1
|
Viñuela M, Sotomayor C, Morales E, Pérez M, Torres J, Barrera F, Martínez JA. An Incidental Finding of an Indigo-Blue Liver in a Patient With Dubin-Johnson Syndrome Confirmed via Genetic Testing. Cureus 2025; 17:e79505. [PMID: 40135020 PMCID: PMC11936098 DOI: 10.7759/cureus.79505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
We present the case of a 29-year-old female with chronic jaundice and a history of dyshidrosis, previously treated with cyclosporine. She also had hypertriglyceridemia managed with fibrates and was referred for evaluation of gallstone disease. Imaging confirmed gallstones without bile duct abnormalities. Laboratory tests revealed conjugated hyperbilirubinemia (total bilirubin: 3.0 mg/dL, direct bilirubin: 2.95 mg/dL). During laparoscopic cholecystectomy, a striking blue liver appearance was observed. A liver biopsy confirmed Dubin-Johnson syndrome (DJS). Genetic analysis revealed two pathogenic ABCC2 variants: c.2077G>A (p.Gly693Arg) and a novel mutation, c.513del (p.Tyr172Thrfs*6). This report highlights a rare "blue liver" presentation of DJS, thereby expanding the differential diagnosis of blue liver syndrome.
Collapse
Affiliation(s)
- Macarena Viñuela
- Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, CHL
| | - Camila Sotomayor
- Hepatobiliary and Pancreatic Surgery, Pontificia Universidad Católica de Chile, Santiago, CHL
| | - Emilio Morales
- Hepatobiliary and Pancreatic Surgery, Pontificia Universidad Católica de Chile, Santiago, CHL
| | - Miguel Pérez
- Pathology, Pontificia Universidad Católica de Chile, Santiago, CHL
| | - Javiera Torres
- Pathology, Pontificia Universidad Católica de Chile, Santiago, CHL
| | - Francisco Barrera
- Gastroenterology, Pontificia Universidad Católica de Chile, Santiago, CHL
| | - Jorge A Martínez
- Hepatobiliary and Pancreatic Surgery, Pontificia Universidad Católica de Chile, Santiago, CHL
| |
Collapse
|
2
|
Mao YX, Chen ZP, Wang L, Wang J, Zhou CZ, Hou WT, Chen Y. Transport mechanism of human bilirubin transporter ABCC2 tuned by the inter-module regulatory domain. Nat Commun 2024; 15:1061. [PMID: 38316776 PMCID: PMC10844203 DOI: 10.1038/s41467-024-45337-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.
Collapse
Affiliation(s)
- Yao-Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhi-Peng Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Wen-Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
3
|
Kim JH, Kang MW, Kim S, Han JW, Jang JW, Choi JY, Yoon SK, Sung PS. Genotype-Phenotype Association in ABCC2 Exon 18 Missense Mutation Leading to Dubin-Johnson Syndrome: A Case Report. Int J Mol Sci 2022; 23:ijms232416168. [PMID: 36555809 PMCID: PMC9781201 DOI: 10.3390/ijms232416168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
We report a case of a patient with Dubin-Johnson syndrome confirmed by a genetic study. A 50-year-old woman who had symptoms of intermittent right upper quadrant abdominal pain was diagnosed with calculous cholecystitis at another institute and was presented to our hospital for a cholecystectomy. She had no history of liver disease, and her physical examination was normal. Abdominal computed tomography showed a gallbladder stone with chronic cholecystitis. During a laparoscopic cholecystectomy for cholecystitis, a smooth, black-colored liver was noted, and a liver biopsy was performed. The biopsy specimen showed coarse, dark brown granules in centrilobular hepatocytes via hematoxylin and eosin staining. We performed a genetic study using the blood samples of the patient. In the adenosine triphosphate-binding cassette subfamily C member 2 (ABCC2) mutation study, a missense mutation in exon 18 was noted. Based on the black-colored liver without nodularity, conjugated hyperbilirubinemia, the liver biopsy results of the coarse pigment in centrilobular hepatocytes, and the ABCC2 mutation, Dubin-Johnson syndrome was diagnosed. The patient was managed with conservative care using hepatotonics. One month after follow-up, total bilirubin and direct bilirubin remained in a similar range. Another follow-up was planned a month later, and the patient maintained her use of hepatotonics.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Woo Kang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sangmi Kim
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence: ; Tel.: +82-2258-7534; Fax: +82-2-3481-4025
| |
Collapse
|
4
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Morais MB, Machado MV. Benign inheritable disorders of bilirubin metabolism manifested by conjugated hyperbilirubinemia-A narrative review. United European Gastroenterol J 2022; 10:745-753. [PMID: 35860851 PMCID: PMC9486497 DOI: 10.1002/ueg2.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. Hyperbilirubinemia is an important clinical sign that needs to be investigated under a stepwise evaluation. Inherited non-hemolytic conjugated hyperbilirubinemic conditions include Dubin-Johnson syndrome (caused by mutations affecting ABCC2 gene) and Rotor syndrome (caused by the simultaneous presence of mutations in SLCO1B1 and SLCO1B3 genes). Although classically viewed as benign conditions requiring no treatment, they lately gained an increased interest since recent studies suggested that mutations in the responsible genes leading to hyperbilirubinemia, as well as minor genetic variants, may result in an increased susceptibility to drug toxicity. This article provides a comprehensive review on the pathophysiology of Dubin-Johnson and Rotor syndromes, presenting the current knowledge concerning the molecular details and basis of these conditions.
Collapse
Affiliation(s)
- Mariana B Morais
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Gastroenterology Department, Hospital de Vila Franca de Xira, Lisbon, Portugal
| |
Collapse
|
6
|
Sharma P, Sharma S. In silico screening and analysis of single-nucleotide polymorphic variants of the ABCC2 gene affecting Dubin-Johnson syndrome. Arab J Gastroenterol 2022; 23:172-187. [PMID: 35477852 DOI: 10.1016/j.ajg.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND STUDY AIMS Dubin-Johnson syndrome (DJS) is a benevolent genetic disorder of the liver with autosomal inheritance. It is a rare disorder characterized by an increase in conjugated bilirubin and anomaly in coproporphyrin clearance. DJS is caused by deleterious mutations in the ABCC2 gene. A polymorphism in the ABCC2 gene causes malfunctions in its ability to regulate the efflux of different organic anions, such as bilirubin, from hepatocytes to the canaliculi. Multidrug resistance protein 2 (MRP2) encoded by the ABCC2 gene is one of the main regulators of the export of bilirubin to respective sites. ABCC2 gene mutations have widely drawn attention in the pathology of DJS in various populations. PATIENTS AND METHODS The ABCC2 gene was subjected to the National Center for Biotechnology Information (NCBI) database in 2020, and non-synonymous single-nucleotide polymorphisms (nsSNPs) and variants in untranslated regions were studied using different computational servers. SIFT, Protein variation effect analyzer, and PolyPhen-2 were used to retrieve the damaging Single-nucleotide polymorphisms (SNPs); PhD-SNP, SNPs&GO, and Protein Analysis Through Evolutionary Relationships were used to predict the association of nsSNPs with DJS; Mutation3D illustrated the location of variants in the protein; SNAP2, MutPred2, ELASPIC, and HOPE were used to predict the structural and functional effects of these mutations on MRP2; and I-mutant 3.0 and MuPro were used to determine the effects of polymorphism on the function of MRP2. RESULTS In this study, 18,947 SNPs were screened from the NCBI database, followed by a series of refinement of variants using online available servers. We concluded that 41 ABCC2 gene variants are vital etiological candidates for DJS in humans. These 41 variants had highly damaging effects on the MRP2 protein, which may lead to deficient transportation capacity, thereby affecting the efflux of bilirubin across the canalicular membrane. CONCLUSION In silico tools are an alternative approach for predicting the target SNPs. Hence, previously unreported variants can be considered strong etiological candidates for diseases related to MRP2.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India.
| |
Collapse
|
7
|
Khabou B, Hsairi M, Gargouri L, Miled N, Barbu V, Fakhfakh F. Characterization of a novel ABCC2 mutation in infantile Dubin Johnson syndrome. Clin Chim Acta 2021; 518:43-50. [PMID: 33713692 DOI: 10.1016/j.cca.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The Dubin Johnson Syndrome (DJS) occurs mostly in young adults but an early-onset of the disease has been reported in less common forms (Neonatal DJS and Infantile DJS). In this case, the clinical findings are of limit for the DJS diagnosis. Hence, the genetic testing remains the method of choice to provide an accurate diagnosis. In our study, we aimed to perform a genetic analysis for two siblings presented with an intrahepatic cholestasis before the age of 1 year to provide a molecular explanation for the developed phenotype. PATIENTS & METHODS A Tunisian family, having two siblings, manifesting signs of a hepatopathy, was enrolled in our study. A molecular analysis was performed, using a panel-based next generation sequencing, supplying results that were the subject of computational analysis. Then, a clinical follow-up was carried out to assess the evolution of the disease. RESULTS The genetic analysis revealed the presence of a novel missense c.4179G > T, (p.M1393I) mutation in ABCC2 gene associated with a substitution c.2789G > A (R930Q) in ATP8B1 gene. Predictive results consolidated the pathogenic effect of both variants. These results confirmed the DJS diagnosis in the studied patients. The clinical course of both patients fit well with the benign nature of DJS. CONCLUSION We described here a novel ABCC2 mutation associated with a putative ATP8B1 modifier variant. This finding constituted the first report of a complex genotype in DJS. Hence, genetic analysis by a panel-based next generation sequencing permits an accurate diagnosis and the identification of putative variants that could influence the developed phenotype.
