1
|
Faivre C, Imtiyaz FD, Buyck JM, Marchand S, Marcotte M, Henry T, Anton N, Collot M, Tewes F. (E, E)-farnesol and myristic acid-loaded lipid nanoparticles overcome colistin resistance in Acinetobacter baumannii. Int J Pharm 2024; 667:124907. [PMID: 39500471 DOI: 10.1016/j.ijpharm.2024.124907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The rise of colistin-resistant Acinetobacter baumannii has severely limited treatment options for infections caused by this pathogen. While terpene alcohols and fatty acids have shown potential to enhance colistin's efficacy, but their high lipophilicity limits their clinical application. To address this, we developed water-dispersible lipid nanoparticles (LNPs) in two sizes (40 nm and 130 nm), loaded with these compounds to act as colistin adjuvants. Among eleven LNP formulations, six significantly reduced colistin's minimum inhibitory concentration (MIC) by 16- to 64-fold. The most effective, featuring (E,E)-farnesol and myristic acid, were further examined for bactericidal activity, membrane disruption, cytotoxicity, and in vivo efficacy in Galleria mellonella larvae. Time-kill studies demonstrated that at an adjuvant concentration of 60 mg/L, these LNPs eradicated bacteria when combined with 4 mg/L free colistin for resistant isolates (MIC = 128 mg/L) and 0.06 mg/L for susceptible isolates (MIC = 0.5 mg/L), without regrowth. Myristic acid-loaded LNPs combined with free colistin at 1/8 MIC resulted in a 4.2-fold higher mortality rate than the combination with (E,E)-farnesol-loaded LNPs in resistant strains. This result was correlated with a 45-fold faster increase in inner membrane permeability, measured by propidium iodide (PI) uptake, in the presence of myristic acid-loaded LNPs compared with a 13-fold faster increase with (E,E)-farnesol-loaded LNPs. DiSC3(5) assays revealed that LNPs alone depolarised the bacterial inner membrane, with enhanced effects when combined with colistin at 1/8 MIC, a result not observed with colistin alone at this concentration. As with PI uptake, this inner membrane depolarising effect was more pronounced with myristic acid-loaded LNPs than with (E,E)-farnesol-loaded LNPs in resistant strains, suggesting that the colistin adjuvant effect of these lipophilic compounds is due to their ability to help colistin destabilise the bacterial inner membrane. Cytotoxicity assays demonstrated no adverse effects on bone marrow macrophages after 6 h of exposure, although some toxicity was observed after 24 h. No mortality was observed in Galleria mellonella larvae over 7 days following three consecutive days of treatment with colistin and LNPs. Notably, the combination of (E,E)-farnesol-loaded LNPs and colistin significantly improved the survival of Galleria infected with A.baumannii. These results suggest that lipophilic-adjuvant-loaded LNPs may offer a promising strategy to enhance colistin efficacy and combat antibiotic-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Carla Faivre
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France; INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | | | - Julien M Buyck
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France
| | - Sandrine Marchand
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France; CHU de Poitiers, Laboratoire de Toxicologie et de Pharmacocinétique, Poitiers, France
| | - Melissa Marcotte
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, Lyon, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | - Frédéric Tewes
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France.
| |
Collapse
|
2
|
Marino A, Augello E, Stracquadanio S, Bellanca CM, Cosentino F, Spampinato S, Cantarella G, Bernardini R, Stefani S, Cacopardo B, Nunnari G. Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations. Int J Mol Sci 2024; 25:6814. [PMID: 38999924 PMCID: PMC11241693 DOI: 10.3390/ijms25136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Acinetobacter baumannii represents a significant concern in nosocomial settings, particularly in critically ill patients who are forced to remain in hospital for extended periods. The challenge of managing and preventing this organism is further compounded by its increasing ability to develop resistance due to its extraordinary genomic plasticity, particularly in response to adverse environmental conditions. Its recognition as a significant public health risk has provided a significant impetus for the identification of new therapeutic approaches and infection control strategies. Indeed, currently used antimicrobial agents are gradually losing their efficacy, neutralized by newer and newer mechanisms of bacterial resistance, especially to carbapenem antibiotics. A deep understanding of the underlying molecular mechanisms is urgently needed to shed light on the properties that allow A. baumannii enormous resilience against standard therapies. Among the most promising alternatives under investigation are the combination sulbactam/durlobactam, cefepime/zidebactam, imipenem/funobactam, xeruborbactam, and the newest molecules such as novel polymyxins or zosurabalpin. Furthermore, the potential of phage therapy, as well as deep learning and artificial intelligence, offer a complementary approach that could be particularly useful in cases where traditional strategies fail. The fight against A. baumannii is not confined to the microcosm of microbiological research or hospital wards; instead, it is a broader public health dilemma that demands a coordinated, global response.
Collapse
Affiliation(s)
- Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Federica Cosentino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| |
Collapse
|
3
|
Rafailidis P, Panagopoulos P, Koutserimpas C, Samonis G. Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:261. [PMID: 38534696 DOI: 10.3390/antibiotics13030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The treatment of Acinetobacter baumannii infections remains a challenge for physicians worldwide in the 21st century. The bacterium possesses a multitude of mechanisms to escape the human immune system. The consequences of A. baumannii infections on morbidity and mortality, as well on financial resources, remain dire. Furthermore, A. baumannii superinfections have also occurred during the COVID-19 pandemic. While prevention is important, the antibiotic armamentarium remains the most essential factor for the treatment of these infections. The main problem is the notorious resistance profile (including resistance to carbapenems and colistin) that this bacterium exhibits. While newer beta lactam/beta-lactamase inhibitors have entered clinical practice, with excellent results against various infections due to Enterobacteriaceae, their contribution against A. baumannii infections is almost absent. Hence, we have to resort to at least one of the following, sulbactam, polymyxins E or B, tigecycline or aminoglycosides, against multidrug-resistant (MDR) and extensively drug-resistant (XDR) A. baumannii infections. Furthermore, the notable addition of cefiderocol in the fight against A. baumannii infections represents a useful addition. We present herein the existing information from the last decade regarding therapeutic advances against MDR/XDR A. baumannii infections.
Collapse
Affiliation(s)
- Petros Rafailidis
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Periklis Panagopoulos
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, "251" Hellenic Air Force General Hospital of Athens, 115 25 Athens, Greece
| | - George Samonis
- Department of Oncology, Metropolitan Hospital, 185 47 Athens, Greece
- Department of Medicine, University of Crete, 715 00 Heraklion, Greece
| |
Collapse
|
4
|
Bouza E, Muñoz P, Burillo A. How to treat severe Acinetobacter baumannii infections. Curr Opin Infect Dis 2023; 36:596-608. [PMID: 37930071 DOI: 10.1097/qco.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW To update the management of severe Acinetobacter baumannii infections (ABI), particularly those caused by multi-resistant isolates. RECENT FINDINGS The in vitro activity of the various antimicrobial agents potentially helpful in treating ABI is highly variable and has progressively decreased for many of them, limiting current therapeutic options. The combination of more than one drug is still advisable in most circumstances. Ideally, two active first-line drugs should be used. Alternatively, a first-line and a second-line drug and, if this is not possible, two or more second-line drugs in combination. The emergence of new agents such as Cefiderocol, the combination of Sulbactam and Durlobactam, and the new Tetracyclines offer therapeutic options that need to be supported by clinical evidence. SUMMARY The apparent limitations in treating infections caused by this bacterium, the rapid development of resistance, and the serious underlying situation in most cases invite the search for alternatives to antibiotic treatment, the most promising of which seems to be bacteriophage therapy.
Collapse
Affiliation(s)
- Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
| |
Collapse
|
5
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
6
|
de Carvalho FRT, Telles JP, Tuon FFB, Rabello Filho R, Caruso P, Correa TD. Antimicrobial Stewardship Programs: A Review of Strategies to Avoid Polymyxins and Carbapenems Misuse in Low Middle-Income Countries. Antibiotics (Basel) 2022; 11:antibiotics11030378. [PMID: 35326841 PMCID: PMC8944697 DOI: 10.3390/antibiotics11030378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Antibiotics misuse and overuse are concerning issues worldwide, especially in low middle-income countries. These practices contribute to the increasing rates of antimicrobial resistance. One efficient strategy to avoid them is antimicrobial stewardship programs. In this review, we focus on the possible approaches to spare the prescription of polymyxins and carbapenems for the treatment of Acinetobacter baumannii, carbapenem-resistant Enterobacterales, and Pseudomonas aeruginosas infections. Additionally, we highlight how to implement cumulative antibiograms and biomarkers to a sooner de-escalation of antibiotics.
Collapse
Affiliation(s)
- Fabrício Rodrigues Torres de Carvalho
- Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.R.F.); (T.D.C.)
- Intensive Care Unit, AC Camargo Cancer Center, São Paulo 01525-001, SP, Brazil;
- Correspondence: (F.R.T.d.C.); (J.P.T.)
| | - João Paulo Telles
- Department of Infectious Diseases, AC Camargo Cancer Center, São Paulo 01525-001, SP, Brazil
- School of Medicine, Pontifical Catholic University, Curitiba 80215-901, PR, Brazil;
- Department of Infectious Diseases, Hospital Universitario Evangelico Mackenzie, Curitiba 80730-420, PR, Brazil
- Correspondence: (F.R.T.d.C.); (J.P.T.)
| | | | - Roberto Rabello Filho
- Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.R.F.); (T.D.C.)
| | - Pedro Caruso
- Intensive Care Unit, AC Camargo Cancer Center, São Paulo 01525-001, SP, Brazil;
| | - Thiago Domingos Correa
- Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.R.F.); (T.D.C.)
| |
Collapse
|
7
|
Seifert H, Müller C, Stefanik D, Higgins PG, Miller A, Kresken M. In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 2020; 75:2616-2621. [DOI: 10.1093/jac/dkaa208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 05/01/2020] [Indexed: 01/29/2023] Open
Abstract
Abstract
Objectives
To evaluate the activity of the novel broad-spectrum serine β-lactamase inhibitor durlobactam (ETX2514) combined with sulbactam against global isolates of carbapenem-resistant Acinetobacter baumannii with defined carbapenem resistance mechanisms compared with reference antimicrobials with known activity against Acinetobacter spp.
