1
|
Cornelius JM, Vernasco BJ, Mori N, Watts HE. Response to Food Restriction, but Not Social Information Use, Varies Seasonally in Captive Cardueline Finches. Integr Comp Biol 2024; 64:1780-1791. [PMID: 38609338 DOI: 10.1093/icb/icae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Temperate winters can impose severe conditions on songbirds that threaten survival, including shorter days and often lower temperatures and food availability. One well-studied mechanism by which songbirds cope with such conditions is seasonal acclimatization of thermal metabolic traits, with strong evidence for both preparative and responsive changes in thermogenic capacity (i.e., the ability to generate heat) to low winter temperatures. However, a bird's ability to cope with seasonal extremes or unpredictable events is likely dependent on a combination of behavioral and physiological traits that function to maintain allostatic balance. The ability to cope with reduced food availability may be an important component of organismal response to temperate winters in songbirds. Here, we compare responses to experimentally reduced food availability at different times of year in captive red crossbills (Loxia curvirostra) and pine siskins (Spinus pinus)-two species that cope with variable food resources and live in cold places-to investigate seasonal changes in the organismal response to food availability. Further, red crossbills are known to use social information to improve responses to reduced food availability, so we also examine whether the use of social information in this context varies seasonally in this species. We find that pine siskins and red crossbills lose less body mass during time-restricted feedings in late winter compared to summer, and that red crossbills further benefit from social information gathered from observing other food-restricted red crossbills in both seasons. Observed changes in body mass were only partially explained by seasonal differences in food intake. Our results demonstrate seasonal acclimation to food stress and social information use across seasons in a controlled captive environment and highlight the importance of considering diverse physiological systems (e.g., thermogenic, metabolic, digestive, etc.) to understand organismal responses to environmental challenges.
Collapse
Affiliation(s)
- J M Cornelius
- Department of Integrative Biology, 4575 SW Research Way, Oregon State University, Corvallis, OR 97333, USA
| | - B J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA 99164 , USA
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - N Mori
- Department of Integrative Biology, 4575 SW Research Way, Oregon State University, Corvallis, OR 97333, USA
| | - H E Watts
- School of Biological Sciences, Washington State University, Pullman, WA 99164 , USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
2
|
Kou G, Wang Y, Ge S, Yin Y, Sun Y, Li D. Moderate mass loss enhances flight performance via alteration of flight kinematics and postures in a passerine bird. J Exp Biol 2023; 226:jeb245862. [PMID: 37947199 DOI: 10.1242/jeb.245862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Many birds experience fluctuations in body mass throughout the annual life cycle. The flight efficiency hypothesis posits that adaptive mass loss can enhance avian flight ability. However, whether birds can increase additional wing loading following mass loss and how birds adjust flight kinematics and postures remain largely unexplored. We investigated physiological changes in body condition in breeding female Eurasian tree sparrows (Passer montanus) through a dietary restriction experiment and determined the changes in flight kinematics and postures. Body mass decreased significantly, but the external maximum load and mass-corrected total load increased significantly after 3 days of dietary restriction. After 6 days of dietary restriction (DR6), hematocrit, pectoralis and hepatic fat content, take-off speed, theoretical maximum range speed and maximum power speed declined significantly. Notably, the load capacity and power margin remained unchanged relative to the control group. The wing stroke amplitude and relative downstroke duration were not affected by the interaction between diet restriction and extra load. Wing stroke amplitude significantly increased after DR6 treatment, while the relative downstroke duration significantly decreased. The stroke plane angle significantly increased after DR6 treatment only in the load-free condition. In addition, the sparrows adjusted their body angle and stroke plane angle in response to the extra load, but stroke amplitude and wingbeat frequency remained unchanged. Therefore, birds can maintain and even enhance their flight performance by adjusting flight kinematics and postures after a short-term mass loss.
