R, Abhinay A, Prasad R, Mishra D, Mishra OP. Nephrogenic Diabetes Insipidus in a 10-mo-old Infant: Complication of Nephropathic Cystinosis. Indian J Pediatr 2023; 90:521. [PMID: 36877388 DOI: 10.1007/s12098-023-04513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Affiliation(s)
- Ankur Singh
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Raghvendra Patel
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Abhinay
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rajniti Prasad
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Mishra
- Regional Institute of Ophthalmology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Om Prakash Mishra
- Department of Pediatrics, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Hohenfellner K, Zerell K, Haffner D. Cystinosis. Klin Monbl Augenheilkd 2023; 240:251-259. [PMID: 36977426 DOI: 10.1055/a-2022-8522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cystinosis is a very rare autosomal recessive lysosomal storage disorder with an incidence of 1 : 150,000 - 1 : 200,000, and is caused by mutations in the CTNS gene encoding the lysosomal membrane protein cystinosin, which transports cystine out of the lysosome into the cytoplasm. As a result, accumulation of cystine occurs in almost all cells and tissues, especially in the kidneys, leading to multiple organ involvement. Introduction of drug therapy with cysteamine in the mid 1980s, along with the availability of renal replacement therapy in childhood, have dramatically improved patient outcome. Whereas patients used to die without therapy with end-stage renal failure during the first decade of life, nowadays most patients live well into adulthood without renal replacement therapy, and several reach 40 years. There is robust evidence that early initiation and sustained lifelong therapy with cysteamine are both essential for morbidity and mortality. The rarity of the disease and the multi-organ involvement present an enormous challenge for those affected and the providers of care for this patient group.
Collapse
Affiliation(s)
- Katharina Hohenfellner
- Klinik für Kinder- und Jugendmedizin/Kindernephrologie, RoMed Kliniken, Rosenheim, Deutschland
| | - Kirstin Zerell
- Rosenheim, kbo-Heckscher-Klinikum gGmbH, München, Deutschland
| | - Dieter Haffner
- Klinik für Pädiatrische Nieren-, Leber- & Stoffwechselerkrankungen, MHH, Hannover, Deutschland
| |
Collapse
|
8
|
Veys K, Zadora W, Hohenfellner K, Bockenhauer D, Janssen MCH, Niaudet P, Servais A, Topaloglu R, Besouw M, Novo R, Haffner D, Kanzelmeyer N, Pape L, Wühl E, Harms E, Awan A, Sikora P, Ariceta G, van den Heuvel B, Levtchenko E. Outcome of infantile nephropathic cystinosis depends on early intervention, not genotype: A multicenter sibling cohort study. J Inherit Metab Dis 2023; 46:43-54. [PMID: 36117148 DOI: 10.1002/jimd.12562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/19/2023]
Abstract
Infantile nephropathic cystinosis (INC) is an inheritable lysosomal storage disorder characterized by lysosomal cystine accumulation, progressive kidney disease, and multiple extrarenal complications (ERCs). Cysteamine postpones the onset of end-stage kidney disease (ESKD) and reduces the incidence of ERCs; however, cysteamine is generally initiated upon establishment of the renal Fanconi syndrome (FS) and partial loss of kidney function, whereas data on long-term effects of cysteamine administered from neonatal age are lacking. An international multicenter retrospective cohort study of siblings with INC was set up to investigate the outcome in relation to age at initiation of cysteamine versus CTNS genotype, with attention to patients treated with cysteamine from neonatal age. None of the siblings treated from neonatal age (n = 9; age 10 ± 6 years) had reached ESKD, while 22% of their index counterparts (n = 9; age 14 ± 5 years) had commenced renal replacement therapy. Siblings treated with cysteamine from the onset of symptoms at a younger age compared with their index counterparts, reached ESKD at a significant older age (13 ± 3 vs. 10 ± 3 years, p = 0.002). In contrast, no significant difference in ERCs was observed between sibling and index patients, independently from the age at initiation of cysteamine. The CTNS genotype had no impact on the overall outcome in this cohort. In INC, presymptomatic treatment with cysteamine results in a better renal outcome in comparison to treatment initiated from the onset of symptoms. This justifies including cystinosis into newborn screening programs. SYNOPSIS: In infantile nephropathic cystinosis, presymptomatic treatment with cysteamine improves the renal outcome which justifies the inclusion of cystinosis into newborn screening programs.
Collapse
Affiliation(s)
- Koenraad Veys
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Ward Zadora
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Detlef Bockenhauer
- Department of Pediatric Nephrology, Great Ormond Street Hospital for Sick Children NHS Foundation Trust (GOSH) and Department of Renal Medicine, University College London, London, UK
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick Niaudet
- Department of Pediatric Nephrology, Hôpital Necker-Enfants Malades, Paris, France
| | - Aude Servais
- Department of Adult Nephrology and Transplantation, Hôpital Necker, Paris, France
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Martine Besouw
- Department of Pediatric Nephrology, University of Groningen, Groningen, The Netherlands
| | - Robert Novo
- Pediatric Nephrology, Hôpital Jeanne de Flandre, University Hospital Lille, Lille, France
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Lars Pape
- Department of Pediatrics, University Hospital Essen, Essen, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Erik Harms
- Children's University Hospital Münster, Münster, Germany
| | - Atif Awan
- Paediatric Nephrology and Transplantation, Temple Street Children's University Hospital, Dublin, Ireland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Bert van den Heuvel
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Structural basis for proton coupled cystine transport by cystinosin. Nat Commun 2022; 13:4845. [PMID: 35977944 PMCID: PMC9385667 DOI: 10.1038/s41467-022-32589-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Amino acid transporters play a key role controlling the flow of nutrients across the lysosomal membrane and regulating metabolism in the cell. Mutations in the gene encoding the transporter cystinosin result in cystinosis, an autosomal recessive metabolic disorder characterised by the accumulation of cystine crystals in the lysosome. Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters and uses the proton gradient to drive cystine export into the cytoplasm. However, the molecular basis for cystinosin function remains elusive, hampering efforts to develop novel treatments for cystinosis and understand the mechanisms of ion driven transport in the PQ-loop family. To address these questions, we present the crystal structures of cystinosin from Arabidopsis thaliana in both apo and cystine bound states. Using a combination of in vitro and in vivo based assays, we establish a mechanism for cystine recognition and proton coupled transport. Mutational mapping and functional characterisation of human cystinosin further provide a framework for understanding the molecular impact of disease-causing mutations. Mutations in CTNS, the lysosomal cystine-proton symporter, cause cystinosis. Here authors report crystal structures of CTNS from Arabidopsis thaliana in complex with cystine, and establish the mode of ligand recognition and mechanism for proton-coupled cystine export from the lysosome.
Collapse
|
10
|
Gholami Yarahmadi S, Sarlaki F, Morovvati S. Cystinosis and two rare mutations in CTNS gene: two case reports. J Med Case Rep 2022; 16:181. [PMID: 35513889 PMCID: PMC9074344 DOI: 10.1186/s13256-022-03379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cystinosis is an autosomal recessive disorder characterized by an accumulation of the amino acid cystine in lysosomes throughout the body. Cystinosis is an inherited disease resulting from the failure of lysosomal cystine transport. The responsible gene, Cystinosin, Lysosomal Cystine Transporter (CTNS), encodes the lysosomal cystine carrier cystinosin. Case presentation In this case report, we reviewed the genetic basis of cystinosis and investigated two Iranian cases affected by cystinosis, one of which revealed a rare mutation in the CTNS gene. Two patients, 9-year-old (patient A) and 11-year-old (patient B) symptomatic Iranian females with renal insufficiency, were diagnosed with cystinosis on the basis of their clinical features and laboratory tests. After genetic counseling, blood samples were obtained from the patients and their parents. Genomic Deoxyribonucleic Acid (DNA) was extracted from whole blood, and mutation analysis was performed using polymerase chain reaction and sequencing methods for all exons of the CTNS gene. At least 148 different pathogenic and deleterious mutations in the CTNS gene have been reported to date. Owing to our patient’s prominent clinical features of cystinosis, we carried out a targeted search for mutations in the CTNS gene. Conclusions This led us to confirm the existence of a homozygous DNA variation c.257_258deletionCT (p.Ser86PhefsTer38) in exon 6 of the gene in patient A and another homozygous DNA variation, c.323delA (p.Q108RfsTer10), in the same exon in patient B. As expected, the mentioned mutation existed in both her parents in a heterozygous state. Variations c.257_258delCT and c.323delA reported in three Iranian patients in the CTNS gene are frameshifts, and truncating mutations that affect product function result in relatively mild symptoms of cystinosis. The present finding confirms previous research and proves the importance of the association of this gene rare mutations with cystinosis. Since reported mutations are rare, their previous reports in Iranian patients indicate the high frequency of these mutations in our region.