Methods
The susceptibility of 246 carbapenem-resistant non-duplicate A. baumannii isolates to sulbactam/durlobactam, amikacin, colistin, imipenem/sulbactam/durlobactam, imipenem, meropenem, minocycline and sulbactam was tested using broth microdilution. Isolates were obtained from various body sites from patients in 37 countries and from six world regions between 2012 and 2016. Identification of carbapenem resistance mechanisms and assignment to A. baumannii clonal lineages was based on WGS.
Results
Sulbactam/durlobactam showed excellent activity comparable to colistin but superior to amikacin, minocycline and sulbactam. The sulbactam/durlobactam MIC50/90 values were 1/4 and 2/4 mg/L and the colistin MIC50/90 values were 0.5 and 1 mg/L, respectively. Comparatively, amikacin, minocycline and sulbactam MIC50/90 values were 256/≥512, 2/16 and 16/64 mg/L, respectively.
Conclusions
Sulbactam/durlobactam had excellent in vitro potency against A. baumannii isolates, including those that were resistant to imipenem/meropenem, amikacin, minocycline and colistin, compared with other compounds. Sulbactam/durlobactam has the potential to become a useful addition to the limited armamentarium of drugs that can be used to treat this problem pathogen.
Collapse
Affiliation(s)
- Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Carina Müller
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Danuta Stefanik
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | | | - Michael Kresken
- Antiinfectives Intelligence GmbH, Rheinbach, Germany
- Rheinische Fachhochschule gGmbH, Cologne, Germany
| |
Collapse
|
8
|
Farrar JE, Garner KM, Swanson JM, Magnotti LJ, Croce MA, Wood GC. Tigecycline to treat Stenotrophomonas maltophilia ventilator-associated pneumonia in a trauma intensive care unit as a result of a drug shortage: A case series. J Clin Pharm Ther 2020; 45:836-839. [PMID: 32406951 DOI: 10.1111/jcpt.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Stenotrophomonas maltophilia is an intrinsically multidrug-resistant (MDR) organism which commonly presents as a respiratory tract infection. S. maltophilia is typically treated with high-dose sulfamethoxazole/trimethoprim (SMX/TMP). However, SMX/TMP and other treatment options for S. maltophilia can be limited because of resistance, allergy, adverse events or unavailability of the drug; use of novel agents may be necessary to adequately treat this MDR infection and overcome these limitations. CASE DESCRIPTION This small case series describes two patients who underwent treatment with tigecycline for ventilator-associated pneumonia (VAP) caused by S. maltophilia after admission to a trauma intensive care unit. At the time of admission for the two reported patients, a national drug shortage of intravenous (IV) SMX/TMP prevented its use. Tigecycline was chosen as a novel agent to treat S. maltophilia VAP based on culture and susceptibility data, and it was used successfully. Both patients showed clinical signs of improvement with eventual cure and discharge from the hospital after treatment with tigecycline, and one patient demonstrated confirmed microbiological cure with a negative repeat bronchoscopic bronchoalveolar lavage (BAL). WHAT IS NEW AND CONCLUSION To our knowledge, this small case series is the first documentation of utilizing tigecycline to treat S. maltophilia VAP in the United States. Although it likely should not be considered as a first-line agent, tigecycline proved to be an effective treatment option in the two cases described in the setting of a national drug shortage of the drug of choice.
Collapse
Affiliation(s)
- Julie E Farrar
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pharmacy, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Katelyn M Garner
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pharmacy, Regional One Health, Memphis, Tennessee
| | - Joseph M Swanson
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pharmacy, Regional One Health, Memphis, Tennessee
| | - Louis J Magnotti
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee.,Trauma Surgery Services, Regional One Health, Memphis, Tennessee
| | - Martin A Croce
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee.,Trauma Surgery Services, Regional One Health, Memphis, Tennessee
| | - G Christopher Wood
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pharmacy, Regional One Health, Memphis, Tennessee
| |
Collapse
|
9
|
Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera Reséndiz A, Muleiro Álvarez M, Vega López EN, Franyuti-Kelly G, Álvarez-Hernández DA, Moncaleano Guzmán V, Juárez Bañuelos JE, Marcos Felix J, González Barrios JA, Barrientos Fortes T. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics (Basel) 2020; 9:antibiotics9040205. [PMID: 32340386 PMCID: PMC7235888 DOI: 10.3390/antibiotics9040205] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii (named in honor of the American bacteriologists Paul and Linda Baumann) is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients with central venous catheters. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections; most involve the respiratory tract, especially ventilator-associated pneumonia, but bacteremia and skin wound infections have also been reported, the latter of which has been prominently observed in the context of war-related trauma. Cases of meningitis associated with A. baumannii have been documented. The most common risk factor for the acquisition of MDR A baumannii is previous antibiotic use, following by mechanical ventilation, length of ICU/hospital stay, severity of illness, and use of medical devices. Current efforts focus on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme. Bacteriophage- and artilysin-based therapeutic approaches have been described as effective, but further research into their clinical use is required.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
- Correspondence: or ; Tel.: +52-56-270210 (ext. 7302)
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Juan José Juárez Vignon-Whaley
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Andrés Abello Vaamonde
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Luis Andrés Padró Alonzo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Andrés Rivera Reséndiz
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Mauricio Muleiro Álvarez
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Eunice Nabil Vega López
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Valentina Moncaleano Guzmán
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Ernesto Juárez Bañuelos
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - José Marcos Felix
- Coordinación Ciclos Clínicos Medicina, FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
| | - Juan Antonio González Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “1º de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico;
| | - Tomás Barrientos Fortes
- Dirección Sistema Universitario de Salud de la Universidad Anáhuac México (SUSA), Huixquilucan 52786, Mexico;
| |
Collapse
|
10
|
Grabein B, Ebenhoch M, Kühnen E, Thalhammer F. Calculated parenteral initial treatment of bacterial infections: Infections with multi-resistant Gram-negative rods - ESBL producers, carbapenemase-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii. GMS INFECTIOUS DISEASES 2020; 8:Doc04. [PMID: 32373429 PMCID: PMC7186793 DOI: 10.3205/id000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This is the sixteenth chapter of the guideline "Calculated initial parenteral treatment of bacterial infections in adults - update 2018" in the 2nd updated version. The German guideline by the Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. (PEG) has been translated to address an international audience. Infections due to multiresistant Gram-negative rods are challenging. In this chapter recommendations for targeted therapy for infections caused by ESBL-producing Enterobacteriaceae, carbapenemase-producing Enterobacteriaceae and carbapenem-resistant Acinetobacter baumannii are given, based on the limited available evidence.
Collapse
Affiliation(s)
- Béatrice Grabein
- Stabsstelle Klinische Mikrobiologie und Krankenhaushygiene, Klinikum der Universität München, Munich, Germany
| | - Michael Ebenhoch
- Stabsstelle Hygiene, Klinische Infektiologie und Mikrobiologie, BG-Unfallklinik Murnau, Germany
| | - Ernst Kühnen
- Mikrobiologie & Hygiene, MVZ Synlab Trier, Germany
| | - Florian Thalhammer
- Klinische Abteilung für Infektiologie und Tropenmedizin, Medizinische Universität Wien, Vienna, Austria
| |
Collapse
|
11
|
Sarda C, Fazal F, Rello J. Management of ventilator-associated pneumonia (VAP) caused by resistant gram-negative bacteria: which is the best strategy to treat? Expert Rev Respir Med 2019; 13:787-798. [PMID: 31210549 DOI: 10.1080/17476348.2019.1632195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Treatment of ventilator-associated pneumonia (VAP) is a major challenge. The increase in multi-drug resistant bacteria has not been accompanied by the validation of new drugs, or by any new antimicrobial strategies to exploit the available agents. VAP due to Gram-negative bacteria has increased mortality, both due to the resistant pathogens themselves and due to inappropriate treatment. Local epidemiology, patients' characteristics and clinical responses provide the most important information for therapeutic decision-making. Moreover, data on VAP therapy due to resistant bacteria are lacking, and the choice of treatment is often based on clinical practice and individual experience. Areas covered: This review summarizes the strategies available for treating the three most prevalent resistant Gram-negative organisms causing VAP: Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae. The review covers the results of a Pubmed search, clinical practice guidelines and reviews, and the authors' experience. Expert opinion: The existing evidence focuses on bloodstream infections or other sites rather than pneumonia and there are no recommendations for the treatment of VAP by multi-drug resistant Gram-negative bacteria, especially for combination regimens. The approval of new drugs is needed to provide effective and safe alternatives for treating carbapenemase-producing strains. Precision medicine and personalized approach are also fundamental in future research.
Collapse
Affiliation(s)
- Cristina Sarda
- a Infectious Diseases Department, Fondazione IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Farhan Fazal
- b Department of Medicine and Microbiology (Infectious Disease), All India Institute of Medical Science (AIIMS) New Delhi , New Delhi , India
| | - Jordi Rello
- c Clinical Research/Epidemiology in Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institut of Research & Centro de Investigacion Biomedica en Red (CIBERES) , Barcelona , Spain
| |
Collapse
|
12
|
Aydemir H, Tuz HI, Piskin N, Celebi G, Kulah C, Kokturk F. Risk factors and clinical responses of pneumonia patients with colistin-resistant Acinetobacter baumannii-calcoaceticus. World J Clin Cases 2019. [DOI: 10.12998/wjge.v7.i10.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
13
|
Aydemir H, Tuz HI, Piskin N, Celebi G, Kulah C, Kokturk F. Risk factors and clinical responses of pneumonia patients with colistin-resistant Acinetobacter baumannii-calcoaceticus. World J Clin Cases 2019; 7:1111-1121. [PMID: 31183342 PMCID: PMC6547332 DOI: 10.12998/wjcc.v7.i10.1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Nosocomial infections with carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (ABC) strains are great problem for intensive care units. ABC strains can develop resistance to all the antibiotics available. Carbapenem resistance is common and colistin resistance is rare in our country. Knowing the risk factors for colistin resistance is important since colistin seems to be the only remaining therapeutic option for the patients with pneumonia due to extensively drug resistant ABC for our country.
AIM To investigate the comparison of clinical responses and outcomes between pneumonia patients with colistin-susceptible and -resistant Acinetobacter sp. Strains.
METHODS During the study period, 108 patients with pneumonia due to colistin-susceptible strains and 16 patients with colistin-resistant strains were included retrospectively. Continuous variables were compared with the Mann-Whitney U test, and categorical variables were compared using Pearson’s chi-square test or Fisher’s Exact chi-square test for two groups. A binary logistic regression model was developed to identify the potential independent factors associated with colistin resistance in patients with colistin-resistant strains.