Collapse
Affiliation(s)
- Guanqun Kou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Shiyong Ge
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuan Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, Hebei Province, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
3
|
Cornelius JM. Advance social information allows red crossbills ( Loxia curvirostra) to better conserve body mass and intestinal mass during food stress. Proc Biol Sci 2022; 289:20220516. [PMID: 35582792 PMCID: PMC9114945 DOI: 10.1098/rspb.2022.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Animals prepare for fluctuations in resources through advance storage of energy, planned reduction in energy costs or by moving elsewhere. Unpredictable fluctuations in food, however, may be particularly challenging if animals cannot avoid negative impacts on body condition. Social information may help animals to cope with unpredictable resources if cues from individuals with low foraging success give advance warning about deteriorating conditions. This study investigates the impact of social information on behaviour and physiology of food-restricted captive red crossbills (Loxia curvirostra). Birds were restricted to two short feeding periods per day to simulate a decline in resources and were given social information from food-restricted neighbours either before (i.e. predictive) or during (i.e. parallel) the food-restriction period. Focal birds better conserved body mass during food restriction if social information was predictive of the decline in resources. Crossbills with predictive information ate more food, had larger intestinal mass and better conserved pectoral muscle size at the end of the restriction period compared to those with parallel social information. These data suggest that birds can use social information to alter behavioural and physiological responses during food shortage in ways that may confer an adaptive advantage for survival.
Collapse
Affiliation(s)
- J. M. Cornelius
- Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Yang W, Chang W, Song Z, Zhang Y, Wang X. Transfer learning for denoising the echolocation clicks of finless porpoise (Neophocaena phocaenoides sunameri) using deep convolutional autoencoders. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:1243. [PMID: 34470267 DOI: 10.1121/10.0005887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Ocean noise has a negative impact on the acoustic recordings of odontocetes' echolocation clicks. In this study, deep convolutional autoencoders (DCAEs) are presented to denoise the echolocation clicks of the finless porpoise (Neophocaena phocaenoides sunameri). A DCAE consists of an encoder network and a decoder network. The encoder network is composed of convolutional layers and fully connected layers, whereas the decoder network consists of fully connected layers and transposed convolutional layers. The training scheme of the denoising autoencoder was applied to learn the DCAE parameters. In addition, transfer learning was employed to address the difficulty in collecting a large number of echolocation clicks that are free of ambient sea noise. Gabor functions were used to generate simulated clicks to pretrain the DCAEs; subsequently, the parameters of the DCAEs were fine-tuned using the echolocation clicks of the finless porpoise. The experimental results showed that a DCAE pretrained with simulated clicks achieved better denoising results than a DCAE trained only with echolocation clicks. Moreover, deep fully convolutional autoencoders, which are special DCAEs that do not contain fully connected layers, generally achieved better performance than the DCAEs that contain fully connected layers.
Collapse
Affiliation(s)
- Wuyi Yang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, People's Republic of China
| | - Wenlei Chang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, People's Republic of China
| | - Zhongchang Song
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, People's Republic of China
| | - Xianyan Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| |
Collapse
|
5
|
Ramirez-Otarola N, Naya DE, Sabat P. Seasonal changes in digestive enzymes in five bird species. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most animals must cope with seasonal fluctuations in environmental conditions, including variations in food availability and composition. Accordingly, it is expected that most species should exhibit reversible seasonal phenotypic adjustments in their physiology. Here, we assessed seasonal variation in the activity of three digestive enzymes (sucrase, maltase, and aminopeptidase-N) in one omniviorous bird species (Rufous-collared Sparrow (Zonotrichia capensis (P. L. Statius Müller, 1776))), three granivorous bird species (Black-chinned Siskin (Carduelis barbata (Molina, 1782)), Common Diuca Finch (Diuca diuca (Molina, 1782)), and Mourning Sierra Finch (Phrygilus fruticeti (Kittlitz, 1833))), and one insectivorous bird species (Plain-mantled Tit-Spinetail (Leptasthenura aegithaloides (Kittlitz, 1830))). Based on the adaptive modulation hypothesis, we predicted that the omnivorous species should exhibit the largest seasonal variation in the activity of its digestive enzymes in relation to granivorous and insectivorous species. We found that Z. capensis adjusts total activities of disaccharidases, total sucrase activity varied between seasons in C. barbata, and total activity of aminopeptidase-N only changed seasonally in L. aegithaloides. Moreover, this last species modified the tissue-specific activity of both disaccharidases as well as the wet mass of its intestine. Taken together, our results suggest that seasonal dietary changes occur in most of the species, regardless of the trophic categories in which they belong. Consequently, a better knowledge of the diet and its seasonal variation is necessary to better account for the results recorded in this study.