Collapse
Affiliation(s)
- Boudour Khabou
- Laboratory of Molecular and Functional Genetics, Faculty of Science, University of Sfax, Tunisia.
| | - Manel Hsairi
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Lamia Gargouri
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Nabil Miled
- University of Jeddah, College of Science, Department of Biological Sciences, Saudi Arabia; University of Sfax, Higher Institute of Biotechnology, Unit of Plant Physiology and Functional Genomics, Sfax, Tunisia
| | - Véronique Barbu
- LCBGM, Medical Biology and Pathology Department, APHP, HUEP, St Antoine Hospital, & Sorbonne University, 75012 Paris, France
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science, University of Sfax, Tunisia.
| |
Collapse
|
8
|
Bezençon J, Saran C, Hussner J, Beaudoin JJ, Zhang Y, Shen H, Fallon JK, Smith PC, Meyer Zu Schwabedissen HE, Brouwer KLR. Endogenous Coproporphyrin I and III are Altered in Multidrug Resistance-Associated Protein 2-Deficient (TR -) Rats. J Pharm Sci 2021; 110:404-411. [PMID: 33058892 PMCID: PMC7767637 DOI: 10.1016/j.xphs.2020.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Recent studies have focused on coproporphyrin (CP)-I and CP-III (CPs) as endogenous biomarkers for organic anion transporting polypeptides (OATPs). Previous data showed that CPs are also substrates of multidrug resistance-associated protein (MRP/Mrp) 2 and 3. This study was designed to examine the impact of loss of Mrp2 function on the routes of excretion of endogenous CPs in wild-type (WT) Wistar compared to Mrp2-deficient TR- rats. To exclude possible confounding effects of rat Oatps, the transport of CPs was investigated in Oatp-overexpressing HeLa cells. Results indicated that CPs are substrates of rodent Oatp1b2, and that CP-III is a substrate of Oatp2b1. Quantitative targeted absolute proteomic (QTAP) analysis revealed no differences in Oatps, but an expected significant increase in Mrp3 protein levels in TR- compared to WT rat livers. CP-I and CP-III concentrations measured by LC-MS/MS were elevated in TR- compared to WT rat liver, while CP-I and CP-III estimated biliary clearance was decreased 75- and 840-fold in TR- compared to WT rats, respectively. CP-III concentrations were decreased 14-fold in the feces of TR- compared to WT rats, but differences in CP-I were not significant. In summary, the disposition of CPs was markedly altered by loss of Mrp2 and increased Mrp3 function as measured in TR- rats.
Collapse
Affiliation(s)
- Jacqueline Bezençon
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Chitra Saran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, NJ, USA
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, NJ, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Kim KY, Kim TH, Seong MW, Park SS, Moon JS, Ko JS. Mutation spectrum and biochemical features in infants with neonatal Dubin-Johnson syndrome. BMC Pediatr 2020; 20:369. [PMID: 32758197 PMCID: PMC7404915 DOI: 10.1186/s12887-020-02260-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/27/2020] [Indexed: 01/06/2023] Open
Abstract
Background Dubin-Johnson syndrome (DJS) is an autosomal recessive disorder presenting as isolated direct hyperbilirubinemia.DJS is rarely diagnosed in the neonatal period. The purpose of this study was to clarify the clinical features of neonatal DJS and to analyze the genetic mutation of adenosine triphosphate-binding cassette subfamily C member 2 (ABCC2). Methods From 2013 to 2018, 135 infants with neonatal cholestasis at Seoul National University Hospital were enrolled. Genetic analysis was performed by neonatal cholestasis gene panel. To clarify the characteristics of neonatal DJS, the clinical and laboratory results of 6 DJS infants and 129 infants with neonatal cholestasis from other causes were compared. Results A total of 8 different ABCC2 variants were identified among the 12 alleles of DJS. The most common variant was p.Arg768Trp (33.4%), followed by p.Arg100Ter (16.8%). Three novel variants were identified (p.Gly693Glu, p.Thr394Arg, and p.Asn718Ser). Aspartate transaminase (AST) and alanine transaminase (ALT) levels were significantly lower in infants with DJS than in infants with neonatal cholestasis from other causes. Direct bilirubin and total bilirubin were significantly higher in the infants with DJS. Conclusions We found three novel variants in 6 Korean infants with DJS. When AST and ALT levels are normal in infants with neonatal cholestasis, genetic analysis of ABCC2 permits an accurate diagnosis.
Collapse
Affiliation(s)
- Kwang Yeon Kim
- Department of Pediatrics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, 110-769, Seoul, Korea
| | - Tae Hyeong Kim
- Department of Pediatrics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, 110-769, Seoul, Korea
| | - Moon-Woo Seong
- Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, 110-769, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, 110-769, Seoul, Korea.
| |
Collapse
|
10
|
Corpechot C, Barbu V, Chazouillères O, Broué P, Girard M, Roquelaure B, Chrétien Y, Dong C, Lascols O, Housset C, Jéru I. Genetic contribution of ABCC2 to Dubin-Johnson syndrome and inherited cholestatic disorders. Liver Int 2020; 40:163-174. [PMID: 31544333 DOI: 10.1111/liv.14260] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The ABCC2 gene is implicated in Dubin-Johnson syndrome (DJS), a rare autosomal recessive liver disorder. The primary aim of this study was to determine the diagnostic value of ABCC2 genetic testing in the largest cohort of DJS reported to date. The high number of patients with cholestatic manifestations in this series prompted us to evaluate the genetic contribution of rare, potentially pathogenic ABCC2 variants to other inherited cholestatic disorders. METHODS The cohort study included 32 patients with clinical DJS diagnosis, and 372 patients referred for the following disorders: low phospholipid-associated cholelithiasis (LPAC) syndrome, intrahepatic cholestasis of pregnancy (ICP) and benign recurrent intrahepatic cholestasis (BRIC). ABCC2 was screened by next-generation sequencing. RESULTS Most patients with clinical DJS had positive genetic diagnosis (n = 30; 94%), with a great diversity of point mutations and copy number variations in ABCC2. Strikingly, eight (27%) of these patients showed transient cholestatic features at presentation: four neonatal cholestasis, two ICP, one contraceptive-induced cholestasis and one sporadic cholestasis. Conversely, the frequency of rare, heterozygous, potentially pathogenic ABCC2 variants in patients with LPAC, ICP or BRIC did not differ significantly from that of the general population. CONCLUSIONS This large series reveals that DJS is a highly homogeneous Mendelian disorder involving a large spectrum of ABCC2 variants. Genetic testing is crucial to establish early DJS diagnosis in patients with atypical presentations, such as neonatal cholestasis. This study also provides no evidence for the contribution of rare, potentially pathogenic ABCC2 variants to other inherited cholestatic disorders.