RESULTS High Acute Physiology and Chronic Health Evaluation II scores (OR = 1.9, 95%CI: 1.4-2.7; P < 0.001) and prior receipt of teicoplanin (OR = 8.1, 95%CI: 1.0-63.3; P = 0.045) were found to be independent risk factors for infection with colistin-resistant Acinetobacter sp. Different combinations of antibiotics including colistin, meropenem, ampicillin/sulbactam, amikacin and trimethoprim/sulfamethoxazole were used for the treatment of patients with colistin-resistant strains. Although the median duration of microbiological cure (P < 0.001) was longer in the colistin-resistant group, clinical (P = 0.703), laboratory (P = 0.277), radiological (P = 0.551), microbiological response (P = 1.000) and infection related mortality rates (P = 0.603) did not differ between the two groups. Among the patients with infections due to colistin-resistant strains, seven were treated with antibiotic combinations that included sulbactam. Clinical (6/7) and microbiological (5/7) response rates were quite high in these patients.
CONCLUSION The optimal therapy regimen is unclear for colistin-resistant Acinetobacter sp. infections. Although combinations with sulbactam seems to be more effective in our study patients, data supporting the usefulness of combinations with sulbactam is very limited.
Collapse
Affiliation(s)
- Hande Aydemir
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Hande Idil Tuz
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Nihal Piskin
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Guven Celebi
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Canan Kulah
- Department of Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Furuzan Kokturk
- Department of Biostatistics, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| |
Collapse
|
14
|
Reinventing the wheel: Impact of prolonged antibiotic exposure on multidrug-resistant ventilator-associated pneumonia in trauma patients. J Trauma Acute Care Surg 2019; 85:256-262. [PMID: 29664891 DOI: 10.1097/ta.0000000000001936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Multidrug-resistant (MDR) strains of both Acinetobacter baumannii (AB) and Pseudomonas aeruginosa (PA) as causative ventilator-associated pneumonia (VAP) pathogens are becoming increasingly common. Still, the risk factors associated with this increased resistance have yet to be elucidated. The purpose of this study was to examine the changing sensitivity patterns of these pathogens over time and determine which risk factors predict MDR in trauma patients with VAP. METHODS Patients with either AB or PA VAP over 10 years were stratified by pathogen sensitivity (sensitive [SEN] and MDR), age, severity of shock, and injury severity. Prophylactic and empiric antibiotic days, risk factors for severe VAP, and mortality were compared. Multivariable logistic regression was performed to determine which risk factors were independent predictors of MDR. RESULTS Three hundred ninety-seven patients were identified with AB or PA VAP. There were 173 episodes of AB (91 SEN and 82 MDR) and 224 episodes of PA (170 SEN and 54 MDR). The incidence of MDR VAP did not change over the study (p = 0.633). Groups were clinically similar with the exception of 24-hour transfusions (14 vs. 19 units, p = 0.009) and extremity Abbreviated Injury Scale (AIS) score (1 vs. 3, p < 0.001), both significantly increased in the MDR group. Antibiotic exposure as well as multiple episodes of inadequate empiric antibiotic therapy (mIEAT) (63% vs. 81%, p < 0.001) were significantly increased in the MDR group. Multivariable logistic regression identified prophylactic antibiotic days (odds ratio, 23.1; 95% confidence interval, 16.7-28, p < 0.001) and mIEAT (odds ratio, 18.1; 95% confidence interval, 12.2-26.1, p = 0.001) as independent predictors of MDR after adjusting for severity of shock, injury severity, severity of VAP, and antibiotic exposure. CONCLUSION Prolonged exposure to unnecessary antibiotics remains one of the strongest predictors for the development of antibiotic resistance. Multivariable logistic regression identified prophylactic antibiotic days and mIEAT an independent risk factors for MDR VAP. Thus, limiting prophylactic antibiotic days is the only potentially modifiable risk factor for the development of MDR VAP in trauma patients. LEVEL OF EVIDENCE Level IV Therapeutic; level III Prognostic.
Collapse
|
15
|
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson APR. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother 2019. [PMID: 29514274 DOI: 10.1093/jac/dky027] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Working Party makes more than 100 tabulated recommendations in antimicrobial prescribing for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB) and suggest further research, and algorithms for hospital and community antimicrobial usage in urinary infection. The international definition of MDR is complex, unsatisfactory and hinders the setting and monitoring of improvement programmes. We give a new definition of multiresistance. The background information on the mechanisms, global spread and UK prevalence of antibiotic prescribing and resistance has been systematically reviewed. The treatment options available in hospitals using intravenous antibiotics and in primary care using oral agents have been reviewed, ending with a consideration of antibiotic stewardship and recommendations. The guidance has been derived from current peer-reviewed publications and expert opinion with open consultation. Methods for systematic review were NICE compliant and in accordance with the SIGN 50 Handbook; critical appraisal was applied using AGREE II. Published guidelines were used as part of the evidence base and to support expert consensus. The guidance includes recommendations for stakeholders (including prescribers) and antibiotic-specific recommendations. The clinical efficacy of different agents is critically reviewed. We found there are very few good-quality comparative randomized clinical trials to support treatment regimens, particularly for licensed older agents. Susceptibility testing of MDR GNB causing infection to guide treatment needs critical enhancements. Meropenem- or imipenem-resistant Enterobacteriaceae should have their carbapenem MICs tested urgently, and any carbapenemase class should be identified: mandatory reporting of these isolates from all anatomical sites and specimens would improve risk assessments. Broth microdilution methods should be adopted for colistin susceptibility testing. Antimicrobial stewardship programmes should be instituted in all care settings, based on resistance rates and audit of compliance with guidelines, but should be augmented by improved surveillance of outcome in Gram-negative bacteraemia, and feedback to prescribers. Local and national surveillance of antibiotic use, resistance and outcomes should be supported and antibiotic prescribing guidelines should be informed by these data. The diagnosis and treatment of both presumptive and confirmed cases of infection by GNB should be improved. This guidance, with infection control to arrest increases in MDR, should be used to improve the outcome of infections with such strains. Anticipated users include medical, scientific, nursing, antimicrobial pharmacy and paramedical staff where they can be adapted for local use.
Collapse
Affiliation(s)
- Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Cliodna A M McNulty
- Microbiology Department, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK
| | - David A Enoch
- Public Health England, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - A Peter R Wilson
- Department of Microbiology and Virology, University College London Hospitals, London, UK
| |
Collapse
|
16
|
Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. Antimicrobial Susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997-2016). Open Forum Infect Dis 2019; 6:S34-S46. [PMID: 30895213 PMCID: PMC6419908 DOI: 10.1093/ofid/ofy293] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Acinetobacter calcoaceticus-A. baumannii (Acb) complex and Stenotrophomonas maltophilia represent frequent causes of hospital-acquired infections. We evaluated the frequency and resistance rates of Acb complex and S. maltophilia isolates from medical centers enrolled in the SENTRY Program. Methods A total of 13 752 Acb complex and 6467 S. maltophilia isolates were forwarded to a monitoring laboratory by 259 participating sites from the Asia-Pacific region, Latin America, Europe, and North America between 1997 and 2016. Confirmation of species identification and antimicrobial susceptibility testing were performed using conventional methods and/or matrix-assisted laser desorption ionization-time of flight mass spectrometry and the broth microdilution method, respectively. Antimicrobial susceptibility results were interpreted by CLSI and EUCAST 2018 criteria. Results Acb complex and S. maltophilia were most frequently isolated from patients hospitalized with pneumonia (42.9% and 55.8%, respectively) and bloodstream infections (37.3% and 33.8%, respectively). Colistin and minocycline were the most active agents against Acb complex (colistin MIC50/90, ≤0.5/2 mg/L; 95.9% susceptible) and S. maltophilia (minocycline MIC50/90, ≤1/2 mg/L; 99.5% susceptible) isolates, respectively. Important temporal decreases in susceptibility rates among Acb complex isolates were observed for all antimicrobial agents in all regions. Rates of extensively drug-resistant Acb complex rates were highest in Europe (66.4%), followed by Latin America (61.5%), Asia-Pacific (56.9%), and North America (38.8%). Among S. maltophilia isolates, overall trimethoprim-sulfamethoxazole (TMP-SMX) susceptibility rates decreased from 97.2% in 2001-2004 to 95.7% in 2013-2016, but varied according to the geographic region. Conclusions We observed important reductions of susceptibility rates to all antimicrobial agents among Acb complex isolates obtained from all geographic regions. In contrast, resistance rates to TMP-SMX among S. maltophilia isolates remained low and relatively stable during the study period.
Collapse
Affiliation(s)
- Ana C Gales
- Universidade Federal de São Paulo, São Paulo, Brazil
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, partner site Bonn-Cologne, Germany
| | - Deniz Gur
- Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
17
|
El-Badawy MF, Abdelwahab SF, Alghamdi SA, Shohayeb MM. Characterization of phenotypic and genotypic traits of carbapenem-resistant Acinetobacter baumannii clinical isolates recovered from a tertiary care hospital in Taif, Saudi Arabia. Infect Drug Resist 2019; 12:3113-3124. [PMID: 31632100 PMCID: PMC6781848 DOI: 10.2147/idr.s206691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/30/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Acinetobacter baumannii (A. baumannii) is a common nosocomial pathogen, which developed multi-drug-resistance to different classes of antibiotics including carbapenems. This study examined ten common carbapenemase genes among 32 carbapenem-resistant A. baumannii clinical isolates recovered from Taif, Saudi Arabia. METHODS Isolates were phenotypically identified to the genus level by Vitek®2 and API 20NE®. The species level was confirmed by the amplification of bla OXA-51. The susceptibility for 21 different antibiotics was performed by Vitek 2 and modified Kirby-Bauer method. Isolates were genetically screened for 10 carbapenemases. Phylogenetic relatedness between isolates was determined by ERIC-PCR. RESULTS Genotypically identified A. baumannii represented 100% of the total phenotypically identified Acinetobacter spp. All the carbapenem-resistant isolates were sensitive to polymyxin B and colistin. Among the other antibiotics, ampicillin/sulbactam and tigecycline were the most effective agents. 90.8% of the isolates were resistant to all ten investigated β-lactams. bla OXA-51, bla IPM, bla NDM and bla OXA-23 were detected in 100%, 87.5%, 62.5% and 59.4% of isolates, respectively. Also, bla VIM and bla OXA-40 were less prevalent and were detected in 9.3% and 3.1% of the isolates, respectively. In addition, bla KPC, bla OXA-48, bla OXA-58, bla OXA-181 were not detected in any isolate. The A. baumannii isolates were categorised into ten genotypes on the basis of the detected carbapenemase genes and ERIC-PCR revealed a remarkable clonal diversity among these isolates. CONCLUSION Class A and class D carbapenemase genes were the most commonly detected among carbapenem resistant A. baumannii (CRAB) clinical isolates.
