1
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Midro AT, Panasiuk B, Stasiewicz-Jarocka B, Olszewska M, Wiland E, Myśliwiec M, Kurpisz M, Shaffer LG, Gajecka M. Recurrence risks for different pregnancy outcomes and meiotic segregation analysis of spermatozoa in carriers of t(1;11)(p36.22;q12.2). J Hum Genet 2014; 59:667-74. [PMID: 25319850 DOI: 10.1038/jhg.2014.92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/16/2023]
Abstract
Cumulative data obtained from two relatively large pedigrees of a unique reciprocal chromosomal translocation (RCT) t(1;11)(p36.22;q12.2) ascertained by three miscarriages (pedigree 1) and the birth of newborn with hydrocephalus and myelomeningocele (pedigree 2) were used to estimate recurrence risks for different pregnancy outcomes. Submicroscopic molecular characterization by fluorescent in situ hybridization (FISH) of RCT break points in representative carriers showed similar rearrangements in both families. Meiotic segregation patterns after sperm analysis by three-color FISH of one male carrier showed all possible outcomes resulting from 2:2 and 3:1 segregations. On the basis of empirical survival data, we suggest that only one form of chromosome imbalance resulting in monosomy 1p36.22→pter with trisomy 11q12.2→qter may be observed in progeny at birth. Segregation analysis of these pedigrees was performed by the indirect method of Stengel-Rutkowski and showed that probability rate for malformed child at birth due to an unbalanced karyotype was 3/48 (6.2±3.5%) after ascertainment correction. The risk for stillbirths/early neonatal deaths was -/48 (<1.1%) and for miscarriages was 17/48 (35.4±6.9%). However, the probability rate for children with a normal phenotype at birth was 28/48 (58.3±7.1%). The results obtained from this study may be used to determine the risks for the various pregnancy outcomes for carriers of t(1;11)(p36.22;q12.2) and can be used for genetic counseling of carriers of this rearrangement.
Collapse
Affiliation(s)
- Alina Teresa Midro
- Department of Clinical Genetics, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Panasiuk
- Department of Clinical Genetics, Medical University of Bialystok, Bialystok, Poland
| | | | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Myśliwiec
- Department of Clinical Genetics, Medical University of Bialystok, Bialystok, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Lisa G Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., Spokane, WA, USA
| | - Marzena Gajecka
- 1] Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland [2] Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Affiliation(s)
- Jayeeta Roy
- Assistant Professor, Department of Obstetrics & Gynaecology, College of Medicine and JNM Hospital , Kalyani, Nadia, India
| | | |
Collapse
|
4
|
Lahiry P, Wang J, Robinson JF, Turowec JP, Litchfield DW, Lanktree MB, Gloor GB, Puffenberger EG, Strauss KA, Martens MB, Ramsay DA, Rupar CA, Siu V, Hegele RA. A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am J Hum Genet 2009; 84:134-47. [PMID: 19185282 DOI: 10.1016/j.ajhg.2008.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/19/2008] [Accepted: 12/22/2008] [Indexed: 12/22/2022] Open
Abstract
Six infants in an Old Order Amish pedigree were observed to be affected with endocrine-cerebro-osteodysplasia (ECO). ECO is a previously unidentified neonatal lethal recessive disorder with multiple anomalies involving the endocrine, cerebral, and skeletal systems. Autozygosity mapping and sequencing identified a previously unknown missense mutation, R272Q, in ICK, encoding intestinal cell kinase (ICK). Our results established that R272 is conserved across species and among ethnicities, and three-dimensional analysis of the protein structure suggests protein instability due to the R272Q mutation. We also demonstrate that the R272Q mutant fails to localize at the nucleus and has diminished kinase activity. These findings suggest that ICK plays a key role in the development of multiple organ systems.
Collapse
Affiliation(s)
- Piya Lahiry
- Robarts Research Institute, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Weimer J, Cohen M, Wiedemann U, Heinrich U, Jonat W, Arnold N. Proof of partial imbalances 6q and 11q due to maternal complex balanced translocation analyzed by microdissection of multicolor labeled chromosomes (FISH-MD) in a patient with Dandy-Walker variant. Cytogenet Genome Res 2006; 114:235-9. [PMID: 16954659 DOI: 10.1159/000094206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/28/2005] [Indexed: 11/19/2022] Open
Abstract
We report on a family in which a daughter is described with mental retardation, as well as malformations of the heart, and of the brain (Dandy-Walker variant). The patient's phenotype suggests a chromosomal rearrangement. However, her karyotype was unremarkable by conventional cytogenetic analysis. In order to detect chromosome rearrangements overseen by this method, the subtelomere regions of suspicious chromosomes were verified by fluorescence in situ hybridization (FISH). A rearranged derivative chromosome 6 was identified. Further examinations by FISH-microdissection (FISH-MD) revealed a maternal complex balanced translocation. The patient inherited the derivative chromosome 6 from her mother and therefore carries a partial monosomy 6q26-->qter and a partial trisomy 11q23.3-->qter.