Collapse
Affiliation(s)
- Sepideh Gholami Yarahmadi
- Department of Advanced Sciences and Technology, Islamic Azad University-Tehran Medical Sciences, Zargandeh, Shariati, Tehran, Iran
| | - Fatemeh Sarlaki
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Morovvati
- Department of Advanced Sciences and Technology, Islamic Azad University-Tehran Medical Sciences, Zargandeh, Shariati, Tehran, Iran.
| |
Collapse
|
11
|
Savostyanov KV, Pushkov AA, Shchagina OA, Maltseva VV, Suleymanov EA, Zhanin IS, Mazanova NN, Fisenko AP, Mishakova PS, Polyakov AV, Balanovska EV, Zinchenko RA, Tsygin AN. Genetic Landscape of Nephropathic Cystinosis in Russian Children. Front Genet 2022; 13:863157. [PMID: 35571017 PMCID: PMC9096100 DOI: 10.3389/fgene.2022.863157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Nephropathic cystinosis is a rare autosomal recessive disorder characterized by amino acid cystine accumulation and caused by biallelic mutations in the CTNS gene. The analysis methods are as follows: tandem mass spectrometry to determine the cystine concentration in polymorphonuclear blood leukocytes, Sanger sequencing for the entire coding sequence and flanking intron regions of the CTNS gene, multiplex PCR to detect a common mutation—a 57 kb deletion, and multiplex ligation-dependent probe amplification to analyze the number of exon copies in the CTNS gene. Haplotype analysis of chromosomes with major mutations was carried out using microsatellite markers D17S831, D17S1798, D17S829, D17S1828, and D17S1876. In this study, we provide clinical, biochemical, and molecular genetic characteristics of 40 Russian patients with mutations in the CTNS gene, among whom 30 patients were selected from a high-risk group of 85 people as a result of selective screening, which was carried out through cystine concentration measurement in polymorphonuclear blood leukocytes. The most common pathogenic variant, as in most described studies to date, was the 57 kb deletion, which represented 25% of all affected alleles. Previously non-described variants represented 22.5% of alleles. The founder effect in the Karachay and Chechen ethnic groups was shown for the following major variants: c.1015G > A and c.518A > G.
Collapse
Affiliation(s)
- K. V. Savostyanov
- National Medical Research Center for Children’s Health Federal State Autonomous Institution of the Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: K. V. Savostyanov,
| | - A. A. Pushkov
- National Medical Research Center for Children’s Health Federal State Autonomous Institution of the Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - V. V. Maltseva
- National Medical Research Center for Children’s Health Federal State Autonomous Institution of the Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - I. S. Zhanin
- National Medical Research Center for Children’s Health Federal State Autonomous Institution of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - N. N. Mazanova
- National Medical Research Center for Children’s Health Federal State Autonomous Institution of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A. P. Fisenko
- National Medical Research Center for Children’s Health Federal State Autonomous Institution of the Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | | | | | - A. N. Tsygin
- National Medical Research Center for Children’s Health Federal State Autonomous Institution of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Atmis B, K Bayazit A, Cevizli D, Kor D, Fidan HB, Bisgin A, Kilavuz S, Unal I, Erdogan KE, Melek E, Gonlusen G, Anarat A, Onenli Mungan N. More than tubular dysfunction: cystinosis and kidney outcomes. J Nephrol 2022; 35:831-840. [PMID: 34097292 DOI: 10.1007/s40620-021-01078-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cystinosis is a lysosomal storage disease that affects many tissues. Its prognosis depends predominantly on kidney involvement. Cystinosis has three clinical forms: nephropathic infantile, nephropathic juvenile and non-nephropathic adult. Proximal tubular dysfunction is prominent in the infantile form, whereas a combination of glomerular and tubular alterations are observed in the juvenile form. METHODS Thirty-six children with nephropathic cystinosis were included in the study. Clinical features, molecular genetic diagnoses, and kidney outcomes of the patients were evaluated. RESULTS Twenty-one children (58.3%) were male. The median age at diagnosis was 18.5 months. Twenty-eight patients (77.8%) had infantile nephropathic cystinosis, while eight (22.2%) had juvenile nephropathic cystinosis. An acute rapid deterioration of the kidney function with proteinuria, hypoalbuminemia, and nephrotic syndrome, was observed in 37.5% of patients with the juvenile form. The mean estimated glomerular filtration rate (eGFR) was 82.31 ± 37.45 ml/min/1.73m2 at diagnosis and 63.10 ± 54.60 ml/min/1.73m2 at the last visit (p = 0.01). Six patients (16.6%) had kidney replacement therapy (KRT) at the last visit. The median age of patients with kidney failure was 122 months. Patients with a spot urine protein/creatinine ratio < 6 mg/mg at the time of diagnosis had better kidney outcomes (p = 0.01). The most common allele was c.451A>G (32.6%). The patients with the most common mutation tended to have higher mean eGFR and lower leukocyte cystine levels than patients with other mutations. CONCLUSION Glomerulonephritis may be a frequent finding in addition to the well-known tubular dysfunction in patients with cystinosis. Furthermore, our results highlight that the presence of severe proteinuria at the time of diagnosis is a relevant prognostic factor for kidney survival.
Collapse
Affiliation(s)
- Bahriye Atmis
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Aysun K Bayazit
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Derya Cevizli
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Deniz Kor
- Department of Pediatric Metabolism and Nutrition, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Hatice Busra Fidan
- Department of Pediatrics, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana, Turkey
- Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey
- Medical Genetics Department of Balcali Clinics and Hospital, Faculty of Medicine, Adana, Turkey
| | - Sebile Kilavuz
- Department of Pediatric Metabolism and Nutrition, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ilker Unal
- Department of Biostatistics, Cukurova University Faculty of Medicine, Adana, Turkey
| | | | - Engin Melek
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Gulfiliz Gonlusen
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ali Anarat
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Neslihan Onenli Mungan
- Department of Pediatric Metabolism and Nutrition, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
13
|
Newborn Screening: Review of its Impact for Cystinosis. Cells 2022; 11:cells11071109. [PMID: 35406673 PMCID: PMC8997957 DOI: 10.3390/cells11071109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Newborn screening (NBS) programmes are considered to be one of the most successful secondary prevention measures in childhood to prevent or reduce morbidity and/or mortality via early disease identification and subsequent initiation of therapy. However, while many rare diseases can now be detected at an early stage using appropriate diagnostics, the introduction of a new target disease requires a detailed analysis of the entire screening process, including a robust scientific background, analytics, information technology, and logistics. In addition, ethics, financing, and the required medical measures need to be considered to allow the benefits of screening to be evaluated at a higher level than its potential harm. Infantile nephropathic cystinosis (INC) is a very rare lysosomal metabolic disorder. With the introduction of cysteamine therapy in the early 1980s and the possibility of renal replacement therapy in infancy, patients with cystinosis can now reach adulthood. Early diagnosis of cystinosis remains important as this enables initiation of cysteamine at the earliest opportunity to support renal and patient survival. Using molecular technologies, the feasibility of screening for cystinosis has been demonstrated in a pilot project. This review aims to provide insight into NBS and discuss its importance for nephropathic cystinosis using molecular technologies.
Collapse
|
14
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
15
|
Deepthi B, Krishnamurthy S, Karunakar P, Barathidasan G, Rajavelu TN. Atypical manifestations of infantile-onset nephropathic cystinosis: a diagnostic challenge. CEN Case Rep 2022; 11:347-350. [PMID: 35048353 DOI: 10.1007/s13730-021-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
A 7-month-old male infant was referred to us for evaluation of hypercalcemia and failure to thrive. He was the second-born child to third-degree consanguineous parents with a birth weight of 3.5 kg. The index child was severely underweight. Initial laboratory investigations showed hypercalcemia (13.6 mg/dL), hypophosphatemia, hyponatremia, hypokalemia and hypochloremia. The initial serum bicarbonate level was 20.9 mEq/L. The urine calcium: creatinine ratio (0.05) was normal. He was noted to have polyuria (6 mL/kg/hr) and required intravenous fluids to maintain intravascular volume and manage hypercalcemia, along with potassium chloride supplements. The serum calcium decreased to 9.7 mg/dL after hydration for 48 h. At this juncture, the child was noted to exhibit metabolic acidosis (serum bicarbonate 16 mEq/L) for the first time. Thereafter, fractional excretion of bicarbonate was estimated to be 16.5% while the tubular threshold maximum for phosphorus per glomerular filtration rate was 1.2 mg/dL; indicating bicarbonaturia and phosphaturia, respectively. Glycosuria with aminoaciduria were also noted. Clinical exome sequencing revealed a NM_004937.3:c.809_811del in exon 10 of the CTNS gene that resulted in in-frame deletion of amino acids [NP_004928.2:p.Ser270del] at the protein level. The child is now growing well on oral potassium citrate, neutral phosphate and sodium bicarbonate supplements. This case was notable for absence of metabolic acidosis at admission. Instead, severe hypercalcemia was a striking presenting manifestation, that has not been reported previously in literature. Cystinosis has been earlier described in association with metabolic acidosis, hypocalcemia and hypomagnesemia. However, typical features like metabolic acidosis were masked in early stages of the disease in our case posing a diagnostic challenge. This atypical initial presentation adds to the constellation of clinical features in this condition.