Collapse
Affiliation(s)
- Mohamed F El-Badawy
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif21974, Kingdom of Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City12568, Egypt
| | - Sayed F Abdelwahab
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif21974, Kingdom of Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia61511, Egypt
| | - Saleh A Alghamdi
- Medical Genetics, Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, Taif21974, Kingdom of Saudi Arabia
| | - Mohamed M Shohayeb
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif21974, Kingdom of Saudi Arabia
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa35712, Egypt
- Correspondence: Mohamed M Shohayeb Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif21974, Kingdom of Saudi ArabiaTel +20 106 147 9097 Email
| |
Collapse
|
18
|
Acinetobacter etiology respiratory tract infections associated with mechanical ventilation: what impacts on the prognosis? A retrospective cohort study. J Crit Care 2018; 49:124-128. [PMID: 30419545 DOI: 10.1016/j.jcrc.2018.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acinetobacter species treatment often represents a challenge. The main objective of this study is identify predictors of ICU mortality in patients submitted to mechanical ventilation (MV). MATERIALS AND METHODS Retrospective cohort study. Patients with MV > 48 h who developed a respiratory tract positive culture for Acinetobacter were included, and distinguished among colonized, ventilator-associated pneumonia (VAP) or ventilator-associated tracheobronchitis (VAT) patients. Primary outcome was ICU mortality. RESULTS 153 patients were in MV and presented positive culture for Acinetobacter calcoaceticus-baumanii complex, 70 of them with VAP, 59 with VAT and 24 patients were colonized. The factors related to ICU mortality were VAP (OR 2.2, 95% CI 1.1-4.5) and shock at the time of diagnosis (OR 4.8, 95% CI 1.8-2.3). In multivariate analysis, only SOFA score at the time of diagnosis (OR 1.06, 95% CI 1.03-1.09) was related with ICU mortality. A paired-matched analysis was performed to assess effect of dual therapy on outcomes, and no effect was found in terms of clinical cure, ICU or hospital mortality or duration of antimicrobial therapy. CONCLUSIONS Previous comorbidities and degree of associated organic injury seem to be more important factors in the prognosis than double antibiotic therapy in patients with Acinetobacter-related respiratory infection.
Collapse
|
19
|
Molecular Epidemiology and Mechanism of Sulbactam Resistance in Acinetobacter baumannii Isolates with Diverse Genetic Backgrounds in China. Antimicrob Agents Chemother 2018; 62:AAC.01947-17. [PMID: 29311074 DOI: 10.1128/aac.01947-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/15/2017] [Indexed: 01/03/2023] Open
Abstract
Sulbactam is a plausible option for treating Acinetobacter infections because of its intrinsic antibacterial activity against the members of the Acinetobacter genus, but the mechanisms of sulbactam resistance have not been fully studied in Acinetobacter baumannii In this study, a total of 2,197 clinical A. baumannii isolates were collected from 27 provinces in China. Eighty-eight isolates with various MICs for sulbactam were selected on the basis of their diverse clonality and underwent multilocus sequence typing (MLST), antimicrobial susceptibility testing, and resistance gene screening. The copy number and relative expression of blaTEM-1D and ampC were measured via quantitative PCR and quantitative reverse transcription-PCR, respectively. The genetic structure of multicopy blaTEM-1D was determined using the whole-genome sequencing technology. The cefoperazone-sulbactam resistance rate of the 2,197 isolates was 39.7%. The rate of positivity for blaTEM-1D or ISAba1-ampC in the sulbactam-nonsusceptible group (64.91% and 78.95%, respectively) was significantly higher than that in the sulbactam-susceptible group (0% and 0%, respectively; P < 0.001). The MIC of sulbactam (P < 0.001) varied considerably between the groups expressing ampC with or without upstream ISAba1 Notably, the genetic structure of the multicopy blaTEM-1D gene in strain ZS3 revealed that blaTEM-1D was embedded within four tandem copies of the cassette IS26-blaTEM-1D-Tn3-IS26 Therefore, blaTEM-1D and ISAba1-ampC represent the prevalent mechanism underlying sulbactam resistance in clinical A. baumannii isolates in China. The structure of the four tandem copies of blaTEM-1D first identified may increase sulbactam resistance.
Collapse
|
20
|
El Chakhtoura NG, Saade E, Iovleva A, Yasmin M, Wilson B, Perez F, Bonomo RA. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward 'molecularly targeted' therapy. Expert Rev Anti Infect Ther 2018; 16:89-110. [PMID: 29310479 PMCID: PMC6093184 DOI: 10.1080/14787210.2018.1425139] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-fermenting Gram-negative bacilli are at the center of the antimicrobial resistance epidemic. Acinetobacter baumannii and Pseudomonas aeruginosa are both designated with a threat level to human health of 'serious' by the Centers for Disease Control and Prevention. Two other major non-fermenting Gram-negative bacilli, Stenotrophomonas maltophilia and Burkholderia cepacia complex, while not as prevalent, have devastating effects on vulnerable populations, such as those with cystic fibrosis, as well as immunosuppressed or hospitalized patients. Areas covered: In this review, we summarize the clinical impact, presentations, and mechanisms of resistance of these four major groups of non-fermenting Gram-negative bacilli. We also describe available and promising novel therapeutic options and strategies, particularly combination antibiotic strategies, with a focus on multidrug resistant variants. Expert commentary: We finally advocate for a therapeutic approach that incorporates in vitro antibiotic susceptibility testing with molecular and genotypic characterization of mechanisms of resistance, as well as pharmacokinetics and pharmacodynamics (PK/PD) parameters. The goal is to begin to formulate a precision medicine approach to antimicrobial therapy: a clinical-decision making model that integrates bacterial phenotype, genotype and patient's PK/PD to arrive at rationally-optimized combination antibiotic chemotherapy regimens tailored to individual clinical scenarios.
Collapse
Affiliation(s)
- Nadim G. El Chakhtoura
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Elie Saade
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mohamad Yasmin
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brigid Wilson
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Federico Perez
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert A. Bonomo
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
21
|
Wood GC, Jonap BL, Maish GO, Magnotti LJ, Swanson JM, Boucher BA, Croce MA, Fabian TC. Treatment of Achromobacter Ventilator-Associated Pneumonia in Critically Ill Trauma Patients. Ann Pharmacother 2017; 52:120-125. [PMID: 28906137 DOI: 10.1177/1060028017730838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Achromobacter sp are nonfermenting Gram-negative bacilli (NFGNB) that rarely cause severe infections, including ventilator-associated pneumonia (VAP). Data on the treatment of Achromobacter pneumonia are very limited, and the organism has been associated with a high mortality rate. Thus, more data are needed on treating this organism. OBJECTIVE To evaluate the treatment of Achromobacter VAP in critically ill trauma patients. METHODS This retrospective, observational study evaluated critically ill trauma patients who developed Achromobacter VAP. A previously published pathway for the diagnosis and management of VAP was used according to routine patient care. This included the use of quantitative bronchoscopic bronchoalveolar lavage cultures to definitively diagnose VAP. RESULTS A total of 37 episodes of Achromobacter VAP occurred in 34 trauma intensive care unit patients over a 15-year period. The most commonly used definitive antibiotics were imipenem/cilastatin, cefepime, or trimethoprim/sulfamethoxazole. The primary outcome of clinical success was achieved in 32 of 37 episodes (87%). This is similar to previous studies of other NFGNB VAP (eg, Pseudomonas, Acinetobacter) from the study center. Microbiological success was seen in 21 of 28 episodes (75%), and VAP-related mortality was 9% (3 of 34 patients). CONCLUSIONS Achromobacter is a rare but potentially serious cause of VAP in critically ill patients. In this study, there was an acceptable success rate compared with other causes of NFGNB VAP in this patient population.
Collapse
Affiliation(s)
| | - Brittany L Jonap
- 1 University of Tennessee Health Science Center, Memphis, TN, USA
| | - George O Maish
- 1 University of Tennessee Health Science Center, Memphis, TN, USA
| | - Louis J Magnotti
- 1 University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joseph M Swanson
- 1 University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Martin A Croce
- 1 University of Tennessee Health Science Center, Memphis, TN, USA
| | - Timothy C Fabian
- 1 University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
22
|
Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev (Orlando) 2017; 32:36-57. [PMID: 28811074 DOI: 10.1016/j.trre.2017.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022]
Abstract
Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant (MDR) Gram-negative bacilli (GNB), as they are frequently exposed to antibiotics and the healthcare setting, and are regulary subject to invasive procedures. Nevertheless, no recommendations concerning prevention and treatment are available. A panel of experts revised the available evidence; this document summarizes their recommendations: (1) it is important to characterize the isolate's phenotypic and genotypic resistance profile; (2) overall, donor colonization should not constitute a contraindication to transplantation, although active infected kidney and lung grafts should be avoided; (3) recipient colonization is associated with an increased risk of infection, but is not a contraindication to transplantation; (4) different surgical prophylaxis regimens are not recommended for patients colonized with carbapenem-resistant GNB; (5) timely detection of carriers, contact isolation precautions, hand hygiene compliance and antibiotic control policies are important preventive measures; (6) there is not sufficient data to recommend intestinal decolonization; (7) colonized lung transplant recipients could benefit from prophylactic inhaled antibiotics, specially for Pseudomonas aeruginosa; (8) colonized SOT recipients should receive an empirical treatment which includes active antibiotics, and directed therapy should be adjusted according to susceptibility study results and the severity of the infection.