Collapse
Affiliation(s)
- J Weimer
- University Clinic Schleswig-Holstein, Campus Kiel, Clinic of Gynecology and Obstetrics, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Alexiev BA, Lin X, Sun CC, Brenner DS. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis. Arch Pathol Lab Med 2006; 130:1236-8. [PMID: 16879033 DOI: 10.5858/2006-130-1236-ms] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article provides an overview of the major pathologic manifestations of Meckel-Gruber syndrome, current knowledge about its pathogenesis, minimal diagnostic criteria, and differential diagnosis. Typical sonographic findings (occipital encephalocele, postaxial polydactyly, and cystic enlargement of the kidneys) allow for diagnosis of most cases before the 14th week of gestation, but the pathologist may encounter clinically unsuspected or atypical cases that require morphologic confirmation. In these cases, a meticulous autopsy is necessary to establish the diagnosis of Meckel-Gruber syndrome.
Collapse
Affiliation(s)
- Borislav A Alexiev
- Department of Pathology, University of Maryland Medical System, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
7
|
Cakir M, Mungan I, Makuloglu M, Okten A. Hydrocephalus with cleft lip and palate: an overlap between midline malformation syndromes. Indian J Pediatr 2006; 73:731-3. [PMID: 16936370 DOI: 10.1007/bf02898455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We present a male infant with hydrocephalus, cleft lip/palate, micrognathia, club foot, laryngeal stenosis and ostium secundum type atrial septal defect. The karyotype was 46 XY. The combination of malformations observed overlaps with the characteristic findings of hydrolethalus syndrome, Meckel syndrome, Smith-Lemli-Opitz syndrome and pseudotrisomy 13. We discussed the differential diagnosis of the case.
Collapse
Affiliation(s)
- Murat Cakir
- Department of Pediatrics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey.
| | | | | | | |
Collapse
|
8
|
Zhang W, Yi MJ, Chen X, Cole F, Krauss RS, Kang JS. Cortical thinning and hydrocephalus in mice lacking the immunoglobulin superfamily member CDO. Mol Cell Biol 2006; 26:3764-72. [PMID: 16648472 PMCID: PMC1489002 DOI: 10.1128/mcb.26.10.3764-3772.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CDO is a cell surface immunoglobulin superfamily member that positively regulates myogenic differentiation in vitro and in vivo and signals to posttranslationally activate myogenic basic helix-loop-helix (bHLH) transcription factors. The Cdo gene is also expressed in the dorsal aspect and midline structures of the developing central nervous system, and mice lacking CDO on the C57BL/6 background display holoprosencephaly with approximately 80% penetrance, resulting in perinatal lethality. We report here that a fraction of Cdo-/- mice from this background have additional defects in brain development, including hydrocephalus and cortical thinning. Primary neural progenitor cultures from E14.5 Cdo-/- mutants display reduced proliferation, which may underlie the thinning. The cortical preplate and cortices of mutant animals also show reduced staining for beta-tubulin III, indicating defective neuronal differentiation. CDO levels are strongly increased in cultured C17.2 neuronal precursor cells stimulated to differentiate; modulation of CDO levels in these cells by overexpression or interfering RNA approaches enhances or diminishes differentiation, respectively. Cotransfection of CDO enhances the activity of the neurogenic bHLH factor, neurogenin1, in reporter assays and enhances heterodimerization of neurogenin1 and E47. These results indicate that CDO promotes neuronal differentiation and support the hypothesis that CDO coordinates differentiation of multiple cell lineages by regulating the activity of tissue-specific bHLH factors.