Collapse
Affiliation(s)
- Bobbity Deepthi
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Sriram Krishnamurthy
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India.
| | - Pediredla Karunakar
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Gowrishankar Barathidasan
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | | |
Collapse
|
16
|
王 欣, 张 碧, 陈 晓, 郭 珍. Cystinosis induced by CTNS gene mutation: a rare disease study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1276-1281. [PMID: 34911613 PMCID: PMC8690714 DOI: 10.7499/j.issn.1008-8830.2109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
A boy, aged 1 year and 6 months, was found to have persistent positive urine glucose at the age of 4 months, with polydipsia, polyuria, and growth retardation. Laboratory examinations suggested that the boy had low specific weight urine, anemia, hypokalemia, hyponatremia, hypomagnesemia, metabolic acidosis, glycosuria, acidaminuria, increased fractional excretion of potassium, and decreased tubular reabsorption of phosphate. X-ray examinations of the head, thorax, and right hand showed changes of renal rickets. The slit-lamp examination showed a large number of cystine crystals in the cornea. The genetic testing showed a suspected pathogenic homozygous mutation of the CTNS gene, C.922g>A(p.Gly308Arg). The boy was finally diagnosed with cystinosis. At the beginning of treatment, symptomatic supportive treatment was given to maintain the stability of the internal environment, and cysteamine tartaric acid capsules were used after diagnosis to remove cysteine. This article reported a case of cystinosis caused by CTNS gene mutation and summarized the etiology, clinical features, diagnosis, and treatment of this disease, which can provide a reference for the early diagnosis, treatment, and subsequent study of the disease.
Collapse
|
17
|
Response to Cysteamine in Osteoclasts Obtained from Patients with Nephropathic Cystinosis: A Genotype/Phenotype Correlation. Cells 2021; 10:cells10092498. [PMID: 34572146 PMCID: PMC8467406 DOI: 10.3390/cells10092498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Bone complications of cystinosis have been recently described. The main objectives of this paper were to determine in vitro the impact of CTNS mutations and cysteamine therapy on human osteoclasts and to carry out a genotype-phenotype analysis related to osteoclastic differentiation. Human osteoclasts were differentiated from peripheral blood mononuclear cells (PBMCs) and were treated with increasing doses of cysteamine (0, 50, 200 µM) and then assessed for osteoclastic differentiation. Results are presented as median (min-max). A total of 17 patients (mainly pediatric) were included, at a median age of 14 (2–61) years, and a eGFR of 64 (23–149) mL/min/1.73 m2. Most patients (71%) were under conservative kidney management (CKM). The others were kidney transplant recipients. Three functional groups were distinguished for CTNS mutations: cystinosin variant with residual cystin efflux activity (RA, residual activity), inactive cystinosin variant (IP, inactive protein), and absent protein (AP). PBMCs from patients with residual cystinosin activity generate significantly less osteoclasts than those obtained from patients of the other groups. In all groups, cysteamine exerts an inhibitory effect on osteoclastic differentiation at high doses. This study highlights a link between genotype and osteoclastic differentiation, as well as a significant impact of cysteamine therapy on this process in humans.
Collapse
|
18
|
Topaloglu R. Nephropathic cystinosis: an update on genetic conditioning. Pediatr Nephrol 2021; 36:1347-1352. [PMID: 32564281 DOI: 10.1007/s00467-020-04638-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/24/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Cystinosis is an autosomal recessive lysosomal storage disorder caused by CTNS gene mutations. The CTNS gene encodes the protein cystinosin, which transports free cystine from lysosomes to cytoplasm. In cases of cystinosin deficiency, free cystine accumulates in lysosomes and forms toxic crystals that lead to tissue and organ damage. Since CTNS gene mutations were first described, many variations have been identified that vary according to geographic region, although the phenotype remains the same. Cystinosis is a hereditary disease that can be treated with the cystine-depleting agent cysteamine. Cysteamine slows organ deterioration, but cannot treat renal Fanconi syndrome or prevent eventual kidney failure; therefore, novel treatment modalities for cystinosis are of great interest to researchers. The present review aims to highlight the geographic differences in cystinosis-specifically in terms of its genetic aspects, clinical features, management, and long-term complications.
Collapse
Affiliation(s)
- Rezan Topaloglu
- Department of Pediatric Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
19
|
Rohayem J, Haffner D, Cremers JF, Huss S, Wistuba J, Weitzel D, Kliesch S, Hohenfellner K. Testicular function in males with infantile nephropathic cystinosis. Hum Reprod 2021; 36:1191-1204. [PMID: 33822926 PMCID: PMC8058591 DOI: 10.1093/humrep/deab030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do males with the rare lysosomal storage disease infantile nephropathic cystinosis (INC) have a chance of biological fatherhood? SUMMARY ANSWER Cryostorage of semen could be an option for approximately 20% of young males with INC, with surgical sperm retrieval from the centre of the testes providing additional opportunities for fatherhood. WHAT IS KNOWN ALREADY Biallelic mutations in the cystinosin (CTNS) gene in INC cause dysfunction in cystine transport across lysosomal membranes and cystine accumulation throughout the body. Spontaneous paternity in cystinosis has not been described, despite the availability of cysteamine treatment. Azoospermia has been diagnosed in small case series of males with INC. ART using ICSI requires few spermatozoa, either from semen or extracted surgically from the testes of azoospermic men. However, there is limited evidence to suggest this could be successful in INC. STUDY DESIGN, SIZE, DURATION In this prospective cohort study performed between 2018 and 2019, we performed a cross-sectional investigation of 18 male patients with INC to delineate endocrine and spermatogenic testicular function. PARTICIPANTS/MATERIALS, SETTING, METHODS Serum hormone levels, semen samples (according to World Health Organization 2010 standards), and testicular ultrasound images were analysed in 18 male patients aged 15.4–40.5 years. Surgical sperm extraction was performed in two, and their testicular biopsies were investigated by light and electron microscopy. Past adherence to cysteamine treatment was assessed from medical record information, using a composite scoring system. MAIN RESULTS AND THE ROLE OF CHANCE Adherence to cysteamine treatment was high in most patients. Testicular volumes and testosterone levels were in the normal ranges, with the exception of two and three older patients, respectively. Serum LH levels were above the normal range in all subjects aged ≥20 years. FSH levels were elevated in all but four males: three with spermatozoa in semen and one adolescent. Inhibin B levels were shown to be lower in older men. Testicular ultrasound revealed signs of obstruction in 67% of patients. Reduced fructose and zinc seminal markers were found in 33%, including two patients with azoospermia who underwent successful surgical sperm retrieval. Histology identified fully preserved spermatogenesis in the centre of their testes, but also tubular atrophy and lysosomal overload in Sertoli and Leydig cells of the testicular periphery. LIMITATIONS, REASONS FOR CAUTION Limitations of this study are the small number of assessed patients and the heterogeneity of their dysfunction in cystine transport across lysosomal membranes. WIDER IMPLICATIONS OF THE FINDINGS This study suggests that testicular degeneration in cystinosis results from the lysosomal overload of Sertoli and Leydig cells of the testicular periphery, and that this can possibly be delayed, but not prevented, by good adherence to cysteamine treatment. Endocrine testicular function in INC may remain compensated until the fourth decade of life; however, azoospermia may occur during adolescence. Cryostorage of semen could be an option for approximately 20% of young males with INC, with surgical sperm retrieval providing additional opportunities for biological fatherhood. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Cystinosis Foundation Germany. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER n/a.
Collapse
Affiliation(s)
- J Rohayem
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University of Münster, Albert-Schweizer-Campus 1, D 11, 48149 Münster, Germany
| | - D Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - J F Cremers
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University of Münster, Albert-Schweizer-Campus 1, D 11, 48149 Münster, Germany
| | - S Huss
- Institute for Pathology, University of Münster, Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Albert-Schweizer-Campus 1, D 11, 48149 Münster, Germany
| | - D Weitzel
- Department of Pediatric Nephrology, Children's Hospital, RoMed Clinics Rosenheim, Pettenkoferstr. 10 83022 Rosenheim, Germany
| | - S Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University of Münster, Albert-Schweizer-Campus 1, D 11, 48149 Münster, Germany
| | - K Hohenfellner
- Department of Pediatric Nephrology, Children's Hospital, RoMed Clinics Rosenheim, Pettenkoferstr. 10 83022 Rosenheim, Germany
| |
Collapse
|
20
|
Jamalpoor A, Othman A, Levtchenko EN, Masereeuw R, Janssen MJ. Molecular Mechanisms and Treatment Options of Nephropathic Cystinosis. Trends Mol Med 2021; 27:673-686. [PMID: 33975805 DOI: 10.1016/j.molmed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amr Othman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Elias A, Kassis H, Elkader SA, Gritsenko N, Nahmad A, Shir H, Younis L, Shannan A, Aihara H, Prag G, Yagil E, Kolot M. HK022 bacteriophage Integrase mediated RMCE as a potential tool for human gene therapy. Nucleic Acids Res 2020; 48:12804-12816. [PMID: 33270859 PMCID: PMC7736782 DOI: 10.1093/nar/gkaa1140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
HK022 coliphage site-specific recombinase Integrase (Int) can catalyze integrative site-specific recombination and recombinase-mediated cassette exchange (RMCE) reactions in mammalian cell cultures. Owing to the promiscuity of the 7 bp overlap sequence in its att sites, active ‘attB’ sites flanking human deleterious mutations were previously identified that may serve as substrates for RMCE reactions for future potential gene therapy. However, the wild type Int proved inefficient in catalyzing such RMCE reactions. To address this low efficiency, variants of Int were constructed and examined by integrative site-specific recombination and RMCE assays in human cells using native ‘attB’ sites. As a proof of concept, various Int derivatives have demonstrated successful RMCE reactions using a pair of native ‘attB’ sites that were inserted as a substrate into the human genome. Moreover, successful RMCE reactions were demonstrated in native locations of the human CTNS and DMD genes whose mutations are responsible for Cystinosis and Duchene Muscular Dystrophy diseases, respectively. This work provides a steppingstone for potential downstream therapeutic applications.