Collapse
|
23
|
Chen H, Liu Q, Chen Z, Li C. Efficacy of sulbactam for the treatment of Acinetobacter baumannii complex infection: A systematic review and meta-analysis. J Infect Chemother 2017; 23:278-285. [DOI: 10.1016/j.jiac.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/24/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
|
24
|
Cooper TW, Pass SE, Brouse SD, Hall RG. Can Pharmacokinetic and Pharmacodynamic Principles Be Applied to the Treatment of Multidrug-Resistant Acinetobacter? Ann Pharmacother 2017; 45:229-40. [DOI: 10.1345/aph.1p187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE: To discuss treatment options that can be used for treatment of Acinetobacter infections. DATA SOURCES: A MEDLINE search (1966-November 2010) was conducted to identify English-language literature on pharmacotherapy of Acinetobacter and the bibliographies of pertinent articles. Programs and abstracts from infectious diseases meetings were also searched. Search terms included Acinetobacter, multidrug resistance, pharmacokinetics, pharmacodynamics, Monte Carlo simulation, nosocomial pneumonia, carbapenems, polymyxins, sulbactam, aminoglycosides, tetracyclines, tigecycline, rifampin, and fluoroquinolones. DATA SELECTION AND DATA EXTRACTION: All articles were critically evaluated and all pertinent information was included in this review. DATA SYNTHESIS: Multidrug resistant (MDR) Acinetobacter, defined as resistance to 3 or more antimicrobial classes, has increased over the past decade. The incidence of carbapenem-resistant Acinetobacter is also increasing, leading to an increased use of dose optimization techniques and/or alternative antimicrobials, which is driven by local susceptibility patterns. However, Acinetobacter infections that are resistant to all commercially available antibiotics have been reported. General principles are available to guide dose optimization of aminoglycosides, β-lactams, fluoroquinolones, and tigecycline for infections due to gram-negative pathogens. Unfortunately, data specific to patients with Acinetobacter infections are limited. Recent pharmacokinetic-pharmacodynamic information has shed light on colistin dosing. The dilemma with colistin is its concentration-dependent killing, which makes once-daily dosing seem like an attractive option, but its short postantibiotic effect limits a clinician's ability to extend the dosing interval. Localized delivery of antimicrobials is also an attractive option due to the ability to increase drug concentration at the infection site while minimizing systemic adverse events, but more data are needed regarding this approach. CONCLUSIONS: Increased reliance on dosage optimization, combination therapy, and localized delivery of antimicrobials are methods to pursue positive clinical outcomes in MDR Acinetobacter infections since novel antimicrobials will not be available for several years. Well-designed clinical trials with MDR Acinetobacter are needed to define the best treatment options for these patients.
Collapse
|
25
|
Wenzler E, Goff DA, Humphries R, Goldstein EJC. Anticipating the Unpredictable: A Review of Antimicrobial Stewardship and Acinetobacter Infections. Infect Dis Ther 2017; 6:149-172. [PMID: 28260148 PMCID: PMC5446362 DOI: 10.1007/s40121-017-0149-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 11/29/2022] Open
Abstract
Acinetobacter remains one of the most challenging pathogens in the field of infectious diseases owing primarily to the uniqueness and multiplicity of its resistance mechanisms. This resistance often leads to devastatingly long delays in time to appropriate therapy and increased mortality for patients afflicted with Acinetobacter infections. Selecting appropriate empiric and definitive antibacterial therapy for Acinetobacter is further complicated by the lack of reliability in commercial antimicrobial susceptibility testing devices and limited breakpoint interpretations for available agents. Existing treatment options for infections due to Acinetobacter are limited by a lack of robust efficacy and safety data along with concerns regarding appropriate dosing, pharmacokinetic/pharmacodynamic targets, and toxicity. Antimicrobial stewardship programs are essential to combat this unpredictable pathogen through use of infection prevention, rapid diagnostics, antibiogram-optimized treatment regimens, and avoidance of overuse of antimicrobials. The drug development pipeline includes several agents with encouraging in vitro activity against Acinetobacter, but their place in therapy and contribution to the armamentarium against this pathogen remain to be defined. The objective of this review is to highlight the unique challenge of treating infections due to Acinetobacter and summarize recent literature regarding optimal antimicrobial treatment for this pathogen. The drug development pipeline is also explored for future potentially effective treatment options.
Collapse
Affiliation(s)
- Eric Wenzler
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| | - Debra A Goff
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Romney Humphries
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Ellie J C Goldstein
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,R M Alden Research Laboratory, Santa Monica, CA, USA
| |
Collapse
|
26
|
Jeong IB, Na MJ, Son JW, Jo DY, Kwon SJ. High-dose Sulbactam Treatment for Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter Baumannii. Korean J Crit Care Med 2016. [DOI: 10.4266/kjccm.2015.00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63:e61-e111. [PMID: 27418577 PMCID: PMC4981759 DOI: 10.1093/cid/ciw353] [Citation(s) in RCA: 2058] [Impact Index Per Article: 257.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.
Collapse
Affiliation(s)
- Andre C. Kalil
- Departmentof Internal Medicine, Division of Infectious Diseases,
University of Nebraska Medical Center,
Omaha
| | - Mark L. Metersky
- Division of Pulmonary and Critical Care Medicine,
University of Connecticut School of Medicine,
Farmington
| | - Michael Klompas
- Brigham and Women's Hospital and Harvard Medical School
- Harvard Pilgrim Health Care Institute, Boston,
Massachusetts
| | - John Muscedere
- Department of Medicine, Critical Care Program,Queens University, Kingston, Ontario,
Canada
| | - Daniel A. Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine,
University of California, San
Diego
| | - Lucy B. Palmer
- Department of Medicine, Division of Pulmonary Critical Care and Sleep
Medicine, State University of New York at Stony
Brook
| | - Lena M. Napolitano
- Department of Surgery, Division of Trauma, Critical Care and Emergency
Surgery, University of Michigan, Ann
Arbor
| | - Naomi P. O'Grady
- Department of Critical Care Medicine, National
Institutes of Health, Bethesda
| | - John G. Bartlett
- Johns Hopkins University School of Medicine,
Baltimore, Maryland
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari
de Bellvitge, Bellvitge Biomedical Research Institute, Spanish Network for Research in
Infectious Diseases, University of Barcelona,
Spain
| | - Ali A. El Solh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep
Medicine, University at Buffalo, Veterans Affairs Western New
York Healthcare System, New York
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious
Diseases, EVK Herne and Augusta-Kranken-Anstalt
Bochum, Germany
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of
Nebraska Medical Center, Omaha
| | | | - Marcos I. Restrepo
- Department of Medicine, Division of Pulmonary and Critical Care
Medicine, South Texas Veterans Health Care System and University
of Texas Health Science Center at San Antonio
| | - Jason A. Roberts
- Burns, Trauma and Critical Care Research Centre, The
University of Queensland
- Royal Brisbane and Women's Hospital,
Queensland
| | - Grant W. Waterer
- School of Medicine and Pharmacology, University of
Western Australia, Perth,
Australia
| | - Peggy Cruse
- Library and Knowledge Services, National Jewish
Health, Denver, Colorado
| | - Shandra L. Knight
- Library and Knowledge Services, National Jewish
Health, Denver, Colorado
| | - Jan L. Brozek
- Department of Clinical Epidemiology and Biostatistics and Department of
Medicine, McMaster University, Hamilton,
Ontario, Canada
| |
Collapse
|
28
|
Busey K, Ferreira J, Aldridge P, Johnson D, Guzman N, Jankowski CA. Treatment efficacy of Ampicillin/Sulbactam in comparison to alternative beta-lactams for severe Acinetobacter baumannii infections. Infect Dis (Lond) 2016; 48:775-7. [PMID: 27389821 DOI: 10.1080/23744235.2016.1193789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Kirsten Busey
- a Department of Pharmacy , University of Florida Health Jacksonville , Jacksonville , FL , USA
| | - Jason Ferreira
- a Department of Pharmacy , University of Florida Health Jacksonville , Jacksonville , FL , USA
| | - Petra Aldridge
- b Center for Health Equity and Quality Research , University of Florida Health Jacksonville , Jacksonville , FL , USA
| | - Donald Johnson
- a Department of Pharmacy , University of Florida Health Jacksonville , Jacksonville , FL , USA
| | - Nilmarie Guzman
- c Department of Medicine, Division of Infectious Disease , University of Florida Health Jacksonville , Jacksonville , FL , USA
| | - Christopher A Jankowski
- a Department of Pharmacy , University of Florida Health Jacksonville , Jacksonville , FL , USA
| |
Collapse
|
29
|
Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med 2015; 41:2057-75. [DOI: 10.1007/s00134-015-4079-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
|
30
|
Viehman JA, Nguyen MH, Doi Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2015; 74:1315-33. [PMID: 25091170 DOI: 10.1007/s40265-014-0267-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide. Because of various intrinsic and acquired mechanisms of resistance, most β-lactam agents are not effective against many strains, and carbapenems have played an important role in therapy. Recent trends show many infections are caused by carbapenem-resistant or even extensively drug-resistant (XDR) strains, for which effective therapy is not well established. Evidence to date suggests that colistin constitutes the backbone of therapy, but the unique pharmacokinetic properties of colistin have led many to suggest the use of combination antimicrobial therapy. However, the combination of agents and dosing regimens that delivers the best clinical efficacy while minimizing toxicity is yet to be defined. Carbapenems, sulbactam, rifampin and tigecycline have been the most studied in the context of combination therapy. Most data regarding therapy for invasive, resistant A. baumannii infections come from uncontrolled case series and retrospective analyses, though some clinical trials have been completed and others are underway. Early institution of appropriate antimicrobial therapy is shown to consistently improve survival of patients with carbapenem-resistant and XDR A. baumannii infection, but the choice of empiric therapy in these infections remains an open question. This review summarizes the most current knowledge regarding the epidemiology, mechanisms of resistance, and treatment considerations of carbapenem-resistant and XDR A. baumannii.
