1
|
Nakkarach A, Foo HL, Song AAL, Mutalib NEA, Nitisinprasert S, Withayagiat U. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microb Cell Fact 2021; 20:36. [PMID: 33546705 PMCID: PMC7863513 DOI: 10.1186/s12934-020-01477-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Background Extracellular metabolites of short chain fatty acids (SCFA) excreted by gut microbiota have been reported to play an important role in the regulation of intestinal homeostasis. Apart from supplying energy, SCFA also elicit immune stimulation in animal and human cells. Therefore, an attempt was conducted to isolate SCFA producing bacteria from healthy human microbiota. The anti-cancer and anti-inflammatory effects of extracellular metabolites and individual SFCA were further investigated by using breast, colon cancer and macrophage cells. Toxin, inflammatory and anti-inflammatory cytokine gene expressions were investigated by RT-qPCR analyses in this study. Results Escherichia coli KUB-36 was selected in this study since it has the capability to produce seven SCFA extracellularly. It produced acetic acid as the main SCFA. It is a non-exotoxin producer and hence, it is a safe gut microbiota. The IC50 values indicated that the E. coli KUB-36 metabolites treatment elicited more potent cytotoxicity effect on MCF7 breast cancer cell as compared to colon cancer and leukemia cancer cells but exhibited little cytotoxic effects on normal breast cell. Furthermore, E. coli KUB-36 metabolites and individual SCFA could affect inflammatory responses in lipopolysaccharide-induced THP-1 macrophage cells since they suppressed inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α well as compared to the control, whilst inducing anti-inflammatory cytokine IL-10 expression. Conclusion SCFA producing E. coli KUB-36 possessed vast potential as a beneficial gut microbe since it is a non-exotoxin producer that exhibited beneficial cytotoxic effects on cancer cells and elicited anti-inflammatory activity simultaneously. However, the probiotic characteristic of E. coli KUB-36 should be further elucidated using in vivo animal models.![]()
Collapse
Affiliation(s)
- Atchareeya Nakkarach
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, 10900, Bangkok, Thailand
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Adelene Ai-Lian Song
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nur Elina Abdul Mutalib
- Agro-Biotechnology Institute, National Institutes of Biotechnology Malaysia, 43000 UPM, Serdang, Selangor, Malaysia
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, 10900, Bangkok, Thailand
| | - Ulaiwan Withayagiat
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, 10900, Bangkok, Thailand. .,Fermentation Technology Research Center, Faculty of Agro‑Industry, Kasetsart University, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
2
|
Nakkarach A, Foo HL, Song AAL, Nitisinprasert S, Withayagiat U. Promising discovery of beneficial Escherichia coli in the human gut. 3 Biotech 2020; 10:296. [PMID: 32550113 DOI: 10.1007/s13205-020-02289-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/01/2020] [Indexed: 01/03/2023] Open
Abstract
Ingested dietary fibres are hydrolysed by colon microbiota to produce energy-providing short-chain fatty acids (SCFA) that stimulate anti-inflammatory effects. SCFA-producing bacteria were screened from bacteria isolated from human faeces using bromothymol blue as an acid indicator and gas chromatography for SCFA profiling. The beneficial functions (antagonistic activity, haemolytic activities, antibiotic susceptibility, mucus adherent percentage and toxin gene detection) were evaluated for the top five SCFA-producing bacteria isolated from three healthy volunteers that identified as Escherichia coli strains. They produced acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acids at average concentrations of 15.9, 1.8, 1.1, 1.9, 1.8, 2.7 and 3.4 mM, respectively. The SCFA production by E. coli strains was rapidly increased during the first 8 h of incubation and gradually decreased after 16 h of incubation. All E. coli strains showed acid and bile tolerance, resulting in a survival rate greater than 70% with no haemolytic activity, mucus adherence greater than 40% and susceptibility to conventional antibiotics. Hence, the selected E. coli strains exhibited promising probiotic properties with neither enterotoxin nor LPS producibility was detected. The present results confirm the existence of friendly and harmless E. coli strains in human microbiota as potential probiotics.
