1
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
2
|
Ferguson SD, Srinivasan VM, Ghali MG, Heimberger AB. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope? Immunotherapy 2016; 8:413-23. [PMID: 26973123 DOI: 10.2217/imt.16.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.
Collapse
Affiliation(s)
- Sherise D Ferguson
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Michael Gz Ghali
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, 2900 Queen Lane, PA, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| |
Collapse
|
3
|
Hesse J, Ameres S, Besold K, Krauter S, Moosmann A, Plachter B. Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol 2012; 94:376-386. [PMID: 23100361 DOI: 10.1099/vir.0.045682-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) interferes with MHC class I-restricted antigen presentation and thereby reduces recognition by CD8(+) T-cells. This interference is mediated primarily by endoplasmic reticulum-resident glycoproteins that are encoded in the US2-11 region of the viral genome. Such a suppression of recognition would be of particular importance immediately after infection, because several immunodominant viral antigens are already present in the cell in this phase. However, which of the evasion proteins gpUS2-11 interfere(s) with antigen presentation to CD8(+) T-cells at this time of infection is not known. Here we address this question, using recombinant viruses (RV) that express only one of the immunoevasins gpUS2, gpUS3 or gpUS11. Infection with RV-US3 had only a limited impact on the presentation of peptides from the CD8(+) T-cell antigens IE1 and pp65 under immediate-early (IE) conditions imposed by cycloheximide/actinomycin D blocking. Unexpectedly, both RV-US2 and RV-US11 considerably impaired the recognition of IE1 and pp65 by CD8(+) T-cells, and both US2 and, to a lesser extent, US11 were transcribed under IE conditions. Thus, gpUS2 and gpUS11 are key effectors of MHC class I immunoevasion immediately after HCMV infection.
Collapse
Affiliation(s)
- Julia Hesse
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Besold
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that is prevalent in the human population. HCMV has recently been implicated in different cancer forms where it may provide mechanisms for oncogenic transformation, oncomodulation and tumour cell immune evasion. Moreover, antiviral treatment against HCMV has been shown to inhibit tumour growth in preclinical models. Here we describe the possible involvement of HCMV in cancer and discuss the potential molecular impact expression of HCMV proteins have on tumour cells and the surrounding tumour microenvironment.
Collapse
|
5
|
Soroceanu L, Cobbs CS, Colapietro P, Pileri P, Colleoni F, Avagliano L, Doi P, Bulfamante G, Miozzo M, Cetin I. Is HCMV a tumor promoter? Virus Res 2010; 157:193-203. [PMID: 21036194 DOI: 10.1016/j.virusres.2010.10.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a beta-herpesvirus that causes persistent infection in humans and can cause severe disease in fetuses and immunocompromised individuals. Although HCMV is not currently causally implicated in human cancer, emerging evidence suggests that HCMV infection and expression may be specifically associated with human malignancies including malignant glioma, colon, and prostate cancer. In addition, multiple investigators have demonstrated that HCMV can dysregulate signaling pathways involved in initiation and promotion of malignancy, including tumor suppressor, mitogenic signaling, inflammatory, immune regulation, angiogenesis and invasion, and epigenetic mechanisms. This review highlights some of the recent evidence that HCMV might play a role in modulating the tumor microenvironment as well as in the initiation and promotion of tumor cells themselves.
Collapse
Affiliation(s)
- Liliana Soroceanu
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA. liliana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mei B, Du K, Huo Z, Zou Y, Yu P. Discrepant effects of Chlamydia trachomatis infection on MICA expression of HeLa and U373 cells. INFECTION GENETICS AND EVOLUTION 2010; 10:740-5. [DOI: 10.1016/j.meegid.2010.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 04/02/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
|
7
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
8
|
Humar A, Kumar D, Gray M, Moussa G, Venkataraman S, Kumar R, Tipples GA. A prospective assessment of cytomegalovirus immune evasion gene transcription profiles in transplant patients with cytomegalovirus infection. Transplantation 2007; 83:1200-6. [PMID: 17496536 DOI: 10.1097/01.tp.0000261105.34233.4f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The cytomegalovirus (CMV) immune evasion genes US3, US6, and US11 may disrupt the host immune response via downregulation of major histocompatibility complex molecules. Transplant recipients with CMV infection were prospectively assessed for immune evasion gene expression. METHODS Seventy solid organ transplant patients with CMV infection who were given antiviral therapy were enrolled. Quantitative mRNA levels of US3, US6, and US11 were assessed using real-time polymerase chain reaction assays from peripheral blood mononuclear cells at regular time-points after starting therapy. RESULTS High immune evasion mRNA levels were detectable at start-of-therapy (median US3-4.5 log10 copies; US6- 3.7 log10 copies, and US11-3.3 log10 copies/10 cells). With therapy, immune evasion mRNA levels declined exponentially. For example, median calculated US3 half-life was 1.59 days (range 0.74-12.5 days). By day7, US3 mRNA was detectable in 55.7%, US6 in 38.6%, and US11 in 41.4% of patients. Early phase kinetics correlated with outcomes. When adjusted for baseline DNA level, there was a trend to higher mRNA levels in patients who relapsed. Also, detectable mRNA at day 14 after start of therapy was associated with virologic relapse after initial treatment (P<or=0.001 for US3, US6, and US11). For example, if US3 mRNA was still detectable at day 14, then risk of relapse was 84.2% vs. 29.4% if US3 mRNA not detectable at day 14 (P<0.001). This correlation was independent of the DNA viral load. CONCLUSION CMV immune evasion gene expression is detectable at high levels in patients with CMV infection and declines exponentially with therapy. Expression levels can be independently correlated with outcomes.