Collapse
Affiliation(s)
- Amer Elias
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hala Kassis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Suha Abd Elkader
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Natasha Gritsenko
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Alessio Nahmad
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hodaya Shir
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Liana Younis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Atheer Shannan
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota TwinCities, Minneapolis, MN, 55455, USA
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Ezra Yagil
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Mikhail Kolot
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
22
|
Ouhenach M, Zrhidri A, Jaouad IC, Smaili W, Sefiani A. Application of next generation sequencing in genetic counseling a case of a couple at risk of cystinosis. BMC MEDICAL GENETICS 2020; 21:240. [PMID: 33308164 PMCID: PMC7733293 DOI: 10.1186/s12881-020-01167-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/10/2020] [Indexed: 11/25/2022]
Abstract
Background In Morocco, consanguinity rate is very high; which lead to an increase in the birth prevalence of infants with autosomal recessive disorders. Previously, it was difficult to diagnose rare autosomal recessive diseases. Next Generation Sequencing (NGS) techniques have considerably improved clinical diagnostics. A genetic diagnosis showing biallelic causative mutations is the requirement for targeted carrier testing in parents, prenatal and preimplantation genetic diagnosis in further pregnancies, and also for targeted premarital testing in future couples at risk of producing affected children by a known autosomal recessive disease. Methods In this report, we present our strategy to advise a future couple of first cousins, whose descendants would risk cystinosis; an autosomal recessive lysosomal disease caused by mutations in the CTNS gene. Indeed, our future husband’s sister is clinically and biochemically diagnosed with cystinosis in early childhood. First, we opted to identify the patient’s CTNS gene abnormality by using (NGS), then we searched for heterozygosity in the couple’s DNA, which allows us to predict the exact risk of this familial disease in the future couple’s offspring. Results We have shown that the future husband, brother of the patient is heterozygous for the familial mutation. On the other hand, his future wife did not inherit the familial mutation. Therefore, genetic counseling was reassuring for the risk of familial cystinosis in this couple’s offspring. Conclusions We report in this study, one of the major applications of (NGS), an effective tool to improve clinical diagnosis and to provide the possibility of targeted premarital carrier testing in couples at risk.
Collapse
Affiliation(s)
- Mouna Ouhenach
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn Battouta, BP 769,, Rabat, Morocco. .,Human Genomics Center, Faculty of Medicine and Pharmacy, Rabat, Morocco.
| | - Abdelali Zrhidri
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn Battouta, BP 769,, Rabat, Morocco.,Human Genomics Center, Faculty of Medicine and Pharmacy, Rabat, Morocco
| | - Imane Cherkaoui Jaouad
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn Battouta, BP 769,, Rabat, Morocco.,Human Genomics Center, Faculty of Medicine and Pharmacy, Rabat, Morocco
| | - Wiam Smaili
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn Battouta, BP 769,, Rabat, Morocco
| | - Abdelaziz Sefiani
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn Battouta, BP 769,, Rabat, Morocco.,Human Genomics Center, Faculty of Medicine and Pharmacy, Rabat, Morocco
| |
Collapse
|
23
|
Tokhmafshan F, Dickinson K, Akpa MM, Brasell E, Huertas P, Goodyer PR. A no-nonsense approach to hereditary kidney disease. Pediatr Nephrol 2020; 35:2031-2042. [PMID: 31807928 DOI: 10.1007/s00467-019-04394-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023]
Abstract
The advent of a new class of aminoglycosides with increased translational readthrough of nonsense mutations and reduced toxicity offers a new therapeutic strategy for a subset of patients with hereditary kidney disease. The renal uptake and retention of aminoglycosides at a high intracellular concentration makes the kidney an ideal target for this approach. In this review, we explore the potential of aminoglycoside readthrough therapy in a number of hereditary kidney diseases and discuss the therapeutic window of opportunity for subclasses of each disease, when caused by nonsense mutations.
Collapse
Affiliation(s)
- Fatima Tokhmafshan
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Kyle Dickinson
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada.,Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Murielle M Akpa
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Emma Brasell
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | - Paul R Goodyer
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada. .,Department of Experimental Medicine, McGill University, Montreal, Canada. .,Department of Human Genetics, McGill University, Montreal, Canada. .,Department of Pediatrics, McGill University, Montreal, Canada.
| |
Collapse
|
24
|
Kerem E. ELX-02: an investigational read-through agent for the treatment of nonsense mutation-related genetic disease. Expert Opin Investig Drugs 2020; 29:1347-1354. [DOI: 10.1080/13543784.2020.1828862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Eitan Kerem
- Department of Pediatrics and CF Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
25
|
Francisco AA, Foxe JJ, Horsthuis DJ, Molholm S. Impaired auditory sensory memory in Cystinosis despite typical sensory processing: A high-density electrical mapping study of the mismatch negativity (MMN). NEUROIMAGE-CLINICAL 2020; 25:102170. [PMID: 31954986 PMCID: PMC6965721 DOI: 10.1016/j.nicl.2020.102170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 11/24/2022]
Abstract
Children and adolescents with Cystinosis show similar N1 responses to their age-matched peers. Children and adolescents with Cystinosis show reduced MMNs for longer SOAs. Our results suggest typical auditory processing, but impaired sensory memory in Cystinosis.
Cystinosis, a genetic rare disease characterized by cystine accumulation and crystallization, results in significant damage in a multitude of tissues and organs, such as the kidney, thyroid, eye, and brain. While Cystinosis’ impact on brain function is relatively mild compared to its effects on other organs, the increased lifespan of this population and thus potential for productive societal contributions have led to increased interest on the effects on brain function. Nevertheless, and despite some evidence of structural brain differences, the neural impact of the mutation is still not well characterized. Here, using a passive duration oddball paradigm (with different stimulus onset asynchronies (SOAs), representing different levels of demand on memory) and high-density electrophysiology, we tested basic auditory processing in a group of 22 children and adolescents diagnosed with Cystinosis (age range: 6-17 years old) and in neurotypical age-matched controls (N = 24). We examined whether the N1 and mismatch negativity (MMN) significantly differed between the groups and if those neural measures correlated with verbal and non-verbal IQ. Individuals diagnosed with Cystinosis presented similar N1 responses to their age-matched peers, indicating typical basic auditory processing in this population. However, whereas both groups showed similar MMN responses for the shortest (450 ms) SOA, suggesting intact change detection and sensory memory, individuals diagnosed with Cystinosis presented clearly reduced responses for the longer (900 ms and 1800 ms) SOAs. This could indicate reduced duration auditory sensory memory traces, and thus sensory memory impairment, in children and adolescents diagnosed with Cystinosis. Future work addressing other aspects of sensory and working memory is needed to understand the underlying bases of the differences described here, and their implication for higher order processing.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA..
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA.; The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA.; The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA..
| |
Collapse
|
26
|
Brasell EJ, Chu LL, Akpa MM, Eshkar-Oren I, Alroy I, Corsini R, Gilfix BM, Yamanaka Y, Huertas P, Goodyer P. The novel aminoglycoside, ELX-02, permits CTNSW138X translational read-through and restores lysosomal cystine efflux in cystinosis. PLoS One 2019; 14:e0223954. [PMID: 31800572 PMCID: PMC6892560 DOI: 10.1371/journal.pone.0223954] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cystinosis is a rare disorder caused by recessive mutations of the CTNS gene. Current therapy decreases cystine accumulation, thus slowing organ deterioration without reversing renal Fanconi syndrome or preventing eventual need for a kidney transplant.15-20% of cystinosis patients harbour at least one nonsense mutation in CTNS, leading to premature end of translation of the transcript. Aminoglycosides have been shown to permit translational read-through but have high toxicity level, especially in the kidney and inner ear. ELX-02, a modified aminoglycoside, retains it read-through ability without the toxicity. Methods and findings We ascertained the toxicity of ELX-02 in cells and in mice as well as the effect of ELX-02 on translational read-through of nonsense mutations in cystinotic mice and human cells. ELX-02 was not toxic in vitro or in vivo, and permitted read-through of nonsense mutations in cystinotic mice and human cells. Conclusions ELX-02 has translational read-through activity and produces a functional CTNS protein, as evidenced by reduced cystine accumulation. This reduction is comparable to cysteamine treatment. ELX-02 accumulates in the kidney but neither cytotoxicity nor nephrotoxicity was observed.