Collapse
Affiliation(s)
- Wei Zhang
- Brookdale Department of Molecular, Cell, and Developmental Biology, Box 1020, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
9
|
Mee L, Honkala H, Kopra O, Vesa J, Finnilä S, Visapää I, Sang TK, Jackson GR, Salonen R, Kestilä M, Peltonen L. Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1. Hum Mol Genet 2005; 14:1475-88. [PMID: 15843405 DOI: 10.1093/hmg/ddi157] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrolethalus syndrome (HLS) is an autosomal recessive lethal malformation syndrome characterized by multiple developmental defects of fetus. We have earlier mapped and restricted the HLS region to a critical 1 cM interval on 11q23-25. The linkage disequilibrium (LD) and haplotype analyses of single nucleotide polymorphism (SNP) markers helped to further restrict the HLS locus to 476 kb between genes PKNOX2 and DDX25. An HLS associated mutation was identified in a novel regional transcript (GenBank accession no. FLJ32915), referred to here as the HYLS1 gene. The identified A to G transition results in a D211G change in the 299 amino acid polypeptide with unknown function. The HYLS1 gene shows alternative splicing and the transcript is found in multiple tissues during fetal development. In situ hybridization shows spatial and temporal distributions of transcripts in good agreement with the tissue phenotype of HLS patients. Immunostaining of in vitro expressed polypeptides from wild-type (WT) cDNA revealed cytoplasmic staining, whereas mutant polypeptides became localized in distinct nuclear structures, implying a disturbed cellular localization of the mutant protein. The Drosophila melanogaster model confirmed these findings and provides evidence for the significance of the mutation both in vitro and in vivo.
Collapse
Affiliation(s)
- Lisa Mee
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
An Autosome-Wide Scan for Linkage Disequilibrium–Based Association in Sporadic Breast Cancer Cases in Eastern Finland: Three Candidate Regions Found. Cancer Epidemiol Biomarkers Prev 2005. [DOI: 10.1158/1055-9965.75.14.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Breast cancer is the most common of cancers among women in industrialized countries. Many of breast cancer risk factors are known, but the majority of the genetic background is still unknown. Linkage disequilibrium–based association is a powerful tool for mapping disease genes and is suitable for mapping complex traits in founder populations. We report the results of a two-stage, autosome-wide scan for LD with breast cancer. Our aim was to identify genetic risk factors for sporadic breast cancer in an eastern Finnish population. Our case-control set is from the province of northern Savo in the late-settlement area of eastern Finland. This population is relatively young and genetically homogeneous. We used 435 autosomal microsatellite markers spaced by an average of 10 cM in a set of 49 breast cancer cases and 50 controls. In the first-stage scan, we found 21 markers in LD with breast cancer (Ps = 0.003-0.046, Fisher's exact test). In the second-stage scan with markers flanking 21 positive loci, four significant markers were found (Ps = 0.013-0.046, Fisher's exact test). Haplotype analysis using global score method with two, three, or four markers also revealed four positive marker combinations (simulated P for global score = 0.003-0.021). Our results suggest breast cancer–associated regions on 3p26, 11q23, and 22q13.1 in an eastern Finnish population.
Collapse
|
11
|
|
12
|
Abstract
It is increasingly recognized that mutations in genes and pathways critical for left-right (L-R) patterning are involved in common isolated congenital malformations such as congenital heart disease, biliary tract anomalies, renal polycystic disease, and malrotation of the intestine, indicating that disorders of L-R development are far more common than a 1 in 10,000 incidence of heterotaxia might suggest. Understanding L-R patterning disorders requires knowledge of molecular biology, embryology, pediatrics, and internal medicine and is relevant to day-to-day clinical genetics practice. We have reviewed data from mammalian (human and mouse) L-R patterning disorders to provide a clinically oriented perspective that might afford the clinician or researcher additional insights into this diagnostically challenging area.