Collapse
Affiliation(s)
- Atul Humar
- Infectious Diseases, Microbiology, and Transplantation, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
9
|
Immunomodulatory therapy of cytomegalovirus pneumonia after liver transplantation. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200609010-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Hook CE, Telyatnikova N, Goodall JC, Braud VM, Carmichael AJ, Wills MR, Gaston JSH. Effects of Chlamydia trachomatis infection on the expression of natural killer (NK) cell ligands and susceptibility to NK cell lysis. Clin Exp Immunol 2004; 138:54-60. [PMID: 15373905 PMCID: PMC1809177 DOI: 10.1111/j.1365-2249.2004.02596.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cells are an important component of the immediate immune response to infections, including infection by intracellular bacteria. We have investigated recognition of Chlamydia trachomatis (CT) by NK cells and show that these cells are activated to produce interferon (IFN)-gamma when peripheral blood mononuclear cells (PBMC) are stimulated with CT organisms. Furthermore, infection of epithelial cell lines with CT renders them susceptible to lysis by human NK cells. Susceptibility was observed 18-24 h following infection and required protein synthesis by the infecting chlamydiae, but not by the host cell; heat or UV inactivated chlamydiae did not induce susceptibility to NK cell lysis. CT infection was also shown to decrease the expression of classical and non-classical major histocompatibility complex (MHC) molecules on infected cells, thus allowing recognition by NK cells when combined with an activating signal. A candidate activating signal is MICA/B, which was shown to be expressed constitutively on epithelial cells.
Collapse
Affiliation(s)
- C E Hook
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Mengoli C, Cusinato R, Biasolo MA, Cesaro S, Parolin C, Palù G. Assessment of CMV load in solid organ transplant recipients by pp65 antigenemia and real-time quantitative DNA PCR assay: Correlation with pp67 RNA detection. J Med Virol 2004; 74:78-84. [PMID: 15258972 DOI: 10.1002/jmv.20149] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After bone marrow (BM) or solid-organ (SO) transplantation viremic Cytomegalovirus (CMV) infection is observed frequently. Quantitative assay of CMV in blood helps the management of this clinical condition. In the present report, 83 samples from 39 solid organ recipients, three CMV assays were compared simultaneously for the first time: the Nuclisens CMV pp67 assay (nucleic acid sequence-based amplification, NASBA), an "in-house" quantitative real-time PCR assay (TaqMan) for CMV DNA, and pp65 antigenemia. The relation between CMV DNA and pp65 antigenemia, the quantitative assays, was evaluated on a larger group including 251 blood samples from 118 solid organ recipients. Real-time PCR provided the best results; > or =130 CMV DNA copies/2 x 10(5) peripheral blood leukocytes (PBLs) predicted > or =1 pp65 antigen positive (Ag+) cell/2 x 10(5) PBLs. By taking pp65 antigenemia as the "gold standard," the sensitivity of CMV DNA quantitation and of the pp67 RNA assay were 0.95 and 0.20, respectively, while the corresponding specificity values were 0.50 and 0.93. When real-time PCR was considered as the "gold standard," the sensitivity and specificity of the pp65 antigenemia were 0.65 and 0.91, respectively. Among the three tests examined, the sensitivity of the pp67 RNA assay was the lowest. On the other hand, the pp67 RNA assay was highly specific and effective in pinpointing high viremia patients. The present report, by providing predictive values for all three diagnostic profiles, DNA load, antigenemia, and pp67RNA, is a contribution for validation of real-time PCR as a new standard for quantitative assessment of CMV viremia in clinical settings.