Collapse
Affiliation(s)
- Atchareeya Nakkarach
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
- Department of Bioprocess, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Hooi Ling Foo
- Department of Bioprocess, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Adelene Ai-Lian Song
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
| | - Ulaiwan Withayagiat
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
- Fermentation Technology Research Center, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
3
|
Boisen N, Melton-Celsa AR, Scheutz F, O'Brien AD, Nataro JP. Shiga toxin 2a and Enteroaggregative Escherichia coli--a deadly combination. Gut Microbes 2015; 6:272-8. [PMID: 26039753 PMCID: PMC4615819 DOI: 10.1080/19490976.2015.1054591] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In 2011, a Shiga toxin (Stx) type 2a-producing enteroaggregative E. coli (EAEC) strain of serotype O104:H4 caused a large lethal outbreak in Northern Europe. Until recently, the pathogenic mechanisms explaining the high virulence of the strain have remained unclear. Our laboratories have shown that EAEC genes encoded on the pAA virulence plasmid, particularly the AggR-regulated AAF/I fimbriae, enhance inflammation and enable the outbreak strain to both adhere to epithelial cells and translocate Stx2a across the intestinal epithelium, possibly explaining the high incidence of the life threatening post-diarrheal sequelae of hemolytic uremic syndrome. Epidemiologic evidence supports a model of EAEC pathogenesis comprising the concerted action of multiple virulence factors along with induction of inflammation. Here, we suggest a model for the pathogenesis of the O104:H4 outbreak strain that includes contributions from EAEC alone, but incorporating additional injury induced by Stx2a.
Collapse
Affiliation(s)
- Nadia Boisen
- Statens Serum Institut; Department of Microbiology and Clinical Control; Copenhagen, Denmark,Correspondence to: Nadia Boisen;
| | - Angela R Melton-Celsa
- Statens Serum Institut; Department of Microbiology and Clinical Control; Copenhagen, Denmark
| | - Flemming Scheutz
- Statens Serum Institut; Department of Microbiology and Clinical Control; Copenhagen, Denmark
| | - Alison D O'Brien
- Department of Microbiology and Immunology; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - James P Nataro
- Department of Pediatrics; University of Virginia School of Medicine; Charlottesville, VA USA
| |
Collapse
|
4
|
Boisen N, Scheutz F, Rasko DA, Redman JC, Persson S, Simon J, Kotloff KL, Levine MM, Sow S, Tamboura B, Toure A, Malle D, Panchalingam S, Krogfelt KA, Nataro JP. Genomic characterization of enteroaggregative Escherichia coli from children in Mali. J Infect Dis 2011; 205:431-44. [PMID: 22184729 PMCID: PMC3256949 DOI: 10.1093/infdis/jir757] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background. Enteroaggregative Escherichia coli (EAEC) is a cause of epidemic and sporadic diarrhea, yet its role as an enteric pathogen is not fully understood. Methods. We characterized 121 EAEC strains isolated in 2008 as part of a case-control study of moderate to severe acute diarrhea among children 0–59 months of age in Bamako, Mali. We applied multiplex polymerase chain reaction and comparative genome hybridization to identify potential virulence factors among the EAEC strains, coupled with classification and regression tree modeling to reveal combinations of factors most strongly associated with illness. Results. The gene encoding the autotransporter protease SepA, originally described in Shigella species, was most strongly associated with diarrhea among the EAEC strains tested (odds ratio, 5.6 [95% confidence interval, 1.92–16.17]; P = .0006). In addition, we identified 3 gene combinations correlated with diarrhea: (1) a clonal group positive for sepA and a putative hemolysin; (2) a group harboring the EAST-1 enterotoxin and the flagellar type H33 but no other previously identified EAEC virulence factor; and (3) a group carrying several of the typical EAEC virulence genes. Conclusion. Our data suggest that only a subset of EAEC strains are pathogenic in Mali and suggest that sepA may serve as a valuable marker for the most virulent isolates.