Collapse
Affiliation(s)
- Natalia Ramirez-Otarola
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Daniel E. Naya
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
6
|
Duerr RS, Klasing KC. Effects of Added Lipids on Digestibility and Nitrogen Balance in Oiled Common Murres ( Uria aalge ) and Western Grebes ( Aechmophorus occidentalis ) Fed Four Formulations of a Critical Care Diet. J Avian Med Surg 2017. [PMID: 28644081 DOI: 10.1647/2016-172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nutritional support is a primary therapy administered to oiled animals during responses to oil spills, but data informing nutritional decision-making during events are limited. In this study, 44 common murres ( Uria aalge ) and 6 Western grebes ( Aechmophorus occidentalis ), naturally oiled by oceanic seeps off the coast of Ventura and Santa Barbara Counties, CA, USA, were assigned to 1 of 4 groups fed diets with varying levels (6.8% [no added oil], 11%, and 20%) and types (salmon, corn) of oil added to a partially purified basal diet. Birds used in the study ranged from extremely emaciated to thin body condition (62%-80% wild bird mean body mass). Acid-insoluble ash was used as an indigestible dietary marker to quantify nitrogen retention, apparent nitrogen digestibility, nitrogen-corrected apparent metabolizable energy, energy digestibility, fat retention, fat digestibility, and estimated fat excretion. Fat excretion is important in these species because once birds have been cleaned they are at risk of plumage recontamination from excreted fat during care. Lower fat diets resulted in lower fat excretion but higher nitrogen retention, higher apparent nitrogen digestibility, and higher apparent metabolizable energy. Decreases in nitrogen retention were significantly related to increases in fat excretion. Regardless of diet, energy digestibility significantly declined with declines in body mass, suggesting severity of emaciation reduced a birds' ability to extract energy from food. Energy digestibility was highest in the 11% (low) salmon oil diet; hence, this diet had the highest effective energy content despite a lower gross kcal/kg diet. Diets fed during oil spills historically have had high fat concentrations to provide maximum caloric support. Results of this study suggest that lower fat diets may be more efficacious for nutritionally depleted seabirds. This study provides valuable data to guide clinical decision making regarding nutritional support during oil spills and other mass stranding events.
Collapse
|
7
|
Liang QJ, Zhao L, Wang JQ, Chen Q, Zheng WH, Liu JS. Effect of food restriction on the energy metabolism of the Chinese bulbul (Pycnonotus sinensis). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:79-87. [PMID: 25855226 DOI: 10.13918/j.issn.2095-8137.2015.2.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Food resources play an important role in the regulation of animals' physiology and behavior. We investigated the effect of short-term food restriction on metabolic thermogenesis of Chinese bulbuls (Pycnonotus sinensis) by measuring changes in body mass, body fat, basic metabolic rate (BMR), and organ mass of wild-caught Chinese bulbuls from Wenzhou, China. Short-term food restriction induced a significant decrease in body mass and body fat but body mass returned to normal levels soon after food was no longer restricted. Food restriction caused a significant reduction in BMR after 7 days (P<0.05), which returned to normal levels after food restriction ceased. Log total BMR was positively correlated with log body mass (r(2)=0.126, P<0.05). The dry masses of livers and the digestive tract were higher in birds that had been subject to temporary food restriction than in control birds and those subject to continual food restriction (P<0.001 and P<0.05, respectively). There was also significant differences in the dry mass of the lungs (P<0.05), heart (P<0.01), and spleen (P<0.05) in birds subject to short-term food restriction compared to control birds and those subject to continual food restriction. BMR was positively correlated with body and organ (heart, kidney and stomach) mass. These results suggest that the Chinese bulbul adjusts to restricted food availability by utilizing its energy reserves, lowering its BMR and changing the weight of various internal organs so as to balance total energy requirements. These may all be survival strategies that allow birds to cope with unpredictable variation in food abundance.