Collapse
Affiliation(s)
- Emma J. Brasell
- McGill University, Department of Human Genetics, Montreal, Canada
| | - Lee Lee Chu
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Murielle M. Akpa
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Idit Eshkar-Oren
- McGill University, Department of Experimental Medicine, Montreal, Canada
| | - Iris Alroy
- McGill University, Department of Experimental Medicine, Montreal, Canada
| | - Rachel Corsini
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Brian M. Gilfix
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Yojiro Yamanaka
- McGill University, Department of Human Genetics, Montreal, Canada
| | - Pedro Huertas
- McGill University, Department of Experimental Medicine, Montreal, Canada
| | - Paul Goodyer
- McGill University, Department of Human Genetics, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Montreal Children’s Hospital, Department of Nephrology, Montreal, Canada
- Eloxx Pharmaceuticals, Inc., Waltham, United States of America
- * E-mail:
| |
Collapse
|
27
|
Papizh S, Serzhanova V, Filatova A, Skoblov M, Tabakov V, van den Heuvel L, Levtchenko E, Prikhodina L. CTNS mRNA molecular analysis revealed a novel mutation in a child with infantile nephropathic cystinosis: a case report. BMC Nephrol 2019; 20:400. [PMID: 31672123 PMCID: PMC6822415 DOI: 10.1186/s12882-019-1589-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystinosis is an autosomal recessive lysosomal storage disorder characterized by accumulation of cystine in lysosomes throughout the body. Cystinosis is caused by mutations in the CTNS gene that encodes the lysosomal cystine carrier protein cystinosin. CTNS mutations result in either complete absence or reduced cystine transporting function of the protein. The diagnosis of nephropathic cystinosis is generally based on measuring leukocyte cystine level, demonstration of corneal cystine crystals by the slit lamp examination and confirmed by genetic analysis of the CTNS gene. CASE PRESENTATION A boy born to consanguineous Caucasian parents had the characteristic clinical features of the infantile nephropathic cystinosis including renal Fanconi syndrome (polydipsia/polyuria, metabolic acidosis, hypokalemia, hypophosphatemia, low molecular weight proteinuria, glycosuria, cystine crystals in the cornea) and elevated WBC cystine levels. Initially we performed RFLP analysis of the common in the Northern European population 57-kb deletion of proband's DNA, then a direct Sanger sequencing which revealed no mutations in the coding part of the CTNS gene. To confirm the diagnosis we performed RT-PCR analysis of total RNA obtained from patient-derived fibroblasts in combination with cDNA sequencing. This revealed the skipping of exon 4 and exon 5 in the CTNS in our patient. Therefore, we detected a novel 9-kb homozygous deletion in the CTNS gene at genomic DNA level, spanning region from intron 3 to intron 5. In order to identify the inheritance pattern of the deletion we analyzed DNA of proband's mother and father. Both parents were found to be heterozygous carriers of the CTNS mutation. CONCLUSIONS Analysis of CTNS gene transcript allowed to identify a large homozygous deletion in the patient with infantile nephropathic cystinosis. Mutational detection at RNA level may be an efficient tool to establish the genetic defect in some cystinosis patients.
Collapse
Affiliation(s)
- Svetlana Papizh
- Department of hereditary and acquired kidney diseases, Research and Clinical Institute for Pediatrics at the Pirogov Russian National Research Medical University, 125412, Taldomskaya st., 2, Moscow, Russia.
| | | | | | - Mikhail Skoblov
- Research Centre for Medical Genetics, 115522, Russia, Moscow
| | | | - Lambert van den Heuvel
- Department of Pediatrics/Pediatric Nephrology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatrics/Pediatric Nephrology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Larisa Prikhodina
- Department of hereditary and acquired kidney diseases, Research and Clinical Institute for Pediatrics at the Pirogov Russian National Research Medical University, 125412, Taldomskaya st., 2, Moscow, Russia
| |
Collapse
|
28
|
Brasell EJ, Chu L, El Kares R, Seo JH, Loesch R, Iglesias DM, Goodyer P. The aminoglycoside geneticin permits translational readthrough of the CTNS W138X nonsense mutation in fibroblasts from patients with nephropathic cystinosis. Pediatr Nephrol 2019; 34:873-881. [PMID: 30413946 DOI: 10.1007/s00467-018-4094-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cystinosis is an ultrarare disorder caused by mutations of the cystinosin (CTNS) gene, encoding a cystine-selective efflux channel in the lysosomes of all cells of the body. Oral therapy with cysteamine reduces intralysosomal cystine accumulation and slows organ deterioration but cannot reverse renal Fanconi syndrome nor prevent the eventual need for renal transplantation. A definitive therapeutic remains elusive. About 15% of cystinosis patients worldwide carry one or more nonsense mutations that halt translation of the CTNS protein. Aminoglycosides such as geneticin (G418) can bind to the mammalian ribosome, relax translational fidelity, and permit readthrough of premature termination codons to produce full-length protein. METHODS To ascertain whether aminoglycosides permit readthrough of the most common CTNS nonsense mutation, W138X, we studied the effect of G418 on patient fibroblasts. RESULTS G418 treatment induced translational readthrough of CTNSW138X constructs transfected into HEK293 cells and expression of full-length endogenous CTNS protein in homozygous W138X fibroblasts. CONCLUSIONS Reduction in intracellular cystine indicates that the CTNS protein produced is functional as a cystine transporter. Interestingly, similar effects were seen even in W138X compound heterozygotes. These studies establish proof-of-principle for the potential of aminoglycosides to treat cystinosis and possibly other monogenic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Emma J Brasell
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - LeeLee Chu
- The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada
| | - Reyhan El Kares
- The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada
| | - Jung Hwa Seo
- The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada
| | | | | | - Paul Goodyer
- Department of Human Genetics, McGill University, Montreal, Québec, Canada. .,The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada. .,Department of Experimental Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
29
|
Browning AC, Figueiredo GS, Baylis O, Montgomery E, Beesley C, Molinari E, Figueiredo FC, Sayer JA. A case of ocular cystinosis associated with two potentially severe CTNS mutations. Ophthalmic Genet 2019; 40:157-160. [PMID: 30957593 DOI: 10.1080/13816810.2019.1592198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ocular cystinosis is a rare autosomal recessive disorder caused by one severe and one mild mutation in the CTNS gene. It is characterised by cystine deposition within the cornea and conjunctiva however, the kidneys are not affected. We report a case of ocular cystinosis caused by two potentially severe CTNS mutations and discuss the possible mechanism of renal sparing. METHODS This is an observational case report of the proband and her unaffected relatives. All subjects underwent ophthalmic examination, whilst in the proband, In vivo laser scanning confocal microscopy was used to demonstrate cystine crystals within her corneas and conjunctiva. Genetic diagnosis was confirmed by DNA sequencing of the proband and the segregation of the mutations was established in her relatives. RT-PCR of leukocyte RNA was undertaken to determine if aberrant splicing of the CTNS gene was taking place Results: The proband was found to have cystine crystals limited to the anterior corneal stroma and the conjunctiva. Sequencing of the proband's CTNS gene found her to be a compound heterozygote for a 27bp deletion in exon8/intron 8 (c.559_561 + 24del) and a novel c.635C>T variant in exon 9 that is predicted be pathogenic and to result in the substitution of alanine with valine at amino acid position 212 (p.Ala212Val), which is within the 3rd transmembrane spanning domain of the CTNS protein. Examination of the proband's leukocyte RNA failed to demonstrate any aberrant CTNS gene splicing. CONCLUSION We present a case of ocular cystinosis caused by two potentially severe CTNS gene mutations. The lack of renal involvement may be due to localised (ocular) aberrant CTNS RNA splicing.
Collapse
Affiliation(s)
- Andrew C Browning
- a Newcastle Eye Centre , Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne , UK
| | - Gustavo S Figueiredo
- a Newcastle Eye Centre , Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne , UK.,b Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne , UK
| | - Oliver Baylis
- a Newcastle Eye Centre , Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne , UK
| | - Emma Montgomery
- c Renal Services , Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne , UK
| | - Clare Beesley
- d North East Thames Regional Genetics Service, Level 6, Barclay House , Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| | - Elisa Molinari
- b Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne , UK
| | - Francisco C Figueiredo
- a Newcastle Eye Centre , Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne , UK.,b Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne , UK
| | - John A Sayer
- b Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne , UK.,c Renal Services , Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne , UK
| |
Collapse
|
30
|
Florenzano P, Ferreira C, Nesterova G, Roberts MS, Tella SH, de Castro LF, Brown SM, Whitaker A, Pereira RC, Bulas D, Gafni RI, Salusky IB, Gahl WA, Collins MT. Skeletal Consequences of Nephropathic Cystinosis. J Bone Miner Res 2018; 33:1870-1880. [PMID: 29905968 DOI: 10.1002/jbmr.3522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 01/03/2023]
Abstract
Nephropathic cystinosis is a rare lysosomal storage disorder. Patients present in the first year of life with renal Fanconi syndrome that evolves to progressive chronic kidney disease (CKD). Despite the multiple risk factors for bone disease, the frequency and severity of skeletal disorders in nephropathic cystinosis have not been described. We performed systematic bone and mineral evaluations of subjects with cystinosis seen at the NIH (n = 30), including history and physical examination, serum and urine biochemistries, DXA, vertebral fracture assessment, skeletal radiographs, and renal ultrasound. Additionally, histomorphometric analyses are reported on six subjects seen at the UCLA Bone and Mineral Metabolism Clinic. In NIH subjects, mean age was 20 years (range, 5 to 44 years), 60% were CKD stages G1 to G4, and 40% had a renal transplant. Mean bone mineral density (BMD) Z-scores were decreased in the femoral neck, total hip, and 1/3 radius (p < 0.05). Low bone mass at one or more sites was present in 46% of subjects. Twenty-seven percent of subjects reported one or more long bone fractures. Thirty-two percent of subjects had incidental vertebral fractures, which were unrelated to transplant status. Long-bone deformity/bowing was present in 64%; 50% had scoliosis. Diffuse osteosclerosis was present in 21% of evaluated subjects. Risk factors included CKD, phosphate wasting, hypercalciuria, secondary hyperparathyroidism, hypovitaminosis D, male hypogonadism, metabolic acidosis, and glucocorticoid/immunosuppressive therapy. Sixty-one percent of the non-transplanted subjects had ultrasonographic evidence of nephrocalcinosis or nephrolithiasis. Histomorphometric analyses showed impaired mineralization in four of six studied subjects. We conclude that skeletal deformities, decreased bone mass, and vertebral fractures are common and relevant complications of nephropathic cystinosis, even before renal transplantation. Efforts to minimize risk factors for skeletal disease include optimizing mineral metabolism and hormonal status, combined with monitoring for nephrocalcinosis/nephrolithiasis. © 2018 This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Pablo Florenzano