Collapse
Affiliation(s)
- Christophe Corpechot
- Centre de Référence des Maladies Inflammatoires des Voies Biliaires et des Hépatites Auto-Immunes (MIVB-H), Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte (FILFOIE), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France.,INSERM, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Véronique Barbu
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France.,Laboratoire Commun de Biologie et Génétique Moléculaires, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Olivier Chazouillères
- Centre de Référence des Maladies Inflammatoires des Voies Biliaires et des Hépatites Auto-Immunes (MIVB-H), Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte (FILFOIE), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France.,INSERM, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Pierre Broué
- Centres de compétences maladies rares du foie de l'enfant et Centre de référence constitutif maladies héréditaires du métabolisme, Hépatologie Pédiatrique et Maladies Héréditaires du Métabolisme, Hôpitaux de Toulouse, Hôpital des Enfants, Toulouse, France
| | - Muriel Girard
- Service d'Hépato-Gastroentérologie et Nutrition Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France.,INSERM U1151, Institut Necker Enfants-Malades, Université Paris Descartes, Paris, France
| | - Bertrand Roquelaure
- Service d'Hépato-Gastroentérologie et Nutrition Pédiatrique, Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone Enfants, Marseille, France
| | - Yves Chrétien
- Centre de Référence des Maladies Inflammatoires des Voies Biliaires et des Hépatites Auto-Immunes (MIVB-H), Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte (FILFOIE), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Catherine Dong
- Centre de Référence des Maladies Inflammatoires des Voies Biliaires et des Hépatites Auto-Immunes (MIVB-H), Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte (FILFOIE), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Olivier Lascols
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France.,Laboratoire Commun de Biologie et Génétique Moléculaires, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Chantal Housset
- Centre de Référence des Maladies Inflammatoires des Voies Biliaires et des Hépatites Auto-Immunes (MIVB-H), Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte (FILFOIE), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France.,INSERM, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Isabelle Jéru
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France.,Laboratoire Commun de Biologie et Génétique Moléculaires, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
11
|
Li Y, Li Y, Yang Y, Yang WR, Li JP, Peng GX, Song L, Fan HH, Ye L, Xiong YZ, Wu ZJ, Zhou K, Zhao X, Jing LP, Zhang FK, Zhang L. Next generation sequencing reveals co-existence of hereditary spherocytosis and Dubin–Johnson syndrome in a Chinese gril: A case report. World J Clin Cases 2019; 7:3303-3309. [PMID: 31667183 PMCID: PMC6819282 DOI: 10.12998/wjcc.v7.i20.3303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hereditary spherocytosis (HS) is a hereditary disease of hemolytic anemia that occurs due to the erythrocyte membrane defects. Dubin–Johnson syndrome (DJS), which commonly results in jaundice, is a benign hereditary disorder of bilirubin clearance that occurs only rarely. The co-occurrence of HS and DJS is extremely rare. We recently diagnosed and treated a case of co-occurring HS and DJS.
CASE SUMMARY A 21-year-old female patient presented to our department because of severe jaundice, severe splenomegaly, and mild anemia since birth. We eventually confirmed the diagnosis of co-occurring DJS and HS by next generation sequencing (NGS). The treatment of ursodeoxycholic acid in combination with phenobarbital successfully increased hemoglobin and reduced total bilirubin and direct bilirubin.
CONCLUSION The routine application of NGS can efficiently render a definite diagnosis when inherited disorders are suspected.
Collapse
Affiliation(s)
- Yuan Li
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Yang Li
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Yang Yang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Wen-Rui Yang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Jian-Ping Li
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Guang-Xin Peng
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Lin Song
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Hui-Hui Fan
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Lei Ye
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - You-Zhen Xiong
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Zhi-Jie Wu
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Kang Zhou
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Xin Zhao
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Li-Ping Jing
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Feng-Kui Zhang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| | - Li Zhang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS and PUMC, Tianjin 300020, China
| |
Collapse
|
12
|
Arana MR, Altenberg GA. ATP-binding Cassette Exporters: Structure and Mechanism with a Focus on P-glycoprotein and MRP1. Curr Med Chem 2019; 26:1062-1078. [PMID: 29022498 DOI: 10.2174/0929867324666171012105143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Proteins that belong to the ATP-binding cassette superfamily include transporters that mediate the efflux of substrates from cells. Among these exporters, P-glycoprotein and MRP1 are involved in cancer multidrug resistance, protection from endo and xenobiotics, determination of drug pharmacokinetics, and the pathophysiology of a variety of disorders. OBJECTIVE To review the information available on ATP-binding cassette exporters, with a focus on Pglycoprotein, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. METHODS Evaluation of selected publications on the structure and function of ATP-binding cassette proteins. CONCLUSIONS Conformational changes on the nucleotide-binding domains side of the exporters switch the accessibility of the substrate-binding pocket between the inside and outside, which is coupled to substrate efflux. However, there is no agreement on the magnitude and nature of the changes at the nucleotide- binding domains side that drive the alternate-accessibility. Comparison of the structures of Pglycoprotein and MRP1 helps explain differences in substrate selectivity and the bases for polyspecificity. P-glycoprotein substrates are hydrophobic and/or weak bases, and polyspecificity is explained by a flexible hydrophobic multi-binding site that has a few acidic patches. MRP1 substrates are mostly organic acids, and its polyspecificity is due to a single bipartite binding site that is flexible and displays positive charge.
Collapse
Affiliation(s)
- Maite Rocío Arana
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario, Argentina
| | - Guillermo Alejandro Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6551, United States
| |
Collapse
|
13
|
Moinuddin O, Wood EH, Drenser KA. Adult Coats' Disease, Dubin-Johnson Syndrome, and the Search for Targeted Therapies. Ophthalmic Surg Lasers Imaging Retina 2019; 50:318-321. [PMID: 31100164 DOI: 10.3928/23258160-20190503-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022]
Abstract
Coats' disease is nonhereditary retinal vascular disorder characterized by telangiectatic retinal vessels with prominent aneurysmal changes and exudation. A conclusive etiology has not yet been determined. In this retrospective case report and literature review, a 64-year-old male with Dubin-Johnson syndrome presented with unilateral retinal vascular changes and exudation consistent with a diagnosis of adult Coats' disease. The authors conclude that patients with Dubin-Johnson syndrome carry mutations in a multidrug resistance associated protein (MRP). MRPs are also expressed in the retina, retinal pigment epithelium, and vascular endothelium, where they export toxins and metabolites, and may serve as a therapeutic target. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:318-321.].
Collapse
|
14
|
Meng LL, Qiu JW, Lin WX, Song YZ. [Clinical features and ABCC2 genotypic analysis of an infant with Dubin-Johnson syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019. [PMID: 30675866 DOI: 10.7499/j.issn.1008-8830.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dubin-Johnson syndrome (DJS) is an autosomal recessive disorder resulting from biallelic mutations of ABCC2 gene, with long-term or intermittent conjugated hyperbilirubinemia being the main clinical manifestation. This paper aims to report the clinical features and ABCC2 genotypes of an infant with DJS. A 9.5-month-old male infant was referred to the hospital due to abnormal liver function discovered over 9 months. The major clinical presentation was prolonged jaundice since neonatal period. A series of biochemistry analysis revealed markedly elevated total bilirubin, conjugated bilirubin and total bile acids. The patient had been managed in different hospitals, but the therapeutic effects were unsatisfactory due to undetermined etiology. Physical examination revealed jaundiced skin and sclera, and a palpable liver 3 cm below the right subcostal margin with medium texture. The spleen was not enlarged. Genetic analysis revealed a splice-site variant c.3988-2A>T and a nonsense variant c.3825C>G (p.Y1275X) in the ABCC2 gene of the infant, which were inherited from his mother and father respectively. The former had not been previously reported. Then ursodeoxycholic acid and phenobarbital were given orally. Half a month later, as a result, his jaundice disappeared and the biochemistry indices improved. However, the long-term outcome needs to be observed. Literature review revealed that neonates/infants with DJS presented with cholestatic jaundice soon after birth as the major clinical feature, and the ABCC2 variants exhibited marked heterogeneity.
Collapse
Affiliation(s)
- Lu-Lu Meng
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
15
|
Meng LL, Qiu JW, Lin WX, Song YZ. [Clinical features and ABCC2 genotypic analysis of an infant with Dubin-Johnson syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:64-70. [PMID: 30675866 PMCID: PMC7390169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 03/30/2024]
Abstract
Dubin-Johnson syndrome (DJS) is an autosomal recessive disorder resulting from biallelic mutations of ABCC2 gene, with long-term or intermittent conjugated hyperbilirubinemia being the main clinical manifestation. This paper aims to report the clinical features and ABCC2 genotypes of an infant with DJS. A 9.5-month-old male infant was referred to the hospital due to abnormal liver function discovered over 9 months. The major clinical presentation was prolonged jaundice since neonatal period. A series of biochemistry analysis revealed markedly elevated total bilirubin, conjugated bilirubin and total bile acids. The patient had been managed in different hospitals, but the therapeutic effects were unsatisfactory due to undetermined etiology. Physical examination revealed jaundiced skin and sclera, and a palpable liver 3 cm below the right subcostal margin with medium texture. The spleen was not enlarged. Genetic analysis revealed a splice-site variant c.3988-2A>T and a nonsense variant c.3825C>G (p.Y1275X) in the ABCC2 gene of the infant, which were inherited from his mother and father respectively. The former had not been previously reported. Then ursodeoxycholic acid and phenobarbital were given orally. Half a month later, as a result, his jaundice disappeared and the biochemistry indices improved. However, the long-term outcome needs to be observed. Literature review revealed that neonates/infants with DJS presented with cholestatic jaundice soon after birth as the major clinical feature, and the ABCC2 variants exhibited marked heterogeneity.