Collapse
Affiliation(s)
- Qing-Jian Liang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Lei Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jia-Qi Wang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Qian Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Wei-Hong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China;Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China;Institute of applied ecology, Wenzhou University, Wenzhou 325035, China
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China;Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China;Institute of applied ecology, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Hayes J, Volkoff H. Characterization of the endocrine, digestive and morphological adjustments of the intestine in response to food deprivation and torpor in cunner, Tautogolabrus adspersus. Comp Biochem Physiol A Mol Integr Physiol 2014; 170:46-59. [PMID: 24487303 DOI: 10.1016/j.cbpa.2014.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/16/2022]
Abstract
The cunner, Tautogolabrus adspersus, is a marine teleost endemic to the cold waters of the Northwest Atlantic Ocean. The cunner is non-migratory and is known for its remarkable ability to endure the freezing winter months with little to no food by entering a torpid/dormant state. To evaluate the physiological strategies employed by the cunner's intestinal tract to withstand food deprivation, fish were sampled for their gut after a four-week period of acute food deprivation during their summer (active/feeding) state, as well as after 4months of overwinter fasting. Digestive capacity was evaluated by measuring digestive enzyme activity and related mRNA transcript expression for trypsin, alkaline phosphatase, alanine aminopeptidase and lipase. In order to assess how gut hormones affect/are affected by acute fasting and torpor, we examined the intestinal mRNA expression of several putative appetite regulators, i.e. CCK, apelin, orexin and mTOR. Short-term summer fasting induced a reduction in the activity, but not the transcript expression, of all digestive enzymes examined as well as a reduction in gut apelin mRNA. Torpor induced a reduction in the activity of all enzymes with the exception of alanine aminopeptidase, and a decrease in mRNA levels of alanine aminopeptidase, orexin, CCK and mTOR. Our results suggest that both acute fasting and long-term fasting induce a reduction in the intestinal function of cunner, as evidenced by an overall decrease in the activities of digestive enzymes and mRNA expression of several factors involved in feeding and digestion.
Collapse
Affiliation(s)
- James Hayes
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
9
|
van Gils JA, Dekinga A, van den Hout PJ, Spaans B, Piersma T. Digestive Organ Size and Behavior of Red Knots (Calidris Canutus) Indicate the Quality of Their Benthic Food Stocks. Isr J Ecol Evol 2013. [DOI: 10.1560/ijee.53.3.329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Effect of fasting on the structure and function of the gastrointestinal tract of house sparrows (Passer domesticus). Comp Biochem Physiol A Mol Integr Physiol 2012; 163:103-10. [DOI: 10.1016/j.cbpa.2012.05.189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/21/2022]
|
11
|
Killpack TL, Karasov WH. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J Exp Biol 2012; 215:1806-15. [DOI: 10.1242/jeb.066316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Birds have evolved phenotypic plasticity in growth and developmental patterns in order to respond to fluctuating environmental conditions and to mitigate the impact of poor feeding on fitness. Chronic food shortage can occur during chick development in the wild, and the responses of altricial birds have not been thoroughly studied. House sparrow (Passer domesticus) nestlings were raised in the laboratory on age-specific meal sizes (controls) or meal sizes 25% less than age-specific amounts (food-restricted) and analyzed at 6, 9 and 12 days post-hatch for differences in growth and development. Food-restricted birds had significantly reduced body mass and body temperature, but skeletal growth was maintained with respect to controls. Muscle mass was significantly reduced and muscle water content was slightly, though not significantly, higher in food-restricted birds, which may reflect slight developmental immaturity. Assimilation organ masses, summed enzymatic capacity of the intestine and lipid content of the liver were significantly reduced in food-restricted birds. Findings from this study indicate that altricial birds experiencing chronic, moderate food restriction throughout the nestling period may allocate resources to structural growth through energy-saving reductions in mass of assimilation organs and body temperature.