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA.,Endocrinology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos Ferreira
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Galina Nesterova
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mary Scott Roberts
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sri Harsha Tella
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Luis Fernandez de Castro
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sydney M Brown
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adom Whitaker
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Renata C Pereira
- Division of Nephrology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dorothy Bulas
- Division of Radiology, Children's National Health System, Washington, DC, USA
| | - Rachel I Gafni
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Isidro B Salusky
- Division of Nephrology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael T Collins
- Section on Skeletal Disorders and Mineral Homeostasis, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
31
|
Anastasiya KA, Elena OG, Natalia BV, Anna KY, Kirill TY, Olesya KI, Tatiana NA, Inessa FD, Ekaterina SI, Peter SA, Valery IV. Atypical onset of nephropathic infantile cystinosis in a Russian patient with rare CTNS mutation. Clin Case Rep 2018; 6:1871-1876. [PMID: 30214781 PMCID: PMC6132087 DOI: 10.1002/ccr3.1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/11/2018] [Indexed: 11/10/2022] Open
Abstract
We report a Russian patient with atypical onset of infantile nephropathic cystinosis. The disease debuted with vomiting and loss of weight and motor skills. Nephropathic changes appeared 6 months after onset of disease. Exome sequencing can be useful for diagnosing cystinosis in patients with neurological abnormalities before onset of nephropathic symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nikishina A. Tatiana
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical UniversityMoscowRussia
| | | | | | - Shatalov A. Peter
- Genotek Ltd.MoscowRussia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical UniversityMoscowRussia
| | - Ilinsky V. Valery
- Institute of Biomedical ChemistryMoscowRussia
- Genotek Ltd.MoscowRussia
- Vavilov Institute of General GeneticsMoscowRussia
| |
Collapse
|
32
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
33
|
Slow progression of renal failure in a child with infantile cystinosis. CEN Case Rep 2018; 7:153-157. [PMID: 29446030 DOI: 10.1007/s13730-018-0316-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/07/2018] [Indexed: 10/18/2022] Open
Abstract
Cystinosis is a rare autosomal recessive lysosomal transport disorder, characterized by the accumulation of the aminoacid cystine and progressive dysfunction of several organs. Kidneys are severely affected, and the most frequent form, infantile nephropathic cystinosis, presents with growth failure in infancy, renal Fanconi syndrome and end-stage renal disease by the first decade of life. We report of a girl with infantile nephropathic cystinosis that has reached adolescence without the need of renal replacement therapy and without extrarenal manifestations despite her delayed diagnosis and treatment initiation. The girl with this intermediate phenotype was found to have compound heterozygosity of one known (1015G > A) and one novel (587_588insA) mutation in CTNS gene. Our case points to the wide clinical presentation of infantile nephropathic cystinosis and suggest that long-term outcome is not always ominous as generally thought.
Collapse
|
34
|
Makuloluwa AK, Shams F. Cysteamine hydrochloride eye drop solution for the treatment of corneal cystine crystal deposits in patients with cystinosis: an evidence-based review. Clin Ophthalmol 2018; 12:227-236. [PMID: 29416314 PMCID: PMC5789046 DOI: 10.2147/opth.s133516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystinosis is a rare, autosomal recessive disorder leading to defective transport of cystine out of lysosomes. Subsequent cystine crystal accumulation can occur in various tissues, including the ocular surface. This review explores the efficacy of cysteamine hydrochloride eye drops in the treatment of corneal cystine crystal accumulation and its safety profile.
Collapse
Affiliation(s)
| | - Fatemeh Shams
- Tennent Institute of Ophthalmology, Gartnavel General Hospital, Glasgow, UK
| |
Collapse
|
35
|
Reda A, Van Schepdael A, Adams E, Paul P, Devolder D, Elmonem MA, Veys K, Casteels I, van den Heuvel L, Levtchenko E. Effect of Storage Conditions on Stability of Ophthalmological Compounded Cysteamine Eye Drops. JIMD Rep 2017; 42:47-51. [PMID: 29214524 DOI: 10.1007/8904_2017_77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 02/24/2023] Open
Abstract
Cystinosis is a hereditary genetic disease that results in the accumulation of cystine crystals in the lysosomes, leading to many clinical manifestations. One of these manifestations is the formation of corneal cystine crystals, which can cause serious ocular complications. The only available drug to treat cystinosis is cysteamine, which breaks cystine and depletes its accumulation in the lysosomes. However, the oral form of cysteamine is not effective in treating corneal manifestations. Thus, ophthalmic solutions of cysteamine are applied. Because the commercial cysteamine eye drops are not available in most countries, hospital pharmacies are responsible for preparing "homemade" drops usually without a control of stability of cysteamine in different storage conditions. Hence, we aimed in this study to investigate the effect of different storage conditions on the stability of a cysteamine ophthalmic compounded solution. Cysteamine ophthalmic solution was prepared in the hospital pharmacy and sterilized using a candle filter. The preparations are then stored either in the freezer at -20°C or in the refrigerator at +4°C for up to 52 weeks. The amount of cysteamine hydrochloride in the preparation at different time points was determined using capillary electrophoresis (CE). Storage of the cysteamine ophthalmic preparations at +4° resulted in significant loss of free cysteamine at all time points, from 1 to 52 weeks of storage, when compared with storage in the freezer (-20°C). We demonstrate that cysteamine 0.5% compounded eye drops are easily oxidized within the first week after storage at +4°C, rendering the preparation less effective. Storage at -20°C is recommended to prevent this process.
Collapse
Affiliation(s)
- Ahmed Reda
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences, KU Leuven, Leuven, Belgium.
| | | | - Erwin Adams
- Farmaceutische Analyse, KU Leuven, Leuven, Belgium
| | | | - David Devolder
- Hospital Pharmacy, University Hospitals Leuven, Leuven, Belgium
| | - Mohamed A Elmonem
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Koenraad Veys
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Ingele Casteels
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, Radboud UMC, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Topaloglu R, Gulhan B, İnözü M, Canpolat N, Yilmaz A, Noyan A, Dursun İ, Gökçe İ, Gürgöze MK, Akinci N, Baskin E, Serdaroğlu E, Demircioğlu Kiliç B, Yüksel S, Övünç Hacihamdioğlu D, Korkmaz E, Hayran M, Ozaltin F. The Clinical and Mutational Spectrum of Turkish Patients with Cystinosis. Clin J Am Soc Nephrol 2017; 12:1634-1641. [PMID: 28793998 PMCID: PMC5628704 DOI: 10.2215/cjn.00180117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Infantile nephropathic cystinosis is a severe disease that occurs due to mutations in the cystinosis gene, and it is characterized by progressive dysfunction of multiple organs; >100 cystinosis gene mutations have been identified in multiple populations. Our study aimed to identify the clinical characteristics and spectrum of cystinosis gene mutations in Turkish pediatric patients with cystinosis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We identified the clinical characteristics and spectrum of cystinosis gene mutations in Turkish patients with cystinosis in a multicenter registry that was established for data collection. The data were extracted from this registry and analyzed. RESULTS In total, 136 patients (75 men and 61 women) were enrolled in the study. The most common clinical findings were growth retardation, polyuria, and loss of appetite. None of the patients had the 57-kb deletion, but seven novel mutations were identified. The most common mutations identified were c.681G>A (p.Glu227Glu; 31%), c.1015G>A (p.Gly339Arg; 22%), and c.18_21 del (p.Thr7Phefs*7; 14%). These mutations were associated with earlier age of disease onset than the other mutations. To understand the effects of these allelic variants on clinical progression, the mutations were categorized into two major groups (missense versus deletion/duplication/splice site). Although patients with missense mutations had a better eGFR at the last follow-up visit, the difference was not significant. Patients in whom treatment began at age <2 years old had later onset of ESRD (P=0.02). Time to ESRD did not differ between the patients with group 1 and group 2 mutations. CONCLUSIONS The most common cystinosis gene mutations identified in Turkey were c.681G>A (p.Glu227Glu), c.1015G>A (p.Gly339Arg), and c.18_21 del (p.Thr7Phefs*7). Patients with less severe cystinosis gene mutations tend to have better kidney outcome.
Collapse
Affiliation(s)
- Rezan Topaloglu
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sadeghipour F, Basiratnia M, Derakhshan A, Fardaei M. Mutation analysis of the CTNS gene in Iranian patients with infantile nephropathic cystinosis: identification of two novel mutations. Hum Genome Var 2017; 4:17038. [PMID: 28983406 PMCID: PMC5628181 DOI: 10.1038/hgv.2017.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 12/02/2022] Open
Abstract
Nephropathic cystinosis is an inherited lysosomal transport disorder caused by mutations in the CTNS gene that encodes for a lysosomal membrane transporter, cystinosin. Dysfunction in this protein leads to cystine accumulation in the cells of different organs. The accumulation of cystine in the kidneys becomes apparent with renal tubular Fanconi syndrome between 6 and 12 months of age and leads to renal failure in the first decade of life. The aim of this study was to analyze the CTNS mutations in 20 Iranian patients, from 20 unrelated families, all of whom were afflicted with infantile nephropathic cystinosis. In these patients, seven different mutant alleles were found, including two new mutations, c.517T>C; p.Y173H and c.492_515del, that have not been previously reported. In addition, we observed that c.681G>A, the common Middle Eastern mutation, was the most common mutation in our patients. Moreover, a new minisatellite or variable number of tandem repeat marker (KX499495) was identified at the CTNS gene. Seven different alleles were found for this marker, and its allele frequency and heterozygosity degree were calculated in cystinosis patients and healthy individuals.