Collapse
Affiliation(s)
- Lu-Lu Meng
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
16
|
Overview: Role of Drug Transporters in Drug Disposition and Its Clinical Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:1-12. [PMID: 31571163 DOI: 10.1007/978-981-13-7647-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Absorption, distribution, and excretion of drugs are involved in drug transport across plasma membrane, most of which are mediated by drug transporters. These drug transporters are generally divided into solute carrier (SLC) family and ATP-binding cassette (ABC) family. These transporters not only mediate transport of therapeutic drugs across membrane but also transport various kinds of endogenous compounds. Thus besides being participated in disposal of drug and its clinical efficacy/toxicity, these transporters also play vital roles in maintaining cell homeostasis via regulating transport of endogenous compounds. This chapter will outline classification of drug transporters, their roles in drug disposal/drug response, and remote communication between tissues/organs.
Collapse
|
17
|
Enantioselective Drug Recognition by Drug Transporters. Molecules 2018; 23:molecules23123062. [PMID: 30467304 PMCID: PMC6321737 DOI: 10.3390/molecules23123062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/16/2023] Open
Abstract
Drug transporters mediate the absorption, tissue distribution, and excretion of drugs. The cDNAs of P-glycoprotein, multidrug resistance proteins (MRPs/ABCC), breast cancer resistance protein (BCRP/ABCG2), peptide transporters (PEPTs/SLC15), proton-coupled folate transporters (PCFT/SLC46A1), organic anion transporting polypeptides (OATPs/SLCO), organic anion transporters (OATs/SLC22), organic cation transporters (OCTs/SLC22), and multidrug and toxin extrusions (MATEs/SLC47) have been isolated, and their functions have been elucidated. Enantioselectivity has been demonstrated in the pharmacokinetics and efficacy of drugs, and is important for elucidating the relationship with recognition of drugs by drug transporters from a chiral aspect. Enantioselectivity in the transport of drugs by drug transporters and the inhibitory effects of drugs on drug transporters has been summarized in this review.
Collapse
|
18
|
Yoshikado T, Toshimoto K, Maeda K, Kusuhara H, Kimoto E, Rodrigues AD, Chiba K, Sugiyama Y. PBPK Modeling of Coproporphyrin I as an Endogenous Biomarker for Drug Interactions Involving Inhibition of Hepatic OATP1B1 and OATP1B3. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:739-747. [PMID: 30175555 PMCID: PMC6263667 DOI: 10.1002/psp4.12348] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to establish a physiologically based pharmacokinetic (PBPK) model for coproporphyrin I (CP-I), a biomarker supporting the prediction of drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptide 1B (OATP1B), using clinical DDI data with an OATP1B inhibitor rifampicin (300 and 600 mg, orally). The in vivo inhibition constants of rifampicin used as initial input parameters for OATP1Bs (Ki,u,OATP1Bs ) and multidrug resistance-associated protein two-mediated biliary excretion were estimated as 0.23 and 0.87 μM, respectively, from previous reports. Sensitivity analysis demonstrated that the Ki,u,OATP1Bs and biosynthesis rate of CP-I affected the magnitude of the interaction. Ki,u,OATP1Bs values optimized by nonlinear least-squares fitting were ~0.5-fold of the initial value. It was determined that the blood concentration-time profiles of four statins were well-predicted using corrected individual Ki,u,OATP1B values (ratio of in vitro Ki,u(statin) /in vitro Ki,u(CP-I) ). In conclusion, PBPK modeling of CP-I supports dynamic prediction of OATP1B-mediated DDIs.
Collapse
Affiliation(s)
- Takashi Yoshikado
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan.,Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Emi Kimoto
- Transporter Sciences Group, ADME Sciences, Medicine Design, Pfizer, Groton, Connecticut, USA
| | - A David Rodrigues
- Transporter Sciences Group, ADME Sciences, Medicine Design, Pfizer, Groton, Connecticut, USA
| | - Koji Chiba
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
19
|
Jiang J, Wang HG, Wu WL, Peng XX. Mixed Dubin-Gilbert Syndrome: A Compound Heterozygous Phenotype of Two Novel Variants in ABCC2 Gene. Chin Med J (Engl) 2018; 130:1003-1005. [PMID: 28397734 PMCID: PMC5407029 DOI: 10.4103/0366-6999.204108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jun Jiang
- The Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua-Gui Wang
- The Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Li Wu
- The Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Xin Peng
- Department of Infectious Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
20
|
Liu N, Yang G, Hu M, Cai Y, Hu Z, Jia C, Zhang M. Association of ABCC2 polymorphism and gender with high-density lipoprotein cholesterol response to simvastatin. Pharmacogenomics 2018; 19:1125-1132. [PMID: 30024814 DOI: 10.2217/pgs-2018-0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: The clinical benefits of lipid-lowering therapy with statins are widely recognized. However, the lipid-lowering efficacy of statins shows significant differences between individuals. ABCC2 has been demonstrated to contribute to the transmembrane transport of the substrate compounds. The ABCC2 SNPs may be important factors that affect individual differences in clinical drug response. The aim of this study was to evaluate the association of rs717620 of ABCC2 with treatment response to simvastatin in a Chinese Han population. Methods: A total of 318 subjects were medicated with simvastatin 20 mg/day for 12 weeks after enrollment. Venous blood was obtained before and after simvastatin treatment for measurement of blood lipid profile. Subjects were classified into high-response and low-response groups depending on whether their lipid profile change was higher or lower than median change values. The ABCC2 SNP rs717620 was genotyped from blood samples with a snapshot assay. Results: A total of 12 weeks of treatment with simvastatin significantly decreased low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TGs) and significantly increased high-density lipoprotein cholesterol (HDL-C; p < 0.05). In multivariate analysis, there were no significant genetic effects of SNP rs717620 on the incidence of high- or low-response patients among TC, TG and LDL-C groups. However, rs717620 A-allele and female gender are significantly associated with the risk of low-response of HDL-C elevation after simvastatin treatment. Conclusion: ABCC2 rs717620 and female gender may be related to the low-effect of simvastatin treatment on the HDL-C level in the Chinese Han population. Female Chinese patients with hyperlipidemia carrying rs717620 GA/AA genotypes might have reduced benefit from simvastatin treatment.
Collapse
Affiliation(s)
- Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, PR China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
| | - Guihua Yang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, PR China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
| | - Mei Hu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, PR China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
| | - Yuyu Cai
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, PR China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
| | - Zhiying Hu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, PR China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
| | - Chundi Jia
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, PR China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, PR China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
21
|
New ABCC2 rs3740066 and rs2273697 Polymorphisms Identified in a Healthy Colombian Cohort. Pharmaceutics 2018; 10:pharmaceutics10030093. [PMID: 30018187 PMCID: PMC6160965 DOI: 10.3390/pharmaceutics10030093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance-associated proteins (MRP) 1 and 2 belong to the ABC (ATP-Binding Cassette) transporters. These transport proteins are involved in the removal of various drugs and xenobiotics, as well as in multiple physiological, pathological, and pharmacological processes. There is a strong correlation between different polymorphisms and their clinical implication in resistance to antiepileptic drugs, anticancer, and anti-infective agents. In our study, we evaluated exon regions of MRP1 (ABCC1)/MRP2 (ABCC2) in a Colombian cohort of healthy subjects to determine single nucleotide polymorphisms (SNPs) and to determine the allelic and genomic frequency. Results showed there are SNPs in our population that have been previously reported for both MRP1/ABCC1 (rs200647436, rs200624910, rs150214567) and MRP2/ABCC2 (rs2273697, rs3740066, rs142573385, rs17216212). Additionally, 13 new SNPs were identified. Evidence also shows a significant clinical correlation for polymorphisms rs3740066 and rs2273697 in the transport of multiple drugs, which suggests a genetic variability in regards to that reported in other populations.
Collapse
|
22
|
Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos 2018; 46:567-580. [PMID: 29514827 PMCID: PMC5896366 DOI: 10.1124/dmd.118.080663] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.