Collapse
Affiliation(s)
- Tess L. Killpack
- Department of Zoology, University of Wisconsin, A229 Russell Laboratories, 1630 Linden Drive, Madison, WI 53706, USA
| | - William H. Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
12
|
McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:1-18. [PMID: 20060056 DOI: 10.1016/j.cbpa.2010.01.002] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/26/2022]
Abstract
All animals face the possibility of limitations in food resources that could ultimately lead to starvation-induced mortality. The primary goal of this review is to characterize the various physiological strategies that allow different animals to survive starvation. The ancillary goals of this work are to identify areas in which investigations of starvation can be improved and to discuss recent advances and emerging directions in starvation research. The ubiquity of food limitation among animals, inconsistent terminology associated with starvation and fasting, and rationale for scientific investigations into starvation are discussed. Similarities and differences with regard to carbohydrate, lipid, and protein metabolism during starvation are also examined in a comparative context. Examples from the literature are used to underscore areas in which reporting and statistical practices, particularly those involved with starvation-induced changes in body composition and starvation-induced hypometabolism can be improved. The review concludes by highlighting several recent advances and promising research directions in starvation physiology. Because the hundreds of studies reviewed here vary so widely in their experimental designs and treatments, formal comparisons of starvation responses among studies and taxa are generally precluded; nevertheless, it is my aim to provide a starting point from which we may develop novel approaches, tools, and hypotheses to facilitate meaningful investigations into the physiology of starvation in animals.
Collapse
Affiliation(s)
- Marshall D McCue
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
13
|
|
14
|
Roark AM, Bjorndal KA, Bolten AB. Compensatory responses to food restriction in juvenile green turtles (Chelonia mydas). Ecology 2009; 90:2524-34. [PMID: 19769130 DOI: 10.1890/08-1835.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to assess the compensatory responses to food restriction and subsequent increased food availability in juvenile green turtles (Chelonia mydas). Turtles were fed an ad libitum ration for 12 weeks (AL), a restricted ration for 12 weeks (R), or a restricted ration for 5 weeks and an ad libitum ration for 7 weeks (R-AL). Analysis of covariance was used to test the relationships between (1) growth and body size, (2) intake and body size, and (3) growth and intake for each of the three treatment groups. Body composition of turtles in each group was also evaluated at the beginning of the study and after weeks 5 and 12. After the switch to ad libitum feeding, R-AL turtles consumed comparable amounts of food and grew faster than AL turtles on a size-adjusted basis, but mean body sizes did not converge, although the overlap in their size ranges increased with time. The R-AL turtles also converted food to growth more efficiently and allocated proportionally more nutrients to protein accretion, thereby restoring body composition (except mineral content) to AL levels by the end of the study. Thus, accelerated size-specific growth without hyperphagia restored body condition but not size. These results indicate that (1) intake in juvenile green turtles is maximal when food is readily available and cannot be increased to compensate for a previous period of food limitation, (2) growth rates of ad libitum-fed turtles are only mildly plastic in response to past nutritional history, and (3) priority rules for nutrient allocation favor the attainment of an optimal condition rather than an optimal size. Nutritional setbacks experienced during the vulnerable juvenile stage could therefore have long-lasting consequences for wild turtles in terms of size-specific mortality risk, but these risks may be mitigated by the potential benefits of maintaining sufficient body stores.
Collapse
Affiliation(s)
- Alison M Roark
- Archie Carr Center for Sea Turtle Research, Department of Zoology, University of Florida, Box 118525, Gainesville, Florida 32611-8525, USA.
| | | | | |
Collapse
|
15
|
Bridge ES, Schoech SJ, Bowman R, Wingfield JC. Temporal predictability in food availability: effects upon the reproductive axis in Scrub-Jays. ACTA ACUST UNITED AC 2009; 311:35-44. [DOI: 10.1002/jez.493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
van Gils JA, Beekman JH, Coehoorn P, Corporaal E, Dekkers T, Klaassen M, van Kraaij R, de Leeuw R, de Vries PP. Longer guts and higher food quality increase energy intake in migratory swans. J Anim Ecol 2008; 77:1234-41. [PMID: 18662243 DOI: 10.1111/j.1365-2656.2008.01452.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Within the broad field of optimal foraging, it is increasingly acknowledged that animals often face digestive constraints rather than constraints on rates of food collection. This therefore calls for a formalization of how animals could optimize food absorption rates. 2. Here we generate predictions from a simple graphical optimal digestion model for foragers that aim to maximize their (true) metabolizable food intake over total time (i.e. including nonforaging bouts) under a digestive constraint. 3. The model predicts that such foragers should maintain a constant food retention time, even if gut length or food quality changes. For phenotypically flexible foragers, which are able to change the size of their digestive machinery, this means that an increase in gut length should go hand in hand with an increase in gross intake rate. It also means that better quality food should be digested more efficiently. 4. These latter two predictions are tested in a large avian long-distance migrant, the Bewick's swan (Cygnus columbianus bewickii), feeding on grasslands in its Dutch wintering quarters. 5. Throughout winter, free-ranging Bewick's swans, growing a longer gut and experiencing improved food quality, increased their gross intake rate (i.e. bite rate) and showed a higher digestive efficiency. These responses were in accordance with the model and suggest maintenance of a constant food retention time. 6. These changes doubled the birds' absorption rate. Had only food quality changed (and not gut length), then absorption rate would have increased by only 67%; absorption rate would have increased by only 17% had only gut length changed (and not food quality). 7. The prediction that gross intake rate should go up with gut length parallels the mechanism included in some proximate models of foraging that feeding motivation scales inversely to gut fullness. We plea for a tighter integration between ultimate and proximate foraging models.