Collapse
Affiliation(s)
- J Alexander Viehman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, S319 Falk Medical Building, 3601 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | | | | |
Collapse
|
31
|
Gao F, Ye Q, Wan Q, Liu S, Zhou J. Distribution and resistance of pathogens in liver transplant recipients with Acinetobacter baumannii infection. Ther Clin Risk Manag 2015. [PMID: 25848296 DOI: 10.2147/tcrm.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Drug-resistant Acinetobacter baumannii has become a major problem in liver transplant recipients. The aim of this study was to investigate the clinical presentation, distribution, and drug susceptibility characteristics in liver recipients with A. baumannii infection. METHODS We retrospectively investigated 17 liver recipients who developed A. baumannii infection between January 1, 2007 and December 31, 2014. The distribution of A. baumannii and drug susceptibility characteristics were reviewed. RESULTS Infectious complications due to A. baumannii appeared in 17 liver recipients, with a total of 24 episodes. Approximately 63% (15/24) of A. baumannii infections occurred within 2 weeks after transplantation. The most common source of infection was multiple culture-positive sites (35.3%, n=6), followed by the intra-abdominal/biliary tract (23.5%, n=4) and lung (23.5%, n=4). Eight patients (47.1%) had a body temperature of 38°C or higher at the onset of A. baumannii infection. Nine, seven, and 12 recipients had a serum creatinine level of >1.5 mg/dL, a white blood cell count of >15,000/mm(3), and a platelet count of <50,000/mm(3), respectively. There were five (29.4%) cases of septic shock and eight (47.1%) deaths. The rate of antibiotic resistance of A. baumannii to ten of 12 antibiotics investigated was more than 60%. Among the 24 infections caused by A. baumannii, 75% were carbapenem-resistant. The rods were relatively sensitive to tigecycline and cefoperazone-sulbactam. CONCLUSION The clinical manifestations of A. baumannii infection included a high body temperature, a decreased platelet count, an elevated white blood cell count, and onset in the early period after transplantation as well as high mortality. The antibiotic resistance rate of A. baumannii was extremely high. Prevention measures and combination antibiotic therapy are needed to improve the outcomes of liver recipients with A. baumannii infections.
Collapse
Affiliation(s)
- Fei Gao
- Infectious Disease Department of Henan Province People's Hospital, Zhengzhou, People's Republic of China
| | - Qifa Ye
- Department of Transplant Surgery, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China ; Department of Transplant Surgery, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Qiquan Wan
- Department of Transplant Surgery, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shan Liu
- Adelphi University College of Nursing and Public Health, New York, NY, USA
| | - Jiandang Zhou
- Department of Clinical Laboratory of Microbiology, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
32
|
Gao F, Ye Q, Wan Q, Liu S, Zhou J. Distribution and resistance of pathogens in liver transplant recipients with Acinetobacter baumannii infection. Ther Clin Risk Manag 2015; 11:501-5. [PMID: 25848296 PMCID: PMC4381901 DOI: 10.2147/tcrm.s82251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Drug-resistant Acinetobacter baumannii has become a major problem in liver transplant recipients. The aim of this study was to investigate the clinical presentation, distribution, and drug susceptibility characteristics in liver recipients with A. baumannii infection. Methods We retrospectively investigated 17 liver recipients who developed A. baumannii infection between January 1, 2007 and December 31, 2014. The distribution of A. baumannii and drug susceptibility characteristics were reviewed. Results Infectious complications due to A. baumannii appeared in 17 liver recipients, with a total of 24 episodes. Approximately 63% (15/24) of A. baumannii infections occurred within 2 weeks after transplantation. The most common source of infection was multiple culture-positive sites (35.3%, n=6), followed by the intra-abdominal/biliary tract (23.5%, n=4) and lung (23.5%, n=4). Eight patients (47.1%) had a body temperature of 38°C or higher at the onset of A. baumannii infection. Nine, seven, and 12 recipients had a serum creatinine level of >1.5 mg/dL, a white blood cell count of >15,000/mm3, and a platelet count of <50,000/mm3, respectively. There were five (29.4%) cases of septic shock and eight (47.1%) deaths. The rate of antibiotic resistance of A. baumannii to ten of 12 antibiotics investigated was more than 60%. Among the 24 infections caused by A. baumannii, 75% were carbapenem-resistant. The rods were relatively sensitive to tigecycline and cefoperazone-sulbactam. Conclusion The clinical manifestations of A. baumannii infection included a high body temperature, a decreased platelet count, an elevated white blood cell count, and onset in the early period after transplantation as well as high mortality. The antibiotic resistance rate of A. baumannii was extremely high. Prevention measures and combination antibiotic therapy are needed to improve the outcomes of liver recipients with A. baumannii infections.
Collapse
Affiliation(s)
- Fei Gao
- Infectious Disease Department of Henan Province People's Hospital, Zhengzhou, People's Republic of China
| | - Qifa Ye
- Department of Transplant Surgery, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China ; Department of Transplant Surgery, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Qiquan Wan
- Department of Transplant Surgery, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shan Liu
- Adelphi University College of Nursing and Public Health, New York, NY, USA
| | - Jiandang Zhou
- Department of Clinical Laboratory of Microbiology, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
33
|
Lin HS, Lee MH, Cheng CW, Hsu PC, Leu HS, Huang CT, Ye JJ. Sulbactam treatment for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Infect Dis (Lond) 2015; 47:370-8. [PMID: 25746600 DOI: 10.3109/00365548.2014.995129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex has become an important cause of nosocomial pneumonia. Sulbactam is a β-lactamase inhibitor with antimicrobial activity against MDR Acb complex. METHODS To investigate outcomes of pneumonia involving MDR Acb complex treated with sulbactam or ampicillin/sulbactam for at least 7 days, we conducted a retrospective study of 173 adult patients over a 34 month period. RESULTS Of 173 patients, 138 (79.8%) received combination therapy, mainly with carbapenems (119/138, 86.2%). The clinical response rate was 67.6% and the 30 day mortality rate was 31.2%. The independent predictors of clinical failure were malignancy, bilateral pneumonia and shorter duration of treatment. In patients with sulbactam-susceptible strains, there was no difference in clinical and microbiological outcome between combination therapy and monotherapy. Compared to the sulbactam-susceptible group, the sulbactam-resistant group had a lower rate of airway eradication, a longer duration of treatment and a higher rate of combination therapy with predominantly carbapenems (p < 0.05). There was no significant difference between the two groups in clinical resolution and 30 day mortality rates. CONCLUSIONS Sulbactam could be a treatment option for pneumonia involving MDR Acb complex, and combination therapy with carbapenems could be considered for sulbactam-resistant cases.
Collapse
Affiliation(s)
- Huang-Shen Lin
- From the Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Chia-Yi , Chia-Yi, Taiwan , ROC
| | | | | | | | | | | | | |
Collapse
|
34
|
Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 2015; 36:85-98. [PMID: 25643273 DOI: 10.1055/s-0034-1398388] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first decade of the 20th century witnessed a surge in the incidence of infections due to several highly antimicrobial-resistant bacteria in hospitals worldwide. Acinetobacter baumannii is one such organism that turned from an occasional respiratory pathogen into a major nosocomial pathogen. An increasing number of A. baumannii genome sequences have broadened our understanding of the genetic makeup of these bacteria and highlighted the extent of horizontal transfer of DNA. Animal models of disease combined with bacterial mutagenesis have provided some valuable insights into mechanisms of A. baumannii pathogenesis. Bacterial factors known to be important for disease include outer membrane porins, surface structures including capsule and lipopolysaccharide, enzymes such as phospholipase D, iron acquisition systems, and regulatory proteins. A. baumannii has a propensity to accumulate resistance to various groups of antimicrobial agents. In particular, carbapenem resistance has become commonplace, accounting for the majority of A. baumannii strains in many hospitals today. Carbapenem-resistant strains are often resistant to all other routinely tested agents. Treatment of carbapenem-resistant A. baumannii infection therefore involves the use of combinations of last resort agents such as colistin and tigecycline, but the efficacy and safety of these approaches are yet to be defined. Antimicrobial-resistant A. baumannii has high potential to spread among ill patients in intensive care units. Early recognition and timely implementation of appropriate infection control measures is crucial in preventing outbreaks.
Collapse
Affiliation(s)
- Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerald L Murray
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
35
|
Initiate antibacterial treatment early in patients with carbapenem-resistant or extensively drug-resistant Acinetobacter baumannii infection. DRUGS & THERAPY PERSPECTIVES 2015. [DOI: 10.1007/s40267-014-0173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob Agents Chemother 2015; 59:1680-9. [PMID: 25561334 DOI: 10.1128/aac.04808-14] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulbactam is a class A β-lactamase inhibitor with intrinsic whole-cell activity against certain bacterial species, including Acinetobacter baumannii. The clinical use of sulbactam for A. baumannii infections is of interest due to increasing multidrug resistance in this pathogen. However, the molecular drivers of its antibacterial activity and resistance determinants have yet to be precisely defined. Here we show that the antibacterial activities of sulbactam vary widely across contemporary A. baumannii clinical isolates and are mediated through inhibition of the penicillin-binding proteins (PBPs) PBP1 and PBP3, with very low frequency of resistance; the rare pbp3 mutants with high levels of resistance to sulbactam are attenuated in fitness. These results support further investigation of the potential clinical utility of sulbactam.
Collapse
|
37
|
Altun HU, Yagci S, Bulut C, Sahin H, Kinikli S, Adiloglu AK, Demiroz AP. Antimicrobial Susceptibilities of Clinical Acinetobacter baumannii Isolates With Different Genotypes. Jundishapur J Microbiol 2014; 7:e13347. [PMID: 25741433 PMCID: PMC4335573 DOI: 10.5812/jjm.13347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/01/2013] [Accepted: 10/14/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The treatment of Acinetobacter baumannii infections is difficult. Carbapenems, sulbactam, and colistin are the most effective antibiotics. OBJECTIVES The aim of this study was to evaluate the susceptibilities of genotypically different A. baumannii isolates to sulbactam, amikacin, netilmicin, meropenem, tigecycline and colistin. PATIENTS AND METHODS Isolates from various clinical samples of patients with hospital-acquired infections that were identified by the VITEK 2 Compact system in our hospital's microbiology laboratory between January 2010 and March 2012 were included in the study. To determine genetic relatedness of the isolates, the rep-PCR method was used. The broth microdilution method was used for amikacin, netilmicin, meropenem and colistin, while E-test was used for sulbactam and tigecycline. RESULTS Among the 300 isolates, 30 were found to be genotypically different and were evaluated in terms of their antimicrobial susceptibilities. All isolates were susceptible to colistin. The susceptibility rates were 66.6%, 50%, 36.6%, 30%, and 10% for netilmicin, tigecycline, sulbactam, amikacin, and meropenem, respectively. For carbapenem resistant isolates, the susceptibility rates were 66.6%, 51.8%, 33.3%, and 25.9% for netilmicin, tigecycline, sulbactam, and amikacin, respectively. The sulbactam minimum inhibitory concentration (MIC) 50 and MIC 90 were 8 μg/mL and 12 μg/mL, respectively. CONCLUSIONS In this study, it was concluded that determining the cut-off value for MIC breakpoints for sulbactam alone has a critical impact on the susceptibility results.