Collapse
Affiliation(s)
- Carlo Mengoli
- Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche, Università di Padova, Padua, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev 2002. [PMID: 12364375 DOI: 10.1128/cmr.15.4.680-715,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection and mental retardation. HCMV infection, while causing asymptomatic infections in most immunocompetent subjects, can be transmitted during pregnancy from the mother with primary (and also recurrent) infection to the fetus. Hence, careful diagnosis of primary infection is required in the pregnant woman based on the most sensitive serologic assays (immunoglobulin M [IgM] and IgG avidity assays) and conventional virologic and molecular procedures for virus detection in blood. Maternal prognostic markers of fetal infection are still under investigation. If primary infection is diagnosed in a timely manner, prenatal diagnosis can be offered, including the search for virus and virus components in fetal blood and amniotic fluid, with fetal prognostic markers of HCMV disease still to be defined. However, the final step for definite diagnosis of congenital HCMV infection is detection of virus in the blood or urine in the first 1 to 2 weeks of life. To date, treatment of congenital infection with antiviral drugs is only palliative both prior to and after birth, whereas the only efficacious preventive measure seems to be the development of a safe and immunogenic vaccine, including recombinant, subunit, DNA, and peptide-based vaccines now under investigation. The following controversial issues are discussed in the light of the most recent advances in the field: the actual perception of the problem; universal serologic screening before pregnancy; the impact of correct counseling on decision making by the couple involved; the role of prenatal diagnosis in ascertaining transmission of virus to the fetus; the impact of preconceptional and periconceptional infections on the prevalence of congenital infection; and the prevalence of congenitally infected babies born to mothers who were immune prior to pregnancy compared to the number born to mothers undergoing primary infection during pregnancy.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To discuss biological and methodological aspects of virus infection monitoring in the renal transplant setting. RECENT FINDINGS New insights on the molecular pathogenesis of acute and persistent virus infections and rapid developments in real-time monitoring techniques are changing the current diagnostic routine. Accurate risk-assessment prior to transplantation and quantitative monitoring of parameters that reflect virus activity in the post-transplant period, including genome load fluctuations and aberrant viral mRNA or protein expression, provide early signs of undesired viral behaviour and allow pre-emptive therapeutic intervention. As opposed to prophylactic administration of antiviral drugs, a pre-emptive approach is more selective and will allow for antiviral immune responses to build, which may have a long-term beneficial effect. In addition, these virus-monitoring techniques allow for on-line assessment of therapeutic efficacy and rapid identification of emerging resistant strains. The combination of virus-monitoring techniques with rapid assessment of host immune responses using FACS and ELISPOT techniques, will improve overall patient management and long-term survival. SUMMARY Viral infections continue to be a significant complication in the transplant setting. Diagnostic monitoring allows timely and accurate therapeutic intervention. Knowledge of pathogenic mechanisms leading to disease is important for clinical decision making as well as for the selection of appropriate molecular parameters discriminating normal and disease-related activity of human pathogenic viruses. The increasing availability of effective antiviral drugs permits pre-emptive intervention that strongly depends on accurate viral monitoring procedures.
Collapse
Affiliation(s)
- Jaap M Middeldorp
- Department of Pathology, VU Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Revello MG, Gerna G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev 2002; 15:680-715. [PMID: 12364375 PMCID: PMC126858 DOI: 10.1128/cmr.15.4.680-715.2002] [Citation(s) in RCA: 391] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection and mental retardation. HCMV infection, while causing asymptomatic infections in most immunocompetent subjects, can be transmitted during pregnancy from the mother with primary (and also recurrent) infection to the fetus. Hence, careful diagnosis of primary infection is required in the pregnant woman based on the most sensitive serologic assays (immunoglobulin M [IgM] and IgG avidity assays) and conventional virologic and molecular procedures for virus detection in blood. Maternal prognostic markers of fetal infection are still under investigation. If primary infection is diagnosed in a timely manner, prenatal diagnosis can be offered, including the search for virus and virus components in fetal blood and amniotic fluid, with fetal prognostic markers of HCMV disease still to be defined. However, the final step for definite diagnosis of congenital HCMV infection is detection of virus in the blood or urine in the first 1 to 2 weeks of life. To date, treatment of congenital infection with antiviral drugs is only palliative both prior to and after birth, whereas the only efficacious preventive measure seems to be the development of a safe and immunogenic vaccine, including recombinant, subunit, DNA, and peptide-based vaccines now under investigation. The following controversial issues are discussed in the light of the most recent advances in the field: the actual perception of the problem; universal serologic screening before pregnancy; the impact of correct counseling on decision making by the couple involved; the role of prenatal diagnosis in ascertaining transmission of virus to the fetus; the impact of preconceptional and periconceptional infections on the prevalence of congenital infection; and the prevalence of congenitally infected babies born to mothers who were immune prior to pregnancy compared to the number born to mothers undergoing primary infection during pregnancy.
Collapse
|