Collapse
Affiliation(s)
- Jan A van Gils
- Department of Plant-Animal Interactions, Centre for Limnology, Netherlands Institute of Ecology (NIOO-KNAW), AC Nieuwersluis, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fassbinder-Orth CA, Karasov WH. Effects of Feed Restriction and Realimentation on Digestive and Immune Function in the Leghorn Chick. Poult Sci 2006; 85:1449-56. [PMID: 16903477 DOI: 10.1093/ps/85.8.1449] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
How regulatory changes of digestive and immune functions of the gut influence each other has not been sufficiently studied. We tested for simultaneous changes in the digestive physiology and mucosal immune function of the guts of White Leghorn cockerel chicks undergoing food restriction and realimentation. Chicks were assigned to 1 of 3 groups: control = fed ad libitum 7 to 17 d of age; restricted = feed restricted d 12 to 17 (at 2 restriction levels: 54 and 34% ad libitum); refed = feed restricted d 7 to 13 and then fed ad libitum d 14 to 17. Refed chicks exhibited 1 d of hyperphagy and an increase in apparent digestive efficiency following restriction (ANOVA, P < 0.001). Total small intestine mass and duodenal maltase activity differed among the groups in the order refed > control > restricted, as expected (ANOVA, P < 0.05 for both measures). In contrast, there were no significant treatment effects on our measures of gut immune structure and function, including bursa mass, spleen mass, and total IgA content of intestinal flush samples measured with standard ELISA techniques. The results of this study indicated that, during feed restriction and realimentation, some features of gut immune function are maintained unchanged in the face of regulatory changes that influence digestive functions.
Collapse
|
18
|
VAN GILS JANA, DEKINGA ANNE, SPAANS BERNARD, VAHL WOUTERK, PIERSMA THEUNIS. Digestive bottleneck affects foraging decisions in red knotsCalidris canutus. II. Patch choice and length of working day. J Anim Ecol 2004. [DOI: 10.1111/j.1365-2656.2004.00904.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Pierce BJ, McWilliams SR. Diet Quality and Food Limitation Affect the Dynamics of Body Composition and Digestive Organs in a Migratory Songbird (Zonotrichia albicollis). Physiol Biochem Zool 2004; 77:471-83. [PMID: 15286920 DOI: 10.1086/383503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2003] [Indexed: 11/03/2022]
Abstract
Migrating songbirds interrupt their feeding to fly between stopover sites that may vary appreciably in diet quality. We studied the effects of fasting and food restriction on body composition and digestive organs in a migratory songbird and how these effects interacted with diet quality to influence the rate of recovery of nutrient reserves. Food limitation caused white-throated sparrows to reduce both lean and fat reserves, with about 20% of the decline in lean mass represented by a decline in stomach, small intestine, and liver. During refeeding on diets similar in nutrient composition to either grain or fruit, food-limited grain-fed birds ate 40% more than did control birds, and they regained body mass, with on average 60% of the increase in body mass composed of lean mass including digestive organs. In contrast, food-limited fruit-fed birds did not eat more than did control birds and did not regain body mass, suggesting that a digestive constraint limited their food intake. The interacting effects of food limitation and diet quality on the dynamics of body composition and digestive organs in sparrows suggest that the adequacy of the diet at stopover sites can directly influence the rate of recovery of body reserves in migrating songbirds and hence the pace of their migration.