Collapse
Affiliation(s)
- Rebecca R Crawford
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Praveen K Potukuchi
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
23
|
Park JE, Ryoo G, Lee W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS JOURNAL 2017; 19:1643-1655. [DOI: 10.1208/s12248-017-0150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 01/18/2023]
|
24
|
Wen X, Joy MS, Aleksunes LM. In Vitro Transport Activity and Trafficking of MRP2/ABCC2 Polymorphic Variants. Pharm Res 2017; 34:1637-1647. [PMID: 28405913 PMCID: PMC5500460 DOI: 10.1007/s11095-017-2160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/04/2017] [Indexed: 04/21/2023]
Abstract
PURPOSE Multidrug resistance-associated protein 2 (MRP2/ABCC2) is an efflux pump that removes drugs and chemicals from cells. We sought to characterize the expression, trafficking and in vitro activity of seven single nucleotide polymorphisms (SNPs) in the ABCC2 gene. METHODS ABCC2 SNPs were generated using site-directed mutagenesis and stably expressed in Flp-In HEK293 cells, which allows targeted insertion of transgenes within the genome. Total and cell surface expression of MRP2 as well as accumulation of substrates (calcein AM and 5(6)-carboxy-2',7'-dichlorofluorescein diacetate, CDCF) were quantified in cells or inverted membrane vesicles expressing wild-type (WT) or variant forms. RESULTS The cell surface expression of the C-24T-, G1249A-, G3542T-, T3563A-, C3972T- and G4544A-MRP2 variants was similar to WT-MRP2. While expression was similar, transport of calcein AM was enhanced in cells expressing the G3542T-, T3563A-, C3972T-, and G4544A-MRP2 variants. By comparison, cells expressing the C2366T-MRP2 variant had 40-50% lower surface expression, which increased the accumulation of calcein AM up to 3-fold. Accumulation of CDCF in inverted membrane vesicles expressing the C2366T-MRP2 variant was also reduced by 50%. In addition, the G1249A-MRP2 variant had decreased transport of CDCF. CONCLUSIONS Taken together, these data demonstrate that genetic variability in the ABCC2 gene influences the in vitro expression, trafficking, and transport activity of MRP2.
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, 80045, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
25
|
Wang L, Rubadue KJ, Alberts J, Bedwell DW, Ruterbories KJ. Development of a rapid and sensitive multiple reaction monitoring proteomic approach for quantification of transporters in human liver tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:356-363. [PMID: 28800539 DOI: 10.1016/j.jchromb.2017.07.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 01/23/2023]
Abstract
With increasing knowledge on the role of hepatic transporters in drug disposition, numerous efforts have been described to quantify the expression of human hepatic transporters. However, reported quantitative proteomic approaches often require long analysis times. Additionally, greater assay sensitivity is still necessary for less abundant transporters or limited quantity of samples (e.g. hepatocytes and liver tissue). In the present study, an LC-MS/MS method for rapid and simultaneous quantification of 12 hepatic transporters (BCRP, BSEP, MATE1, MRP2, MRP3, MRP4, NTCP, OATP1B1, 1B3, 2B1, OCT1, and P-gp) was developed. Using a high LC flow rate (1.5mL/min) and fast LC gradient (4min total cycle time), the run time was markedly reduced to 4min, which was much shorter than most previously published assays. Chromatographic separation was achieved using ACE UltraCore SuperC18 50mm×2.1mm 5-μm HPLC column. In addition, greater analytical sensitivity was achieved with both high LC flow rate/fast LC gradient and post-column infusion of ethylene glycol. The on-column LLOQ for signature peptides in this method ranged from 0.194 to 0.846 femtomoles. The impact of five protein solubilizers, including extraction buffer II of ProteoExtract Native Membrane Protein Extraction Kit, 3% (w/v) sodium deoxycholate, 20% (v/v) Invitrosol, 0.2% (w/v) RapiGest SF, and 10% (w/v) formamide on total membrane protein extraction and trypsin digestion was investigated. Sodium deoxycholate was chosen because of good total membrane protein extraction and trypsin digestion efficiency, as well as no significant MS interference. Good precision (within 15% coefficient of variation) and accuracy (within ±15% bias), and inter-day trypsin digestion efficiency (within 28% coefficient of variation) was observed for quality controls. This method can quantify human hepatic transporter expression in a high-throughput manner and due to the increased sensitivity can be used to investigate the down-regulation of hepatic transporter protein (e.g., different ethnic groups and liver disease patients).
Collapse
Affiliation(s)
- Li Wang
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States.
| | - Kasi J Rubadue
- Advanced Testing Laboratory, Cincinnati, OH, United States
| | - Jeffrey Alberts
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - David W Bedwell
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Kenneth J Ruterbories
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
26
|
Rodrigues AD, Taskar KS, Kusuhara H, Sugiyama Y. Endogenous Probes for Drug Transporters: Balancing Vision With Reality. Clin Pharmacol Ther 2017; 103:434-448. [DOI: 10.1002/cpt.749] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Affiliation(s)
- AD Rodrigues
- Pharmacokinetics; Dynamics & Metabolism, Medicine Design, Pfizer Inc.; Groton Connecticut USA
| | - KS Taskar
- Mechanistic Safety and Disposition; IVIVT, GlaxoSmithKline; Ware Hertfordshire UK
| | - H Kusuhara
- Laboratory of Molecular Pharmacokinetics; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
| | - Y Sugiyama
- RIKEN Innovation Center; Research Cluster for Innovation; RIKEN Kanagawa Japan
| |
Collapse
|
27
|
A Time-Dependent Model Describes Methotrexate Elimination and Supports Dynamic Modification of MRP2/ABCC2 Activity. Ther Drug Monit 2017; 39:145-156. [DOI: 10.1097/ftd.0000000000000381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Kotsampasakou E, Escher SE, Ecker GF. Linking organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3) interaction profiles to hepatotoxicity - The hyperbilirubinemia use case. Eur J Pharm Sci 2017; 100:9-16. [PMID: 28063966 DOI: 10.1016/j.ejps.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/26/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Hyperbilirubinemia is a pathological condition of excessive accumulation of conjugated or unconjugated bilirubin in blood. It has been associated with neurotoxicity and non-neural organ dysfunctions, while it can also be a warning of liver side effects. Hyperbilirubinemia can either be a result of overproduction of bilirubin due to hemolysis or dyserythropoiesis, or the outcome of impaired bilirubin elimination due to liver transporter malfunction or inhibition. There are several reports in literature that inhibition of organic anion transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) might lead to hyperbilirubinemia. In this study we created a set of classification models for hyperbilirubinemia, which, besides physicochemical descriptors, also include the output of classification models of human OATP1B1 and 1B3 inhibition. Models were based on either human data derived from public toxicity reports or animal data extracted from the eTOX database VITIC. The generated models showed satisfactory accuracy (68%) and area under the curve (AUC) for human data and 71% accuracy and 70% AUC for animal data. However, our results did not indicate strong association between OATP inhibition and hyperbilirubinemia, neither for humans nor for animals.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Sylvia E Escher
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Deng F, Sjöstedt N, Kidron H. The Effect of Albumin on MRP2 and BCRP in the Vesicular Transport Assay. PLoS One 2016; 11:e0163886. [PMID: 27706255 PMCID: PMC5051865 DOI: 10.1371/journal.pone.0163886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The ABC transporters multidrug resistance associated protein 2 (MRP2) and breast cancer resistance protein (BCRP) are of interest in drug development, since they affect the pharmacokinetics of several drugs. Membrane vesicle transport assays are widely used to study interactions with these proteins. Since albumin has been found to affect the kinetics of metabolic enzymes in similar membrane preparations, we investigated whether albumin affects the kinetic parameters of efflux transport. We found that albumin increased the Vmax of 5(6)-carboxy-2',7'-dichlorofluorescein (CDCF) and estradiol-17-β-D-glucuronide uptake into MRP2 vesicles in the presence of 0.1% bovine serum albumin (BSA) by 2 and 1.5-fold, respectively, while BSA increased Lucifer yellow uptake by 30% in BCRP vesicles. Km values increased slightly, but the change was not statistically significant. The effect of BSA on substrate uptake was dependent on the vesicle amount, while increasing BSA concentration did not significantly improve substrate uptake. These results indicate a minor effect of albumin on MRP2 and BCRP, but it should be considered if albumin is added to transporter assays for example as a solubilizer, since the effect may be substrate or transporter specific.
Collapse
Affiliation(s)
- Feng Deng
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
30
|
Kunikata J, Okada H, Itoh S, Kusaka T. Developmental characteristics of urinary coproporphyrin I/(I + III) ratio. Pediatr Int 2016; 58:974-978. [PMID: 26920082 DOI: 10.1111/ped.12965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/24/2016] [Accepted: 02/23/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND The ratio of urinary coproporphyrin (UCP) I to total urinary coproporphyrin I and III [UCP {I/(I + III)]] serves as a biomarker of the ATP-binding cassette, sub-family C, member 2 (ABCC2) function. The aim of this study was to clarify the characteristics of the developmental pattern of UCP [I/(I + III)] in order to estimate ABCC2 function in children, especially in the neonatal period, by measuring it throughout the entirety of childhood. METHOD Measurement of UCP [I/(I + III)] was done high-performance liquid chromatography, using urine samples collected from children from 1 day to 15 years old, involving one sample per child. Urine samples from children with liver and kidney disease and urinary tract infection were excluded. RESULTS UCP [I/(I + III)] varied widely in infants younger than 6 months old, and was ≥0.3 in 80% of the infants. In contrast, it decreased to <0.30, the lowest, at 1-2 years old. In the 0-6-month-old group, no significant correlation was noted between postnatal age and UCP [I/(I + III)], but a moderate inverse correlation was noted between corrected gestational age and UCP [I/(I + III)]. CONCLUSION UCP [I/(I + III)] is inversely correlated with corrected gestational age and is lowest at 1-2 years old. This suggests that ABCC2 activity is correlated with corrected gestational age and is highest at 1-2 years old.