Collapse
Affiliation(s)
- Forough Sadeghipour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Basiratnia
- Department of Pediatric Nephrology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Derakhshan
- Department of Pediatric Nephrology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Abstract
Cystinosis is a rare, autosomal-recessive genetic disorder. The kidneys are commonly involved, as there is cystinosin protein malfunction, and nephropathic cystinosis ensues. Although cardiac and vascular involvements are rare, we describe a unique case of aortic dissection in a 25-year-old female with cystinosis. We discuss the possible aetiologies of aortic dissection in this condition.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Over the past few decades, cystinosis, a rare lysosomal storage disorder, has evolved into a treatable metabolic disease. The increasing understanding of its pathophysiology has made cystinosis a prototype disease, delivering new insights into several fundamental biochemical and cellular processes. RECENT FINDINGS In this review, we aim to provide an overview of the latest advances in the pathogenetic, clinical, and therapeutic aspects of cystinosis. SUMMARY The development of alternative therapeutic monitoring strategies and new systemic and ocular cysteamine formulations might improve outcome of cystinosis patients in the near future. With the dawn of stem cell based therapy and new emerging gene-editing technologies, novel tools have become available in the search for a cure for cystinosis.
Collapse
|
40
|
Ghazi F, Hosseini R, Akouchekian M, Teimourian S, Ataei Kachoei Z, Otukesh H, Gahl WA, Behnam B. CTNS molecular genetics profile in a Persian nephropathic cystinosis population. Nefrologia 2017; 37:301-310. [PMID: 28238446 DOI: 10.1016/j.nefro.2016.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/18/2016] [Accepted: 11/22/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE In this report, we document the CTNS gene mutations of 28 Iranian patients with nephropathic cystinosis age 1-17 years. All presented initially with severe failure to thrive, polyuria, and polydipsia. METHODS Cystinosis was primarily diagnosed by a pediatric nephrologist and then referred to the Iran University of Medical Sciences genetics clinic for consultation and molecular analysis, which involved polymerase chain reaction (PCR) amplification to determine the presence or absence of the 57-kb founder deletion in CTNS, followed by direct sequencing of the coding exons of CTNS. RESULTS The common 57-kb deletion was not observed in any of the 28 Iranian patients. In 14 of 28 patients (50%), mutations were observed in exons 6 and 7. No mutation was detected in exon 5, and only one (3.6%) patient with cystinosis showed a previously reported 4-bp deletion in exon 3 of CTNS. Four patients (14.3%) had a previously reported mutation (c.969C>A; p.N323K) in exon 11, and five (18%) had novel homozygous deletions in exon 6 leading to premature truncation of the protein. These deletions included c.323delA; p.Q108RfsX10 in three individuals and c.257-258delCT; p.S86FfsX37 in two cases. Other frame-shift mutations were all novel homozygous single base pair deletion/insertions including one in CTNS exon 9 (c.661insT; p.V221CfsX6), and four (14.3%) in exon 4, i.e., c.92insG; p.V31GfsX28 in two and c.120delC; p.T40TfsX10 in two. In total, we identified eight previously reported mutations and eight novel mutations in our patients. The only detected splice site mutation (IVS3-2A>C) was associated with the insertion mutation in the exon 9. CONCLUSION This study, the first molecular genetic analysis of non-ethnic-specific Iranian nephropathic cystinosis patients, may provide guidance for molecular diagnostics of cystinosis in Iran.
Collapse
Affiliation(s)
- Farideh Ghazi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Rozita Hosseini
- Department of Pediatrics, Faculty of Medicine, Ali Asghar Children Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mansoureh Akouchekian
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zohreh Ataei Kachoei
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hassan Otukesh
- Department of Pediatrics, Faculty of Medicine, Ali Asghar Children Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - Babak Behnam
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Pediatrics, Faculty of Medicine, Ali Asghar Children Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran; Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| |
Collapse
|
41
|
Elmonem MA, Veys KR, Soliman NA, van Dyck M, van den Heuvel LP, Levtchenko E. Cystinosis: a review. Orphanet J Rare Dis 2016; 11:47. [PMID: 27102039 PMCID: PMC4841061 DOI: 10.1186/s13023-016-0426-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Cystinosis is the most common hereditary cause of renal Fanconi syndrome in children. It is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding for the carrier protein cystinosin, transporting cystine out of the lysosomal compartment. Defective cystinosin function leads to intra-lysosomal cystine accumulation in all body cells and organs. The kidneys are initially affected during the first year of life through proximal tubular damage followed by progressive glomerular damage and end stage renal failure during mid-childhood if not treated. Other affected organs include eyes, thyroid, pancreas, gonads, muscles and CNS. Leucocyte cystine assay is the cornerstone for both diagnosis and therapeutic monitoring of the disease. Several lines of treatment are available for cystinosis including the cystine depleting agent cysteamine, renal replacement therapy, hormonal therapy and others; however, no curative treatment is yet available. In the current review we will discuss the most important clinical features of the disease, advantages and disadvantages of the current diagnostic and therapeutic options and the main topics of future research in cystinosis.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium.,Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Koenraad R Veys
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation (CPNT), Faculty of Medicine, Cairo University, Cairo, Egypt.,EGORD, Egyptian group of orphan renal diseases, Cairo, Egypt
| | - Maria van Dyck
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium.,Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, UZ Herestraat 49-3000, Leuven, Belgium.
| |
Collapse
|
42
|
Gertsman I, Johnson WS, Nishikawa C, Gangoiti JA, Holmes B, Barshop BA. Diagnosis and Monitoring of Cystinosis Using Immunomagnetically Purified Granulocytes. Clin Chem 2016; 62:766-72. [PMID: 26980209 DOI: 10.1373/clinchem.2015.252494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/12/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cystine determination is a critical biochemical test for the diagnosis and therapeutic monitoring of the lysosomal storage disease cystinosis. The classical mixed-leukocyte cystine assay requires prompt specialized recovery/isolation following blood drawing, providing cystine concentrations normalized to total protein from assorted types of white blood cells, each with varying cystine content. METHODS We present a new workflow for cystine determination using immunomagnetic granulocyte purification, and new reference ranges established from 47 patient and 27 obligate heterozygote samples assayed. Samples were collected in acid-citrate dextrose tubes and their stability was proven to allow for overnight shipping before analysis. Cystine was quantified by LC-MS/MS. RESULTS The new method was reproducible (<15% root mean square error) and specific, assaying purified granulocytes from blood samples that no longer required immediate preparation and therefore allowing for up to 30 h before processing. There was a nearly a 2-fold increase in the therapeutic target (1.9 nmol half-cystine/mg protein) range, established using distributions of patient, obligate heterozygote, and control samples. The 2.5-97.5 percentile ranges (-2 SD to +2 SD around mean) for these cohorts were 0.67-6.05 nmol/mg protein for patients, 0.33-1.35 nmol/mg protein for obligate heterozygotes, and 0.09-0.35 nmol/mg protein for controls. CONCLUSIONS The intracellular cystine determination method using immunopurified granulocytes followed by LC-MS/MS analysis improves the inherent variability of mixed leukocyte analysis and eliminates the need for immediate sample preparation following blood draw.
Collapse
Affiliation(s)
- Ilya Gertsman
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Wynonna S Johnson
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Connor Nishikawa
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Jon A Gangoiti
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Bonnie Holmes
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Bruce A Barshop
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA.
| |
Collapse
|
43
|
Jaradat S, Al-Rababah B, Hazza I, Akl K, Saca E, Al-Younis D. Molecular analysis of the CTNS gene in Jordanian families with nephropathic cystinosis. Nefrologia 2015; 35:547-53. [DOI: 10.1016/j.nefro.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/10/2015] [Indexed: 10/22/2022] Open
|
44
|
Abstract
Patient samples play an important role in the study of inherited metabolic disorders. Open-access biorepositories distribute such samples. Unfortunately, not all clinically-characterized samples come with reliable genotype information. During studies directed toward population frequency assessments of cystinosis, a rare heritable disorder, we sequenced the CTNS gene from 14 cystinosis-related samples obtained from the Coriell Cell Repository. As a result, the disease genotypes of 7 samples were determined for the first time. The reported disease genotypes of 2 additional samples were found to be incorrect. Furthermore, we identified and experimentally confirmed a novel mutation, c.225 + 5G > A, which causes skipping of the 5th exon and is associated with infantile nephropathic cystinosis.