Collapse
Affiliation(s)
- K Maclean
- Developmental Biology Program, Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | | |
Collapse
|
13
|
Kiyosawa H, Kawashima T, Silva D, Petrovsky N, Hasegawa Y, Sakai K, Hayashizaki Y. Systematic genome-wide approach to positional candidate cloning for identification of novel human disease genes. Intern Med J 2004; 34:79-90. [PMID: 15030454 DOI: 10.1111/j.1444-0903.2004.00581.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recent large-scale genome projects afford a unique opportunity to identify many novel disease genes and thereby better understand the genetic basis of human disease. Functional Annotation of Mouse (FANTOM) 2, the largest mouse transcriptome project yet, provides a wealth of data on novel genes, splice variants and non-coding RNA, and provides a unique opportunity to identify novel human disease genes. AIMS To demonstrate the power of combining the FANTOM 2 cDNA dataset with a positional candidate approach and bioinformatics analysis to identify genes underlying human genetic disease. RESULTS By mapping all FANTOM 2 cDNA to the human genome, we were able to identify mouse clones that co-localised on the human genome with mapped but uncloned human disease loci. By this method we identified mouse and corresponding human genes mapping within the loci of 100 different human genetic diseases (mapped interval of <5 cM). Of particular interest was the elucidation through FANTOM 2 novel mouse gene data of candidate human genes for the following: (i) developmental -disorders: neural tube defect, Meckel syndrome, Wolf--Hirschhorn syndrome and keratosis follicularis spinulosa decalvans cum ophiasi; (ii) neurological disorders: benign familial infantile convulsions 3, early-onset cerebellar ataxia with retained tendon reflexes, infantile-onset spinocerebellar ataxia and vacuolar neuro-myopathy and (iii) cancer-related syndromes: tylosis with oesophageal cancer and low-grade B-cell chronic lymphatic leukaemia. CONCLUSIONS The FANTOM 2 data will dramatically accelerate efforts to identify genes underlying human disease. It will also facilitate the creation of transgenic mouse models to help elucidate the function of potential human disease genes.
Collapse
Affiliation(s)
- H Kiyosawa
- Technology and Development team for Mammalian Cellular Dynamics, Bioresource Center, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Rakheja D, Cimo ML, Ramus RM, Rogers BB, Bennett MJ, Boyer PJ, Galindo RL. Hydrolethalus syndrome, in contrast to Smith-Lemli-Opitz syndrome, is not due to a defect in post-squalene cholesterol biosynthesis: A case report. ACTA ACUST UNITED AC 2004; 129A:212-3. [PMID: 15316965 DOI: 10.1002/ajmg.a.30190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Norio R. The Finnish Disease Heritage III: the individual diseases. Hum Genet 2003; 112:470-526. [PMID: 12627297 DOI: 10.1007/s00439-002-0877-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2002] [Accepted: 10/30/2002] [Indexed: 02/03/2023]
Abstract
This article is the third and last in a series entitled The Finnish Disease Heritage I-III. All the 36 rare hereditary diseases belonging to this entity are described for clinical and molecular genetic purposes, based on the Finnish experience gathered over a period of half a century. In addition, five other diseases are mentioned. They may be included in the list of the "Finnish diseases" after adequate complementary studies.
Collapse
Affiliation(s)
- Reijo Norio
- Department of Medical Genetics, The Family Federation of Finland, Helsinki, Finland.
| |
Collapse
|
16
|
Abstract
Genetic isolates, as shown empirically by the Finnish, Old Order Amish, Hutterites, Sardinian and Jewish communities among others, represent a most important and powerful tool in genetically mapping inherited disorders. The main features associated with that genetic power are the existence of multigenerational pedigrees which are mostly descended from a small number of founders a short number of generations ago, environmental and phenotypic homogeneity, restricted geographical distribution, the presence of exhaustive and detailed records correlating individuals in very well ascertained pedigrees, and inbreeding as a norm. On the other hand, the presence of a multifounder effect or admixture among divergent populations in the founder time (e.g. the Finnish and the Paisa community from Colombia) will theoretically result in increased linkage disequilibrium among adjacent loci. The present review evaluates the historical context and features of some genetic isolates with emphasis on the basic population genetic concepts of inbreeding and genetic drift, and also the state-of-the-art in mapping traits, both Mendelian and complex, on genetic isolates.
Collapse
Affiliation(s)
- M Arcos-Burgos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1852, USA
| | | |
Collapse
|
17
|
Shotelersuk V, Punyavoravud V, Phudhichareonrat S, Kukulprasong A. An Asian girl with a 'milder' form of the Hydrolethalus syndrome. Clin Dysmorphol 2001; 10:51-5. [PMID: 11152149 DOI: 10.1097/00019605-200101000-00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hydrolethalus syndrome is an autosomal recessive disorder characterized by hydrocephalus, micrognathia, limb anomalies and several other abnormalities, mostly in the midline structures. The syndrome was first described in Finland, where the incidence is approximately 1 in 20000. All of the Finnish patients were stillborn or died during the first day of life. Only three non-Finnish cases have survived beyond the neonatal period. Here, we report the first Oriental girl with a 'milder' form of hydrolethalus syndrome. The patient died at age 44 days making her the fourth reported case surviving beyond the neonatal period. The case supports the concept of a 'milder' form of the syndrome. Whether this spectrum is due to allelism or locus heterogeneity awaits molecular analysis.
Collapse
Affiliation(s)
- V Shotelersuk
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | |
Collapse
|