Collapse
Affiliation(s)
- Jun Kunikata
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Hitoshi Okada
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Susumu Itoh
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
31
|
Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, Zhang Y, Humphreys WG, Marathe P, Lai Y. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. J Pharmacol Exp Ther 2016; 357:382-93. [PMID: 26907622 DOI: 10.1124/jpet.116.232066] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 03/08/2025] Open
Abstract
Inhibition of organic anion-transporting polypeptide (OATP)1B function can lead to serious clinical drug-drug interactions, thus a thorough evaluation of the potential for this type of interaction must be completed during drug development. Therefore, sensitive and specific biomarkers for OATP function that could be used in conjunction with clinical studies are currently in demand. In the present study, preclinical evaluations were conducted to characterize the suitability of coproporphyrins (CPs) I and III as markers of hepatic OATP functional activity. Active uptake of CPs I and III was observed in human embryonic kidney (HEK) 293 cells singly expressing human OATP1B1 (hOATP1B1), hOATP1B3, cynomolgus monkey OATP1B1 (cOATP1B1), or cOATP1B3, as well as human and monkey hepatocytes. Cyclosporin A (100 mg/kg, oral) markedly increased the area under the curve (AUC) plasma concentrations of CPs I and III by 2.6- and 5.2-fold, while rifampicin (15 mg/kg, oral) increased the AUCs by 2.7- and 3.6-fold, respectively. As the systemic exposure increased, the excretion of both isomers in urine rose from 1.6- to 4.3-fold in monkeys. In agreement with this finding, the AUC of rosuvastatin (RSV) in cynomolgus monkeys increased when OATP1B inhibitors were coadministered. In Oatp1a/1b gene cluster knockout mice (Oatp1a/1b(-/-)), CPs in plasma and urine were significantly increased compared with wild-type animals (7.1- to 18.4-fold; P < 0.001), which were also in agreement with the changes in plasma RSV exposure (14.6-fold increase). We conclude that CPs I and III in plasma and urine are novel endogenous biomarkers reflecting hepatic OATP function, and the measurements have the potential to be incorporated into the design of early clinical evaluation.
Collapse
Affiliation(s)
- Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Jun Dai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Tongtong Liu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Weiqi Chen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yingru Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
32
|
|
33
|
Walsh DR, Nolin TD, Friedman PA. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins. Pharmacol Rev 2015; 67:656-80. [PMID: 26092975 PMCID: PMC4485015 DOI: 10.1124/pr.115.010728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na(+)/H(+) exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development.
Collapse
Affiliation(s)
- Dustin R Walsh
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Thomas D Nolin
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Peter A Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| |
Collapse
|
34
|
Report of new haplotype for ABCC2 gene: rs17222723 and rs8187718 in cis. J Mol Diagn 2014; 17:201-5. [PMID: 25554586 DOI: 10.1016/j.jmoldx.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022] Open
Abstract
The ATP-binding cassette, subfamily C [CFTR/MRP], member 2 (ABCC2) gene is a member of the ATP-binding cassette transporters and is involved in the transport of molecules across cellular membranes. Substrates transported by ABCC2 include antiepileptics, statins, tenofovir, cisplatin, irinotecan, and carbamazepine. Because of the pharmacogenomics implications, we developed a clinical laboratory-developed assay to test for seven variants in the ABCC2 gene: c.3563T>A (p.V1188E, rs17222723), c.1249G>A (p.V417I, rs2273697), c.3972C>T (p.I1324I, rs3740066), c.2302C>T (p.R768W, rs56199535), c.2366C>T (p.S789F, rs56220353), c.-24C>T (5'UTR, rs717620), and c.4544G>A (p.C1515Y, rs8187710). During the validation process, we noted several DNA samples, obtained from the Coriell Cell Repository, that contained both c.3563T>A, c.4544G>A, and a third variant, suggesting that c.3563T>A and c.4544G>A are in cis on the chromosome in some individuals. We obtained DNA samples from a trio (father, mother, and child), tested their ABCC2 variants, and confirmed that c.3563T>A and c.4544G>A were in cis on the same chromosome. Here, we report a new haplotype in ABCC2.
Collapse
|
35
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
36
|
Okada H, Kusaka T, Fuke N, Kunikata J, Kondo S, Iwase T, Nan W, Hirota T, Ieiri I, Itoh S. Neonatal Dubin-Johnson syndrome: novel compound heterozygous mutation in the ABCC2 gene. Pediatr Int 2014; 56:e62-4. [PMID: 25336012 DOI: 10.1111/ped.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/21/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
Dubin-Johnson syndrome (DJS) is an autosomal recessive inherited disorder characterized by conjugated hyperbilirubinemia. Neonatal-onset DJS is rare. It is caused by dysfunction of adenosine triphosphate-binding cassette, sub-family C, member 2 (ABCC2). We found a novel compound heterozygous mutation of DJS-related gene: W709R (T2145C): a missense mutation in exon 17, and R768W (C2302T), a missense mutation in exon 18. Serum diglucuronosyl bilirubin/monoglucuronosyl bilirubin ratio was high. ABCC2 may excrete diglucuronosyl bilirubin preferentially over monoglucuronosyl bilirubin.
Collapse
Affiliation(s)
- Hitoshi Okada
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang YJ, Zhang YK, Kathawala RJ, Chen ZS. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance. Cancers (Basel) 2014; 6:1925-52. [PMID: 25268163 PMCID: PMC4276951 DOI: 10.3390/cancers6041925] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.
Collapse
Affiliation(s)
- Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
38
|
Benz-de Bretagne I, Zahr N, Le Gouge A, Hulot JS, Houillier C, Hoang-Xuan K, Gyan E, Lissandre S, Choquet S, Le Guellec C. Urinary coproporphyrin I/(I + III) ratio as a surrogate for MRP2 or other transporter activities involved in methotrexate clearance. Br J Clin Pharmacol 2014; 78:329-42. [PMID: 24433481 PMCID: PMC4137825 DOI: 10.1111/bcp.12326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS The urinary coproporphyrin I/(I + III) ratio may be a surrogate for MRP2 activity. We conducted a prospective study in patients receiving methotrexate (MTX) to examine the relationship between this ratio and the pharmacokinetics of a MRP2 substrate. METHODS Three urine samples were collected from 81 patients for UCP I/(I + III) ratio determination: one before (P1), one at the end of MTX infusion (P2), and one on the day of hospital discharge (P3). Three polymorphisms of ABCC2 were analysed and their relationships with basal UCP I/(I + III) ratio values assessed. All associated drugs were recorded and a drug interaction score (DIS) was assigned. Population pharmacokinetic analysis was conducted to assess whether MTX clearance (MTXCL) was associated with the basal UCP I/(I + III) ratio, its variation during MTX infusion, the DIS or other common covariates. RESULTS The basal UCP I/(I + III) ratio was not associated with ABCC2 polymorphisms and did not differ according to the DIS. Significant changes in the ratio were observed over time, with an increase between P1 and P2 and a decrease at P3 (P < 0.001). No association was found between basal UCP I/(I + III) ratio and MTXCL. The final model indicates that MTXCL was dependent on the change in the ratio between P1 and P3, DIS and creatinine clearance. CONCLUSION The basal UCP I/(I + III) ratio is not predictive of MTXCL. However, it is sensitive to the presence of MTX, so it is plausible that it reflects a function modified in response to the drug.