Collapse
Affiliation(s)
- Artem Zykovich
- Raptor Pharmaceutical Corp., 7 Hamilton Landing, Suite 100, Novato, CA 94949, USA
| | - Renee Kinkade
- Raptor Pharmaceutical Corp., 7 Hamilton Landing, Suite 100, Novato, CA 94949, USA
| | - Gary Royal
- Dow Pharmaceutical Inc., 1330 Redwood Way, Suite C, Petaluma, CA 94954, USA
| | - Todd Zankel
- Raptor Pharmaceutical Corp., 7 Hamilton Landing, Suite 100, Novato, CA 94949, USA
| |
Collapse
|
45
|
Verbitsky M, Sanna-Cherchi S, Fasel DA, Levy B, Kiryluk K, Wuttke M, Abraham AG, Kaskel F, Köttgen A, Warady BA, Furth SL, Wong CS, Gharavi AG. Genomic imbalances in pediatric patients with chronic kidney disease. J Clin Invest 2015; 125:2171-8. [PMID: 25893603 DOI: 10.1172/jci80877] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There is frequent uncertainty in the identification of specific etiologies of chronic kidney disease (CKD) in children. Recent studies indicate that chromosomal microarrays can identify rare genomic imbalances that can clarify the etiology of neurodevelopmental and cardiac disorders in children; however, the contribution of unsuspected genomic imbalance to the incidence of pediatric CKD is unknown. METHODS We performed chromosomal microarrays to detect genomic imbalances in children enrolled in the Chronic Kidney Disease in Children (CKiD) prospective cohort study, a longitudinal prospective multiethnic observational study of North American children with mild to moderate CKD. Patients with clinically detectable syndromic disease were excluded from evaluation. We compared 419 unrelated children enrolled in CKiD to multiethnic cohorts of 21,575 children and adults that had undergone microarray genotyping for studies unrelated to CKD. RESULTS We identified diagnostic copy number disorders in 31 children with CKD (7.4% of the cohort). We detected 10 known pathogenic genomic disorders, including the 17q12 deletion HNF1 homeobox B (HNF1B) and triple X syndromes in 19 of 419 unrelated CKiD cases as compared with 98 of 21,575 control individuals (OR 10.8, P = 6.1 × 10⁻²⁰). In an additional 12 CKiD cases, we identified 12 likely pathogenic genomic imbalances that would be considered reportable in a clinical setting. These genomic imbalances were evenly distributed among patients diagnosed with congenital and noncongenital forms of CKD. In the vast majority of these cases, the genomic lesion was unsuspected based on the clinical assessment and either reclassified the disease or provided information that might have triggered additional clinical care, such as evaluation for metabolic or neuropsychiatric disease. CONCLUSION A substantial proportion of children with CKD have an unsuspected genomic imbalance, suggesting genomic disorders as a risk factor for common forms of pediatric nephropathy. Detection of pathogenic imbalances has practical implications for personalized diagnosis and health monitoring in this population. TRIAL REGISTRATION ClinicalTrials.gov NCT00327860. FUNDING This work was supported by the NIH, the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute.
Collapse
|
46
|
Common mutation causes cystinosis in the majority of black South African patients. Pediatr Nephrol 2015; 30:595-601. [PMID: 25326109 DOI: 10.1007/s00467-014-2980-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND The mutations responsible for cystinosis in South African patients are currently unknown. A pertinent question is whether they are similar to those described elsewhere in the world. METHODS Children who were being managed for cystinosis in the Western Cape Province of South Africa between 2002 and 2013 were studied. All underwent molecular analysis to detect sequence variations in the cystinosis gene. RESULTS This cohort study included 20 patients, 13 of whom were Xhosa-speaking black South Africans and seven were Cape Coloureds (mixed race); none were Caucasian. All had nephropathic infantile-type cystinosis with evidence of proximal tubulopathy, with glycosuria and renal phosphate wasting. Diagnosis was confirmed in 19 cases by demonstrating an elevated cystine concentration in leukocytes. Molecular analysis of the cystinosin gene revealed that 19 patients had a G > A mutation in intron 11 (CTNS-c.971-12G > A p.D324AfsX44) which caused an out-of-frame 10-bp insertion. Of these 19 patients, 16 were homozygous for this mutation, which was the most frequent mutation identified in the alleles of the black South African and Cape Coloured patients (96 and 71 %, respectively). CONCLUSION We recommend that black South African and Cape Coloured patients presenting with cystinosis be tested for CTNS-c.971-12G > A in the first instance, with the possibility of prenatal testing being offered to at-risk families.
Collapse
|
47
|
Kolot M, Malchin N, Elias A, Gritsenko N, Yagil E. Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther 2015; 22:521-7. [PMID: 25762284 DOI: 10.1038/gt.2015.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022]
Abstract
The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp crossover site or 'overlap' (O). We show that replacing O with a random 7 bp sequence supports Int-mediated site-specific recombination as long as the cognate and larger phage recombination site attP features an identical O sequence. This promiscuity allowed us to identify on the human genome several native active secondary attB sites ('attB') with random overlaps that flank human deleterious mutations, raising the prospect of using such sites to cure the 'attB'-flanked mutations by Int-catalyzed RMCE (recombinase-mediated cassette exchange) reactions. An analysis of such active and inactive 'attB's suggested a minimal 14-15 bp attB consensus sequence (instead of the 21 bp) with a reduced 3 bp palindrome.
Collapse
Affiliation(s)
- M Kolot
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - N Malchin
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - A Elias
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - N Gritsenko
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - E Yagil
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
48
|
Shams F, Livingstone I, Oladiwura D, Ramaesh K. Treatment of corneal cystine crystal accumulation in patients with cystinosis. Clin Ophthalmol 2014; 8:2077-84. [PMID: 25336909 PMCID: PMC4199850 DOI: 10.2147/opth.s36626] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystinosis is a rare autosomal recessive disorder characterized by the accumulation of cystine within the cells of different organs. Infantile nephropathic cystinosis is the most common and severe phenotype. With the success of renal transplantation, these patients are now living longer and thus more long-term complications within different organs are becoming apparent. Ophthalmic manifestations range from corneal deposits of cystine crystals to pigmentary retinopathy. With increasing age, more severe ocular complications have been reported. Photophobia is a prominent symptom for patients. With prolonged survival and increasing age, this symptom, along with corneal erosions and blepharospasm, can become debilitating. This review revisits the basic pathogenesis of cystinosis, the ocular manifestations of the disease, and the treatment of corneal crystals.
Collapse
Affiliation(s)
- Fatemeh Shams
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| | - Iain Livingstone
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| | - Dilys Oladiwura
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| | - Kanna Ramaesh
- Department of Ophthalmology, Gartnavel General Hospital, Glasgow, Scotland
| |
Collapse
|
49
|
The impact of chromosomal microarray on clinical management: a retrospective analysis. Genet Med 2014; 16:657-64. [PMID: 24625444 DOI: 10.1038/gim.2014.18] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/31/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Chromosomal microarray has been widely adopted as the first-tier clinical test for individuals with multiple congenital anomalies, developmental delay, intellectual disability, and autism spectrum disorders. Although chromosomal microarray has been extensively shown to provide a higher diagnostic yield than conventional cytogenetic methods, some health insurers refuse to provide coverage for this test, claiming that it is experimental and does not affect patients' clinical management. METHODS We retrospectively reviewed the electronic medical records of all patients who had abnormal chromosomal microarray findings reported by our laboratory over a 3-year period and quantified the management recommendations made in response to these results. RESULTS Abnormal chromosomal microarray findings were reported for 12.7% of patients (227/1,780). For patients with clinical follow-up notes available, these results had management implications for 54.5% of patients in the entire abnormal cohort (102/187) and for 42.1% of patients referred for isolated neurodevelopmental disorders (16/38). Recommendations included pharmacological treatment, cancer-related screening or exclusion of screening, contraindications, and referrals for further evaluation. CONCLUSION These results empirically demonstrate the clinical utility of chromosomal microarray by providing evidence that management was directly affected for the majority of patients in our cohort with abnormal chromosomal microarray findings.
Collapse
|
50
|
Soliman NA, Elmonem MA, van den Heuvel L, Abdel Hamid RH, Gamal M, Bongaers I, Marie S, Levtchenko E. Mutational Spectrum of the CTNS Gene in Egyptian Patients with Nephropathic Cystinosis. JIMD Rep 2014; 14:87-97. [PMID: 24464559 DOI: 10.1007/8904_2013_288] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Nephropathic cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene, encoding for cystinosin, a carrier protein transporting cystine out of lysosomes. Its deficiency leads to cystine accumulation and cell damage in multiple organs, especially in the kidney. In this study, we aimed to provide the first report describing the mutational spectrum of Egyptian patients with nephropathic cystinosis and their genotype-phenotype correlation. METHODS Fifteen Egyptian patients from 13 unrelated families with infantile nephropathic cystinosis were evaluated clinically, biochemically, and genetically. Screening for the common 57-kb deletion was performed by standard multiplex PCR, followed by direct sequencing of the ten coding exons, exon-intron interfaces, and promoter region. RESULTS None of the 15 Egyptian patients had the 57-kb deletion. Twenty-seven mutant alleles and 12 pathogenic mutations were detected including six novel mutations: two frameshift (c.260_261delTT; p.F87SfsX36, c.1032delCinsTG; p.F345CfsX19), one nonsense (c.734G>A; p.W245fsX), two missense (c.1084G>A; pG362R, c.560A>G; p.K187R), and one intronic splicing mutation (IVS3+5g>t). A novel promoter region mutation (1-593-41C>T) seemed to be detected but was excluded as a pathogenic mutation by quantitative real-time PCR analysis. CONCLUSIONS This study could be the basis for future genetic counseling and prenatal diagnosis of patients with nephropathic cystinosis in Egyptian and surrounding populations. The screening for the 57-kb deletion is not recommended anymore outside its geographical distribution, especially in the region of the Middle East. A common Middle Eastern mutation (c.681G>A; E227E) was pointed out and discussed.
Collapse
Affiliation(s)
- Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation (CPNT), Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|