Collapse
Affiliation(s)
- Barbara J Pierce
- Department of Natural Resources Science, University of Rhode Island, 105 Coastal Institute Kingston, Kingston, Rhode Island 02881, USA.
| | | |
Collapse
|
20
|
Karasov WH, Pinshow B, Starck JM, Afik D. Anatomical and Histological Changes in the Alimentary Tract of Migrating Blackcaps (Sylvia atricapilla): A Comparison among Fed, Fasted, Food‐Restricted, and Refed Birds. Physiol Biochem Zool 2004; 77:149-60. [PMID: 15057725 DOI: 10.1086/381465] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2003] [Indexed: 11/03/2022]
Abstract
During northward migration, blackcaps that arrive to refuel at stopover sites in Israel's Negev Desert have reduced masses of organs that are important in food digestion and assimilation. We tested several predictions from the general hypothesis that smaller organs of digestion (small intestine and pancreas) and nutrient assimilation (liver) bring about a lower capacity to consume food and that the organs must be restored before blackcaps can feed and digest at a high rate. We used a fasting protocol to create a group of blackcaps with reduced intestine and liver mass (reduced by 45% and 36%, respectively) compared with controls fed ad lib. Because most of the small intestine's biochemical digestive capacity reside in enterocytes found on villi, we predicted and found that reduced intestinal mass in fasted blackcaps related mainly to changes in enterocytes rather than other cells and tissues such as nonabsorptive crypt cells or underlying muscle. Because migrating blackcaps that stop over to feed begin to increase in body mass only 2 d after arrival, we predicted and found a similar recovery period in blackcaps that were first fasted but then refed--the organ mass, structure, function, and ability to consume food was restored after 2 d of feeding. Another group of food-restricted blackcaps (fed at one-third ad lib. level) lost similar amounts of body mass as fasted blackcaps but had much greater capacity to consume food than fasted blackcaps, and so we predicted that they would exhibit little or no reduction in alimentary organs relative to controls fed ad lib. A surprising result was that, as in fasted blackcaps, in food-restricted blackcaps, the decreases in masses of small intestine, liver, and pancreas were proportionally greater than the decreases in body mass or in masses of nonalimentary organs (heart, pectoralis). Food restriction, like fasting, caused a decrease in amount of intestinal mucosa and an alteration in the phenotype of enterocytes. These results are thus not consistent with the general hypothesis, and although they can be rationalized by assuming that blackcaps fed ad lib. have excess digestive capacity, it may also be that the physiological process or processes limiting very high feeding rate lie elsewhere than in the digestive system.
Collapse
Affiliation(s)
- William H Karasov
- Department of Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
21
|
van Gils JA, Piersma T, Dekinga A, Dietz MW. Cost-benefit analysis of mollusc-eating in a shorebird. II. Optimizing gizzard size in the face of seasonal demands. J Exp Biol 2003; 206:3369-80. [PMID: 12939369 DOI: 10.1242/jeb.00546] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aiming to interpret functionally the large variation in gizzard masses of red knots Calidris canutus, we experimentally studied how the digestive processing rate is influenced by the size of the gizzard. During their non-breeding season, red knots feed on hard-shelled molluscs, which they ingest whole and crush in their gizzard. In three experiments with captive birds we tested predictions of the hypothesis that gizzard size, via the rate of shell crushing and processing, constrains intake rate in red knots (against the alternative idea that external handling times constrain intake rate). Gizzard size within individual birds was manipulated by varying the hardness of the diet on offer, and was confirmed by ultrasonography. The results upheld the "shell-crushing hypothesis" and rejected the "handling time hypothesis". Intake rates on with-shell prey increased with gizzard size, and decreased with shell mass per prey. Intake rates on soft (without shell) prey were higher than on with-shell prey and were unaffected by gizzard size. Offering prey that were heavily shelled relative to their flesh mass led to energy intake rates that were marginally sufficient to balance the daily energy budget within the time that is naturally available in a tidal system. We predicted the optimal gizzard sizes that are required to either (1) balance energy income with energy expenditure, or (2) to maximise net daily energy intake. The gizzard mass of free-living red knots in the Wadden Sea is such that it maximises daily net energy intake in spring when fuelling for migration, while it balances energy budget throughout the remainder of the year.
Collapse
Affiliation(s)
- Jan A van Gils
- Department of Marine Ecology and Evolution, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | | | | | | |
Collapse
|