Collapse
Affiliation(s)
- Isabelle Benz-de Bretagne
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de ToursTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéEA4245, Tours, France
| | - Noël Zahr
- Service de Pharmacologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
| | - Amélie Le Gouge
- CHRU de Tours, Centre d'investigation cliniqueTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéInserm 202, Tours, France
| | - Jean-Sébastien Hulot
- Service de Pharmacologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
- UPMC Université Paris 06UMR_S 956, Paris, France
| | - Caroline Houillier
- Service de Neurologie, CHU Pitié-Salpêtrière, Centre expert national LOCAP-HP, Paris, France
| | - Khe Hoang-Xuan
- Service de Neurologie, CHU Pitié-Salpêtrière, Centre expert national LOCAP-HP, Paris, France
| | - Emmanuel Gyan
- Service d'Hématologie et Thérapie Cellulaire, CHRU de ToursTours, France
| | - Séverine Lissandre
- Service d'Hématologie et Thérapie Cellulaire, CHRU de ToursTours, France
| | - Sylvain Choquet
- Service d'Hématologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
| | - Chantal Le Guellec
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de ToursTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéEA4245, Tours, France
| |
Collapse
|
39
|
Au A, Baba AA, Azlan H, Norsa'adah B, Ankathil R. Clinical impact of ABCC1 and ABCC2 genotypes and haplotypes in mediating imatinib resistance among chronic myeloid leukaemia patients. J Clin Pharm Ther 2014; 39:685-90. [PMID: 25060527 DOI: 10.1111/jcpt.12197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The introduction and success of imatinib mesylate (IM) has brought about a paradigm shift in chronic myeloid leukaemia (CML) treatment. However, despite the high efficacy of IM, clinical resistance develops due to a heterogeneous array of mechanisms. Pharmacogenetic variability as a result of genetic polymorphisms could be one of the most important factors influencing resistance to IM. The aim of this study was to investigate the association between genetic variations in drug efflux transporter ABCC1 (MRP1) and ABCC2 (MRP2) genes and response to IM in patients with CML. METHODS We genotyped 215 Malaysian patients with CML (comprising of two groups with 108 IM resistant and 107 IM responsive) for polymorphisms of ABCC1 (2012G>T and 2168G>A) and ABCC2 (-24C>T, 1249G>A and 3972C>T) genes. Genotype, allele and haplotype frequencies were compared between two groups of patients. Patients with CML were further stratified according to their clinical response to IM into those having cytogenetics and molecular responses, and the associations with genotypes were evaluated. RESULTS AND DISCUSSION We observed no significant differences in the distribution of any of the tested genotypes between the investigated groups. However, on evaluating the risk association, ABCC2 T₋₂₄ G₁₂₄₉ T₃₉₇₂ haplotype was found to be associated with IM resistance (P = 0·046). These results suggest that haplotype variants -24T and 3972T might be associated with lower expression of ABCC2 protein and reduced transport activity and hence might be contributing to development of IM resistance. WHAT IS NEW AND CONCLUSION Our results suggest the ABCC2 T₋₂₄ G₁₂₄₉ T₃₉₇₂ haplotype was associated with imatinib resistance. However, the evidence is as yet insufficient to establish this haplotype as a predictive biomarker for response to the drug.
Collapse
Affiliation(s)
- A Au
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | | | | | | |
Collapse
|
40
|
Keppler D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab Dispos 2014; 42:561-5. [PMID: 24459177 DOI: 10.1124/dmd.113.055772] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Increased concentrations of bilirubin glucuronides in blood plasma indicate hepatocellular dysfunction. Elucidation of the transport processes of bilirubin conjugates across the basolateral (sinusoidal) and the canalicular plasma membrane domains of hepatocytes has decisively contributed to our current understanding of the molecular basis of conjugated hyperbilirubinemia in human liver diseases. Under normal conditions, unconjugated bilirubin is taken up into hepatocytes by transporters of the organic anion-transporting polypeptide (OATP) family, followed by conjugation with glucuronic acid, and ATP-dependent transport into bile. This efflux across the canalicular membrane is mediated by multidrug resistance protein 2 (MRP2 or ABCC2), which is a 190-kDa glycoprotein transporting with high affinity and efficiency monoglucuronosyl bilirubin and bisglucuronosyl bilirubin into bile. MRP2 is hereditarily deficient in human Dubin-Johnson syndrome. Under pathophysiological conditions such as cholestatic liver injury and MRP2 inhibition, the basolateral efflux pump multidrug resistance protein 3 (MRP3 or ABCC3) is responsible for the occurrence of conjugated hyperbilirubinemia. MRP3 is a glycoprotein with a similar molecular mass as MRP2, with 48% amino acid identity, and with overlapping substrate specificity. Human MRP3 is the only basolateral efflux pump shown to transport bilirubin glucuronides. In human and rat hepatocytes, MRP3/Mrp3 is strongly upregulated under conditions of cholestasis and MRP2 deficiency. This is in line with the concept that basolateral efflux pumps of the hepatocyte compensate for impaired canalicular efflux of compounds into bile and contribute to balance the rate of uptake or synthesis of compounds in hepatocytes with the capacity for efflux into bile.
Collapse
|
41
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
42
|
Sticova E, Jirsa M. New insights in bilirubin metabolism and their clinical implications. World J Gastroenterol 2013; 19:6398-6407. [PMID: 24151358 PMCID: PMC3801310 DOI: 10.3748/wjg.v19.i38.6398] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/18/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023] Open
Abstract
Bilirubin, a major end product of heme breakdown, is an important constituent of bile, responsible for its characteristic colour. Over recent decades, our understanding of bilirubin metabolism has expanded along with the processes of elimination of other endogenous and exogenous anionic substrates, mediated by the action of multiple transport systems at the sinusoidal and canalicular membrane of hepatocytes. Several inherited disorders characterised by impaired bilirubin conjugation (Crigler-Najjar syndrome type I and type II, Gilbert syndrome) or transport (Dubin-Johnson and Rotor syndrome) result in various degrees of hyperbilirubinemia of either the predominantly unconjugated or predominantly conjugated type. Moreover, disrupted regulation of hepatobiliary transport systems can explain jaundice in many acquired liver disorders. In this review, we discuss the recent data on liver bilirubin handling based on the discovery of the molecular basis of Rotor syndrome. The data show that a substantial fraction of bilirubin conjugates is primarily secreted by MRP3 at the sinusoidal membrane into the blood, from where they are subsequently reuptaken by sinusoidal membrane-bound organic anion transporting polypeptides OATP1B1 and OATP1B3. OATP1B proteins are also responsible for liver clearance of bilirubin conjugated in splanchnic organs, such as the intestine and kidney, and for a number of endogenous compounds, xenobiotics and drugs. Absence of one or both OATP1B proteins thus may have serious impact on toxicity of commonly used drugs cleared by this system such as statins, sartans, methotrexate or rifampicin. The liver-blood cycling of conjugated bilirubin is impaired in cholestatic and parenchymal liver diseases and this impairment most likely contributes to jaundice accompanying these disorders.
Collapse
|
43
|
Chang JH, Plise E, Cheong J, Ho Q, Lin M. Evaluating the In Vitro Inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in Predicting Drug-Induced Hyperbilirubinemia. Mol Pharm 2013; 10:3067-75. [DOI: 10.1021/mp4001348] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jae H. Chang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Emile Plise
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Jonathan Cheong
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Quynh Ho
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Molly Lin
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| |
Collapse
|
44
|
Uchiumi T, Tanamachi H, Kuchiwaki K, Kajita M, Matsumoto S, Yagi M, Kanki T, Kang D. Mutation and functional analysis of ABCC2/multidrug resistance protein 2 in a Japanese patient with Dubin-Johnson syndrome. Hepatol Res 2013; 43:569-75. [PMID: 23045960 DOI: 10.1111/j.1872-034x.2012.01103.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 08/14/2012] [Accepted: 08/30/2012] [Indexed: 12/28/2022]
Abstract
Dubin-Johnson syndrome (DJS) is a recessive inherited disorder characterized by conjugated hyperbilirubinemia. It is caused by dysfunction of adenosine triphosphate-binding cassette, sub-family C, member 2 (ABCC2/MRP2) on the canalicular membrane of hepatocytes. We performed mutational analysis of the ABCC2/MRP2 gene in a Japanese female with DJS. Furthermore, we investigated the effects of the two identified DJS-associated mutations on MRP2 function. We found a compound heterozygous mutation in the patient: W709R (c.2124T>C), a missense mutation in exon 17, and R1310X (c.3928C>T), a nonsense mutation in exon 28. DJS-associated mutations have been shown to impair the protein maturation and transport activity of ABCC2/MRP2. We established HEK293 cell lines stably expressing one of the two identified DJS-associated mutations. Expressed W709R MRP2 was mainly core-glycosylated, predominantly retained in the endoplasmic reticulum, and exhibited no transport activity, suggesting that this mutation causes deficient maturation and impaired protein sorting. No MRP2 protein was expressed from HEK293 cells transfected with an R1310X-containing construct. This compound heterozygous mutation of the MRP2 gene causes dysfunction of the MRP2 protein and the hyperbilirubinemia seen in DJS.