Collapse
Affiliation(s)
- Hatice Uludag Altun
- Department of Infectious Diseases and Clinical Microbiology Clinic, Ankara Training and Research Hospital, Ankara, Turkey
- Corresponding author: Hatice Uludag Altun, Department of Infectious Diseases and Clinical Microbiology Clinic, Ankara Training and Research Hospital, P.O.Box: 06340, Ankara, Turkey. Tel: +31-25953000, Fax: +31-23631218, E-mail:
| | - Server Yagci
- Department of Infectious Diseases and Clinical Microbiology Clinic, Ankara Training and Research Hospital, Ankara, Turkey
| | - Cemal Bulut
- Department of Infectious Diseases and Clinical Microbiology Clinic, Ankara Training and Research Hospital, Ankara, Turkey
| | - Hunkar Sahin
- Department of Medical Microbiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Sami Kinikli
- Department of Infectious Diseases and Clinical Microbiology Clinic, Ankara Training and Research Hospital, Ankara, Turkey
| | - Ali Kudret Adiloglu
- Department of Medical Microbiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Ali Pekcan Demiroz
- Department of Infectious Diseases and Clinical Microbiology Clinic, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
38
|
Lai HH, Liou BH, Chang YY, Kuo SC, Lee YT, Chen TL, Fung CP. Risk factors and clinical outcome of sulbactam nonsusceptibility in monomicrobial Acinetobacter nosocomialis bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:371-7. [PMID: 25081987 DOI: 10.1016/j.jmii.2014.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sulbactam is an effective antimicrobial agent against multidrug-resistant Acinetobacter spp. This retrospective study evaluated the risk factors of sulbactam nonsusceptibility (SNS) in monomicrobial Acinetobacter nosocomialis bacteremia and its related outcome. METHODS This 9-year retrospective study included 267 patients who were admitted to a large teaching hospital in Taiwan with monomicrobial A. nosocomialis bacteremia. A. nosocomialis was identified to the species level using molecular methods. Antimicrobial susceptibilities were determined by the agar dilution method. To identify the risk factors of acquiring resistant strains, significant clinical variables derived from univariate analysis were entered into multivariate analysis. Polymerase chain reaction was used to identify blaTEM. Clonality was determined by pulsed-field gel electrophoresis. RESULTS A total of 41 of the 267 patients (15.4%) had SNS A. nosocomialis bacteremia. Compared to those with susceptible strains, these patients had higher 14-day mortality (17.1% vs. 7.5%, p = 0.049), were more likely to have higher Acute Physiology and Chronic Health Evaluation (APACHE) II score, were more frequently admitted to the intensive care unit, and had previously received broad-spectrum antibiotics and underwent invasive procedures. In multivariate analysis, the independent risk factors were high APACHE II score and prior use of arterial line [odds ratio (OR), 1.048; 95% confidence interval (CI), 1.007-1.091; p = 0.022 and OR, 2.936; 95% CI, 1.339-6.441; p = 0.007, respectively]. No outbreak was identified and SNS isolates did not harbor blaTEM. CONCLUSION For monomicrobial A. nosocomialis bacteremia, the mortality of patients with SNS strains was higher. The SNS strains are more commonly recovered from patients with higher APACHE score and receiving more invasive procedures, especially arterial line.
Collapse
Affiliation(s)
- Hsin-Hao Lai
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Internal Medicine, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan
| | - Bo-Huang Liou
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yea-Yuan Chang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chen Kuo
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan.
| | - Yi-Tzu Lee
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Te-Li Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chang-Phone Fung
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Karaoglan I, Zer Y, Bosnak VK, Mete AO, Namiduru M. In vitro synergistic activity of colistin with tigecycline or β-lactam antibiotic/β-lactamase inhibitor combinations against carbapenem-resistant Acinetobacter baumannii. J Int Med Res 2014; 41:1830-7. [PMID: 24265334 DOI: 10.1177/0300060513496172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Nosocomial infection caused by carbapenem-resistant Acinetobacter baumannii is a worldwide problem and treatment options remain controversial. This study investigated the in vitro effect of various antibiotic combinations against carbapenem-resistant A. baumannii strains. METHODS Antibiotic susceptibility of A. baumannii strains was analysed. In vitro synergistic efficacy of colistin combined with tigecycline, cefoperazone/sulbactam or piperacillin/tazobactam was tested against carbapenem-resistant A. baumannii strains. Synergy studies were performed using an eplisometer test-strip method. RESULTS Of the 50 carbapenem-resistant A. baumannii strains tested, 96% were susceptible to colistin and 64% were susceptible to tigecycline. Colistin-tigecycline, colistin-cefoperazone/sulbactam and colistin-piperacillin/tazobactam combinations were found to have synergistic effects against six (12%), two (4%), and one (2%), respectively, of the strains tested. CONCLUSIONS Colistin combined with tigecycline, cefoperazone/sulbactam or piperacillin/tazobactam revealed synergistic effects in some carbapenem-resistant A. baumannii strains. These results, together with the shortage of treatment options and the risk of developing resistance to colistin, suggest that clinicians should use colistin combined with other antibiotics or β-lactamase inhibitors when treating carbapenem-resistant A. baumannii infection.
Collapse
Affiliation(s)
- Ilkay Karaoglan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | | | | | | | | |
Collapse
|
40
|
Poulikakos P, Tansarli GS, Falagas ME. Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review. Eur J Clin Microbiol Infect Dis 2014; 33:1675-85. [DOI: 10.1007/s10096-014-2124-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/09/2014] [Indexed: 12/17/2022]
|
41
|
Abstract
As a consequence of antibiotic overuse and misuse, nosocomial infections caused by multidrug-resistant bacteria represent a physician's nightmare throughout the world. No newer antimicrobials active against Pseudomonas aeruginosa, the main multidrug-resistant nosocomial pathogen, are available or under investigation. The only exceptions are linezolid, some newer glycopeptides (dalbavancin, oritavancin and telavancin) and daptomycin (a lipopeptide), which are active against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) strains, as well as tigecycline, a potent in vitro glycylcycline against MRSA, VRE, Acinetobacter baumannii and entended-spectrum beta-lactamase (ESBL)+ Enterobacteriaceae. Colistin, an antibiotic of the 1950s has been rediscovered by intensive care unit physicians for use against ESBL+ Enterobacteriaceae, as well as against multidrug-resistant P. aeruginosa and A. baumannii isolates. Although success rates with colistin range between 50 and 73%, almost all studies are retrospective. Immunostimulation efforts against S. aureus are still under development. As antibiotic research and development stagnate, rational policies for prescribing existing antibiotics plus strict infection control are the current mainstay efforts for preventing and combating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Helen Giamarellou
- 4th Department of Internal Medicine, University General Hospital ATTIKON, 1 Rimini Street, 124 64 Athens, Greece.
| |
Collapse
|
42
|
|
43
|
Baranzelli A, Wallyn F, Nseir S. [Lower respiratory tract infections related to Stenotrophomonas maltophilia and Acinetobacter baumannii]. REVUE DE PNEUMOLOGIE CLINIQUE 2013; 69:250-259. [PMID: 23583504 DOI: 10.1016/j.pneumo.2013.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 02/02/2013] [Accepted: 02/15/2013] [Indexed: 06/02/2023]
Abstract
Stenotrophomonas maltophilia and Acinetobacter baumannii are both non-fermenting ubiquitous Gram-negative bacilli. The incidence of lower respiratory tract infections related to these microorganisms is increasing, especially in intensive care units. Their capacity to acquire resistance against several antimicrobials is challenging for clinicians and microbiologists. Despite their low virulence, these pathogens are responsible for colonization and infection in patients with comorbidities, immunosuppression, and critically ill patients. S. maltophilia and A. baumannii are mainly identified in nosocomial infections: ventilator-associated pneumonia, bacteremia and surgical wound infection. Infections related to these microorganism are associated with high mortality and morbidity. Trimethoprime-sulfamethoxazole and carbapenem are the first line treatment for infections related to S. maltophilia and A. baumannii respectively. However, the increasing rate of resistance against these agents results in difficulties in treating patients with infections related to these pathogens. New antimicrobial agents and further randomized studies are needed to improve the treatment of these infections. Prevention of spared of these multidrug-resistant bacteria is mandatory, including hand-hygiene, environment cleaning, and limited usage of large spectrum antibiotics.
Collapse
Affiliation(s)
- A Baranzelli
- Service de réanimation médicale, hôpital A.-Calmette, CHRU de Lille, boulevard du Pr-Leclercq, 59037 Lille cedex, France
| | | | | |
Collapse
|
44
|
Adnan S, Paterson DL, Lipman J, Roberts JA. Ampicillin/sulbactam: its potential use in treating infections in critically ill patients. Int J Antimicrob Agents 2013; 42:384-9. [PMID: 24041466 DOI: 10.1016/j.ijantimicag.2013.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 01/21/2023]
Abstract
The purpose of this paper was to review the potential utility of ampicillin/sulbactam (SAM) as a therapy for serious infections in critically ill patients. Data for this review were identified by searches of PubMed and of the reference lists of the included articles. We found that SAM appears to have a number of characteristics that support its use in the treatment of serious infections in critically ill patients. SAM demonstrates extensive penetration into many infection sites, supporting its use in a wide range of infection types. Microbiologically, sulbactam has strong intrinsic antibiotic activity against multidrug-resistant (MDR) bacteria, including Acinetobacter baumannii, which supports its use for the treatment of infections mediated by this pathogen. Of some concern, there have been reports showing a decline in susceptibility of some bacteria to SAM. As such, use of lower doses (4/2g/day), particularly for MDR A. baumannii, has been linked with a 30% reduced success rate in critically ill patients. The therapeutic challenges for ensuring achievement of optimal dosing of SAM result partly from bacterial susceptibility but also from the pharmacokinetic (PK) alterations common to β-lactam agents in critical illness. These PK changes are likely to reduce the ability of standard dosing to achieve the concentrations observed in non-critically ill patients. Optimisation of therapy may be more likely with the use of higher doses, administration by 4h infusion or by combination therapy, particularly for the treatment of infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Syamhanin Adnan
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
45
|
Lee YT, Tsao SM, Hsueh PR. Clinical outcomes of tigecycline alone or in combination with other antimicrobial agents for the treatment of patients with healthcare-associated multidrug-resistant Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis 2013; 32:1211-20. [PMID: 23553594 DOI: 10.1007/s10096-013-1870-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/20/2013] [Indexed: 02/06/2023]
Abstract
Tigecycline (TG) has been shown to be active in vitro against Acinetobacter baumannii, although data on the clinical efficacy of TG alone or in combination for the treatment of infections due to multidrug-resistant A. baumannii (MDRAB) remain limited. The purpose of this study was to investigate the clinical outcomes of patients with healthcare-associated infections (HAIs) caused by MDRAB who were treated with imipenem/cilastatin and sulbactam, and TG alone or in combination with other antibiotics. A total of 386 patients with HAIs caused by MDRAB were retrospectively analyzed and grouped into TG and non-TG groups, depending on whether they received TG treatment. Of the 266 patients in the TG group, 108 were treated with TG alone and 158 were treated with TG in combination with ceftazidime, ceftriaxone, piperacillin/tazobactam, or a carbapenem. All 120 patients in the non-TG group were treated with imipenem/cilastatin and sulbactam. The primary outcome measure was 30-day mortality after TG treatment and the secondary outcome was clinical outcome. There were no significant differences in survival rates between the two groups. However, the rate of unfavorable outcome was significantly lower (p < 0.05) among patients in the TG group than among patients in the non-TG group. The most significant predictor of unfavorable outcome was sepsis, whereas TG treatment and microbial eradication were the most significant predictors of favorable outcomes. Our study represents the largest study of patients with MDRAB infection treated with TG and expands our understanding of the role of TG therapy alone or in combination with other agents for the treatment of HAI caused by MDRAB.