Collapse
Affiliation(s)
- Nadia Boisen
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Persson S, Olsen KEP, Scheutz F, Krogfelt KA, Gerner-Smidt P. A method for fast and simple detection of major diarrhoeagenic Escherichia coli in the routine diagnostic laboratory. Clin Microbiol Infect 2007; 13:516-24. [PMID: 17331124 DOI: 10.1111/j.1469-0691.2007.01692.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multiplex PCR was developed for the detection of the following genes characteristic of diarrhoeagenic Escherichia coli (DEC): verocytotoxins 1 (vtx1) and 2 (vtx2), characteristic of verocytotoxin-producing E. coli (VTEC); intimin (eae), found in enteropathogenic E. coli (EPEC), attaching and effacing E. coli and VTEC; heat-stable enterotoxin (estA) and heat-labile enterotoxin (eltA), characteristic of enterotoxigenic E. coli (ETEC); and invasive plasmid antigen (ipaH), characteristic of enteroinvasive E. coli (EIEC) and Shigella spp. The method allowed the simultaneous identification of all six genes in one reaction, and included a 16S rDNA internal PCR control. When applied to pure cultures from a reference strain collection, all virulence genes in 124 different DEC strains and 15 Shigella spp. were identified correctly, and there were no cross-reactions with 13 non-E. coli species. The detection limit of the method was 10(2)-10(3) DEC CFU/PCR in the presence of 10(6) non-target cells. When the multiplex PCR was tested with colonies from plate cultures of clinical stool samples, it was a faster, more sensitive, less expensive and less laborious diagnostic procedure than DNA hybridisation. When used with DNA purified from spiked stool samples (by two different commercial kits), the method had a detection limit of 10(6) CFU/mL stool sample.
Collapse
Affiliation(s)
- S Persson
- Department of Bacteriology, Mycology and Parasitology, Unit of Gastrointestinal Infection, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
6
|
Hill DR, Ford L, Lalloo DG. Oral cholera vaccines: use in clinical practice. THE LANCET. INFECTIOUS DISEASES 2006; 6:361-73. [PMID: 16728322 DOI: 10.1016/s1473-3099(06)70494-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cholera continues to occur globally, particularly in sub-Saharan Africa and Asia. Oral cholera vaccines have been developed and have now been used for several years, primarily in traveller populations. The licensure in the European Union of a killed whole cell cholera vaccine combined with the recombinant B subunit of cholera toxin (rCTB-WC) has stimulated interest in protection against cholera. Because of the similarity between cholera toxin and the heat-labile toxin of Escherichia coli, a cause of travellers' diarrhoea, it has been proposed that the rCTB-WC vaccine may be used against travellers' diarrhoea. An analysis of trials of this vaccine against cholera (serotype O1) shows that for 4-6 months it will protect 61-86% of people living in cholera-endemic regions; lower levels of protection continue for 3 years. Protection wanes rapidly in young children. Because the risk of cholera for most travellers is extremely low, vaccination should be considered only for those working in relief or refugee settings or for those who will be travelling in cholera-epidemic areas and who will be unable to obtain prompt medical care. The vaccine can be expected to prevent 7% or less of cases of travellers' diarrhoea and should not be used for this purpose.
Collapse
Affiliation(s)
- David R Hill
- National Travel Health Network and Centre, London, UK.
| | | | | |
Collapse
|
7
|
Abstract
TD has not proved as preventable as hoped, despite knowing that it is transmitted mainly through food. Travelers have little ability to select restaurants based on the kitchen hygiene. The rates of TD in travelers to developing countries have not changed in the past 50 years, either because the dietary precautions they are taught are not effective or they cannot be adhered to in the course of a pleasurable vacation. Nonantibiotic prophylaxis with bismuth subsalicylate has the potential to prevent 40% to 60% of TD episodes in short-term travelers, and is probably underused. Antibiotic prophylaxis can prevent up to 90% of infections, but is not routinely recommended. Empiric treatment of TD has been the best approach to dealing with this problem, but its usefulness is being undermined by growing antibiotic resistance in many parts of the world. Fluoroquinolones are still the most useful agents where Campylobacter is not a predominant pathogen. Rifaximin may prove to be a useful addition to the options for treatment and prophylaxis. If used for treatment, it may require a backup antibiotic in areas where Campylobacter and Shigella are prominent pathogens.
Collapse
Affiliation(s)
- David R Shlim
- Jackson Hole Travel and Tropical Medicine, PO Box 40, Kelly, WY 83011, USA.
| |
Collapse
|