Collapse
Affiliation(s)
- Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sticova E, Elleder M, Hulkova H, Luksan O, Sauer M, Wunschova-Moudra I, Novotny J, Jirsa M. Dubin-Johnson syndrome coinciding with colon cancer and atherosclerosis. World J Gastroenterol 2013; 19:946-50. [PMID: 23429660 PMCID: PMC3574894 DOI: 10.3748/wjg.v19.i6.946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/10/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Hyperbilirubinemia has been presumed to prevent the process of atherogenesis and cancerogenesis mainly by decreasing oxidative stress. Dubin-Johnson syndrome is a rare, autosomal recessive, inherited disorder characterized by biphasic, predominantly conjugated hyperbilirubinemia with no progression to end-stage liver disease. The molecular basis in Dubin-Johnson syndrome is absence or deficiency of human canalicular multispecific organic anion transporter MRP2/cMOAT caused by homozygous or compound heterozygous mutation(s) in ABCC2 located on chromosome 10q24. Clinical onset of the syndrome is most often seen in the late teens or early adulthood. In this report, we describe a case of previously unrecognized Dubin-Johnson syndrome caused by two novel pathogenic mutations (c.2360_2366delCCCTGTC and c.3258+1G>A), coinciding with cholestatic liver disease in an 82-year-old male patient. The patient, suffering from advanced atherosclerosis with serious involvement of coronary arteries, developed colorectal cancer with nodal metastases. The subsequent findings do not support the protective role of Dubin-Johnson type hyperbilirubinemia.
Collapse
|
46
|
Mirakhorli M, Rahman SA, Abdullah S, Vakili M, Rozafzon R, Khoshzaban A. Multidrug resistance protein 2 genetic polymorphism and colorectal cancer recurrence in patients receiving adjuvant FOLFOX-4 chemotherapy. Mol Med Rep 2012; 7:613-7. [PMID: 23232902 DOI: 10.3892/mmr.2012.1226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/25/2012] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 2 (MRP2), encoded by the ATP-binding cassette C2 (ABCC2) gene, is an efflux pump located on the apical membrane of many polarized cells, which transports conjugate compounds by an ATP-dependent mechanism. The correlation of G1249A ABCC2 polymorphism with the development of colorectal cancer (CRC) and poor prognosis was evaluated in patients who were treated with fluorouracil/-leucovorin (FL) plus oxaliplatin (FOLFOX-4). A total of 50 paraffin‑embedded tissue samples collected from CRC patients were analyzed to identify the polymorphism. Patients were in stage II/III and received postoperative FOLFOX-4 chemotherapy. As a control group, an equal number of unrelated healthy subjects were enrolled in the study. The polymorphism was genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, and results were compared with clinicopathological markers, early relapse and survival rates. During the 12 months of follow-up, local and distant recurrences were observed in 15 (30%) patients. No significant difference in the distribution of wild-type and polymorphic genotypes was observed between the patient and control groups and between the patients who experienced recurrence within 1 year and those who did not (all P>0.05). In conclusion, the G1249A polymorphism is not associated with CRC risk and early recurrence. However, significant correlation was observed between G1249A polymorphism and the overall survival and disease-free survival of the patients.
Collapse
Affiliation(s)
- Mojgan Mirakhorli
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | | | | | | | | | | |
Collapse
|
47
|
Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy. THE PHARMACOGENOMICS JOURNAL 2012; 13:507-13. [PMID: 23069858 DOI: 10.1038/tpj.2012.37] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/30/2012] [Accepted: 08/20/2012] [Indexed: 01/06/2023]
Abstract
Human multidrug resistance-related protein 2 (MRP2, encoded by ABCC2) is involved in the transport of anionic drugs such as methotrexate (MTX). We prospectively investigated the influence of four common ABCC2 genetic variants (rs717620, rs2273697, rs8187694 and rs8187710) on MTX pharmacokinetics parameters. MTX concentrations were monitored in 50 patients with lymphoid malignancy (27 males; mean age: 53±17 years) receiving high-dose MTX (5.13±1.88 g m(-)(2) in a 4-h perfusion). The population pharmacokinetics modelling showed that ABCC2 -24T allele (rs717620) had a combined influence on both MTX elimination and distribution. The MTX clearance and distribution volume were significantly higher in carriers of at least one copy of the -24T allele as compared with noncarriers: 8.6±2.2 vs 6.7± 2.5 l h(-1), P<0.01 and 30.7±7.7 vs 22.1±8.8 l, P<0.001, respectively. Consequently, -24T allele carriers were more prone to reach MTX nontoxic levels, 48 h after administration.
Collapse
|
48
|
Bosch TM, Doodeman VD, Smits PHM, Meijerman I, Schellens JHM, Beijnen JH. Pharmacogenetic Screening for Polymorphisms in Drug-Metabolizing Enzymes and Drug Transporters in a Dutch Population. Mol Diagn Ther 2012; 10:175-85. [PMID: 16771603 DOI: 10.1007/bf03256456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND A possible explanation for the wide interindividual variability in toxicity and efficacy of drug therapy is variation in genes encoding drug-metabolizing enzymes and drug transporters. The allelic frequency of these genetic variants, linkage disequilibrium (LD), and haplotype of these polymorphisms are important parameters in determining the genetic differences between patients. The aim of this study was to explore the frequencies of polymorphisms in drug-metabolizing enzymes (CYP1A1, CYP2C9, CYP2C19, CYP3A4, CYP2D6, CYP3A5, DPYD, UGT1A1, GSTM1, GSTP1, GSTT1) and drug transporters (ABCB1[MDR1] and ABCC2[MRP2]), and to investigate the LD and perform haplotype analysis of these polymorphisms in a Dutch population. METHODS Blood samples were obtained from 100 healthy volunteers and genomic DNA was isolated and amplified by PCR. The amplification products were sequenced and analyzed for the presence of polymorphisms by sequence alignment. RESULTS In the study population, we identified 13 new single nucleotide polymorphisms (SNPs) in Caucasians and three new SNPs in non-Caucasians, in addition to previously recognized SNPs. Three of the new SNPs were found within exons, of which two resulted in amino acid changes (A428T in CYP2C9 resulting in the amino acid substitution D143V; and C4461T in ABCC2 in a non-Caucasian producing the amino acid change T1476M). Several LDs and haplotypes were found in the Caucasian individuals. CONCLUSION In this Dutch population, the frequencies of 16 new SNPs and those of previously recognized SNPs were determined in genes coding for drug-metabolizing enzymes and drug transporters. Several LDs and haplotypes were also inferred. These data are important for further research to help explain the interindividual pharmacokinetic and pharmacodynamic variability in response to drug therapy.
Collapse
Affiliation(s)
- T M Bosch
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Association study of genetic polymorphisms of drug transporters, SLCO1B1, SLCO1B3 and ABCC2, in African-Americans, Hispanics and Caucasians and olmesartan exposure. J Hum Genet 2012; 57:531-44. [DOI: 10.1038/jhg.2012.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Nguyen TD, Markova S, Liu W, Gow JM, Baldwin RM, Habashian M, Relling MV, Ratain MJ, Kroetz DL. Functional characterization of ABCC2 promoter polymorphisms and allele-specific expression. THE PHARMACOGENOMICS JOURNAL 2012; 13:396-402. [PMID: 22664480 PMCID: PMC3435480 DOI: 10.1038/tpj.2012.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
Multidrug resistance protein 2 (MRP2, ABCC2) is an efflux membrane transporter highly expressed in liver, kidney and intestine with important physiological and pharmacological roles. The goal of this study was to investigate the functional significance of promoter region polymorphisms in ABCC2 and potential allele specific expression. Twelve polymorphisms in the 1.6 kb region upstream of the translation start site were identified by resequencing 247 DNA samples from ethnically diverse individuals. Luciferase reporter gene assays showed that ABCC2 -24C>T both alone and as part of a common haplotype (-24C>T/-1019A>G/-1549G>A) increased promoter function 35% compared to the reference sequence (P < 0.0001). No other common variants or haplotypes affected ABCC2 promoter activity. Allele specific expression was also investigated as a mechanism to explain reported associations of the synonymous ABCC2 3972C>T variant with pharmacokinetic phenotypes. In Caucasian liver samples (n=41) heterozygous for the 3972C>T polymorphism, the 3972C allele was preferentially transcribed relative to the 3972T allele (P < 0.0001). This allelic imbalance was particularly apparent in samples with haplotypes containing two or three promoter/UTR variants (-1549G>A, -1019A>G and -24C>T). The observed allelic imbalance was not associated with hepatic or renal ABCC2 mRNA expression. Additional mechanisms will need to be explored to account for the interindividual variation in ABCC2 expression and MRP2 function.
Collapse
Affiliation(s)
- T D Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|