Collapse
Affiliation(s)
- Y-T Lee
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | |
Collapse
|
46
|
Treatment of methicillin-resistant Staphylococcus aureus ventilator-associated pneumonia with high-dose vancomycin or linezolid. J Trauma Acute Care Surg 2012; 72:1478-83. [PMID: 22695410 DOI: 10.1097/ta.0b013e318250911b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this study was to determine the clinical cure rate of high-dose vancomycin for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) ventilator-associated pneumonia (VAP) in critically ill trauma patients. Recent trials suggest that a traditional dose of 1 g q12 hours results in unacceptable cure rates for MRSA VAP. Thus, more aggressive vancomycin dosing has the potential to improve efficacy. Based on pharmacokinetic principles, the goal initial dose at the study center has been 20 mg/kg q12 hours or q8 hours since the 1990s. METHODS All patients admitted to the trauma intensive care unit from 1997 to 2008 diagnosed with MRSA VAP were retrospectively reviewed. Diagnosis required bacterial growth ≥ 100,000 colony forming units/mL from a bronchoscopic bronchoalveolar lavage, new or changing infiltrate, plus at least two of the following: fever, leukocytosis or leukopenia, or purulent sputum. RESULTS Overall, 125 patients with 141 episodes of MRSA VAP were identified. Mean age was 47 years ± 21 years, median Injury Severity Score was 29 (22-43), 70% of patients were male, and the mean length of intensive care unit stay was 38 days ± 35 days. The mean initial vancomycin dose was 18.1 mg/kg/dose with a mean duration of therapy of 11 days. Clinical success was achieved in 88% (125 of 131) of episodes, with microbiological success in 89% (66 of 74) of episodes with a follow-up bronchoscopic bronchoalveolar lavage. Overall mortality was 20% (25 of 125), with death due to VAP in 12 of 25 deaths. Mean initial vancomycin trough concentrations were 10.6 mg/L in the clinical success group and 13.3 mg/L in the clinical failure group (p = not significant). CONCLUSIONS High-dose vancomycin provided an acceptable cure rate for MRSA VAP in critically ill trauma patients. LEVEL OF EVIDENCE Therapeutic study, level III.
Collapse
|
47
|
Gupta D, Agarwal R, Aggarwal AN, Singh N, Mishra N, Khilnani GC, Samaria JK, Gaur SN, Jindal SK. Guidelines for diagnosis and management of community- and hospital-acquired pneumonia in adults: Joint ICS/NCCP(I) recommendations. Lung India 2012; 29:S27-62. [PMID: 23019384 PMCID: PMC3458782 DOI: 10.4103/0970-2113.99248] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dheeraj Gupta
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh Nath Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, Indian Chest Society, India
| | - G. C. Khilnani
- Department of Pulmonary Medicine, National College of Chest Physicians, India
| | - J. K. Samaria
- Department of Pulmonary Medicine, Indian Chest Society, India
| | - S. N. Gaur
- Department of Pulmonary Medicine, National College of Chest Physicians, India
| | - S. K. Jindal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - for the Pneumonia Guidelines Working Group
- Pneumonia Guidelines Working Group Collaborators (43) A. K. Janmeja, Chandigarh; Abhishek Goyal, Chandigarh; Aditya Jindal, Chandigarh; Ajay Handa, Bangalore; Aloke G. Ghoshal, Kolkata; Ashish Bhalla, Chandigarh; Bharat Gopal, Delhi; D. Behera, Delhi; D. Dadhwal, Chandigarh; D. J. Christopher, Vellore; Deepak Talwar, Noida; Dhruva Chaudhry, Rohtak; Dipesh Maskey, Chandigarh; George D’Souza, Bangalore; Honey Sawhney, Chandigarh; Inderpal Singh, Chandigarh; Jai Kishan, Chandigarh; K. B. Gupta, Rohtak; Mandeep Garg, Chandigarh; Navneet Sharma, Chandigarh; Nirmal K. Jain, Jaipur; Nusrat Shafiq, Chandigarh; P. Sarat, Chandigarh; Pranab Baruwa, Guwahati; R. S. Bedi, Patiala; Rajendra Prasad, Etawa; Randeep Guleria, Delhi; S. K. Chhabra, Delhi; S. K. Sharma, Delhi; Sabir Mohammed, Bikaner; Sahajal Dhooria, Chandigarh; Samir Malhotra, Chandigarh; Sanjay Jain, Chandigarh; Subhash Varma, Chandigarh; Sunil Sharma, Shimla; Surender Kashyap, Karnal; Surya Kant, Lucknow; U. P. S. Sidhu, Ludhiana; V. Nagarjun Mataru, Chandigarh; Vikas Gautam, Chandigarh; Vikram K. Jain, Jaipur; Vishal Chopra, Patiala; Vishwanath Gella, Chandigarh
| |
Collapse
|
48
|
Gobernado Serrano M. [Acinetobacter baumannii. An opportunistic pathogen offside?]. Med Clin (Barc) 2012; 138:204-6. [PMID: 22075229 DOI: 10.1016/j.medcli.2011.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 09/22/2011] [Indexed: 11/26/2022]
|
49
|
Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents 2011; 39:105-14. [PMID: 22113193 DOI: 10.1016/j.ijantimicag.2011.10.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022]
Abstract
Despite having a reputation of low virulence, Acinetobacter baumannii is an emerging multidrug-resistant (MDR) pathogen responsible for community- and hospital-acquired infections that are difficult to control and treat. Interest in this pathogen emerged about one decade ago because of its natural MDR phenotype, its capability of acquiring new mechanisms of resistance and the existence of nosocomial outbreaks. Recent advances in molecular biology, including full genome sequencing of several A. baumannii isolates, has led to the discovery of the extraordinary plasticity of their genomes, which is linked to their great propensity to adapt to any environment, including hospitals. In this context, as well as the increasing antimicrobial resistance amongst A. baumannii isolates to the last-line antibiotics carbapenems and colistin, therapeutic options are very limited or absent in some cases of infections with pandrug-resistant bacteria. However, a large proportion of patients may be colonised by such MDR bacteria without any sign of infection, leading to a recurrent question for clinicians as to whether antibiotic treatment should be given and will be effective in the presence of resistance mechanisms. The worldwide emergence of A. baumannii strains resistant to colistin is worrying and the increasing use of colistin to treat infections caused by MDR bacteria will inevitably increase the recovery rate of colistin-resistant isolates in the future. Current knowledge about A. baumannii, including biological and epidemiological aspects as well as resistance to antibiotics and antibiotic therapy, are reviewed in this article, in addition to therapeutic recommendations.
Collapse
Affiliation(s)
- Marie Kempf
- Aix-Marseille University, URMITE CNRS-IRD, UMR 6236, Faculté de Médecine et de Pharmacie, Université de Méditerranée, 27 Bd. Jean Moulin, 13385 Marseille cedex 05, France
| | | |
Collapse
|
50
|
Czosnowski QA, Wood GC, Magnotti LJ, Croce MA, Swanson JM, Boucher BA, Fabian TC. Clinical and microbiologic outcomes in trauma patients treated for Stenotrophomonas maltophilia ventilator-associated pneumonia. Pharmacotherapy 2011; 31:338-45. [PMID: 21449623 DOI: 10.1592/phco.31.4.338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
STUDY OBJECTIVES To determine clinical and microbiologic plus clinical success rates in critically ill trauma patients who received treatment for Stenotrophomonas maltophilia ventilator-associated pneumonia (VAP). DESIGN Retrospective medical record review. SETTING Level I trauma intensive care unit of a large academic medical center. PATIENTS A total of 101 patients who developed S. maltophilia VAP between January 1997 and December 2007. MEASUREMENTS AND MAIN RESULTS Patients' baseline demographic and clinical characteristics, as well as characteristics of their VAP, were documented. The primary study outcome was the rate of clinical success in patients with S. maltophilia VAP; a secondary outcome was microbiologic plus clinical success rate in these patients. Standard definitions were employed to determine these outcomes related to VAP treatment. The study population had higher injury severity scores and a higher rate of traumatic brain injury than is typically observed in the study's intensive care unit. The median time to diagnosis of S. maltophilia VAP was 15 days (interquartile range 11-24 days). Stenotrophomonas maltophilia was the sole organism isolated in 34% of patients; the other patients had polymicrobial VAP. Despite inadequate empiric antibiotic therapy being administered to 97% of the patients, the overall clinical success rate was 87%. The microbiologic plus clinical success rate was 82%. The most common treatments for S. maltophilia VAP were trimethoprim-sulfamethoxazole (77 patients received monotherapy, 9 received combination therapy) and ciprofloxacin (6 patients received monotherapy, 8 received combination therapy); all-cause and VAP-related mortality rates were 13% and 7%, respectively. CONCLUSION Critically ill trauma patients with S. maltophilia VAP responded well to therapy despite high rates of inadequate empiric antibiotic administration. Trimethoprim-sulfamethoxazole was the most common therapy, but clinical success rates did not differ significantly based on antibiotic selection. This study adds significantly to the available S. maltophilia VAP outcomes data.
Collapse
Affiliation(s)
- Quinn A Czosnowski
- Department of Pharmacy Practice and Administration, Philadelphia College of Pharmacy, University of Sciences in Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|