1
|
Hutchins M, Douglas T, Pollack L, Saltz JB. Genetic Variation in Male Aggression Is Influenced by Genotype of Prior Social Partners in Drosophila melanogaster. Am Nat 2024; 203:551-561. [PMID: 38635366 DOI: 10.1086/729463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSocial behaviors can be influenced by the genotypes of interacting individuals through indirect genetic effects (IGEs) and can also display developmental plasticity. We investigated how developmental IGEs, which describe the effects of a prior social partner's genotype on later behavior, can influence aggression in male Drosophila melanogaster. We predicted that developmental IGEs cannot be estimated by simply extending the effects of contextual IGEs over time and instead have their own unique effects on behavior. On day 1 of the experiment, we measured aggressive behavior in 15 genotypic pairings (n = 600 males). On day 2, each of the males was paired with a new opponent, and aggressive behavior was again measured. We found contextual IGEs on day 1 of the experiment and developmental IGEs on day 2 of the experiment: the influence of the day 1 partner's genotype on the focal individual's day 2 behavior depended on the genotypic identity of both the day 1 partner and the focal male. Importantly, the developmental IGEs in our system produced fundamentally different dynamics than the contextual IGEs, as the presence of IGEs was altered over time. These findings represent some of the first empirical evidence demonstrating developmental IGEs, a first step toward incorporating developmental IGEs into our understanding of behavioral evolution.
Collapse
|
2
|
Farm Animals Are Long Away from Natural Behavior: Open Questions and Operative Consequences on Animal Welfare. Animals (Basel) 2021; 11:ani11030724. [PMID: 33800925 PMCID: PMC8001272 DOI: 10.3390/ani11030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Animal welfare is a very important issue. One of the tasks of researchers is to provide explanations and possible solutions to questions arising from non-experts. This work analyzes part of the extensive literature on relationships between selection and domestic, mainly farm, animals’ behavior and deals with some very important themes, such as the role of regulations, domestication, and selection. Abstract The concept of welfare applied to farm animals has undergone a remarkable evolution. The growing awareness of citizens pushes farmers to guarantee the highest possible level of welfare to their animals. New perspectives could be opened for animal welfare reasoning around the concept of domestic, especially farm, animals as partial human artifacts. Therefore, it is important to understand how much a particular behavior of a farm animal is far from the natural one of its ancestors. This paper is a contribution to better understand the role of genetics of the farm animals on their behavior. This means that the naïve approach to animal welfare regarding returning animals to their natural state should be challenged and that welfare assessment should be considered.
Collapse
|
3
|
Huuskonen H, Subiron I Folguera J, Kortet R, Akkanen J, Vainikka A, Janhunen M, Kekäläinen J. Do whitefish (Coregonus lavaretus) larvae show adaptive variation in the avoidance of microplastic ingestion? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114353. [PMID: 32443205 DOI: 10.1016/j.envpol.2020.114353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The presence of microplastics in aquatic ecosystems has recently received increased attention. Small plastic particles may resemble natural food items of larval fish and other aquatic organisms, and create strong selective pressures on the feeding traits in exposed populations. Here, we examined if larval ingestion of 90 μm polystyrene microspheres, in the presence of zooplankton (Artemia nauplii, mean length = 433 μm), shows adaptive variation in the European whitefish (Coregonus lavaretus). A full-factorial experimental breeding design allowed us to estimate the relative contributions of male (sire) and female (dam) parents and full-sib family variance in early feeding traits, and also genetic (co)variation between these traits. We also monitored the magnitude of intake and elimination of microplastics from the alimentary tracts of the larvae. In general, larval whitefish ingested small numbers of microplastics (mean = 1.8, range = 0-26 particles per larva), but ingestion was marginally affected by the dam, and more strongly by the full-sib family variation. Microsphere ingestion showed no statistically significant additive genetic variation, and thus, no heritability. Moreover, microsphere ingestion rate covaried positively with the ingestion of Artemia, further suggesting that larvae cannot adaptively avoid microsphere ingestion. Together with the detected strong genetic correlation between food intake and microplastic intake, the results suggest that larval fish do not readily possess additive genetic variation that would help them to adapt to the increasing pollution by microplastics. The conflict between feeding on natural food and avoiding microplastics deserves further attention.
Collapse
Affiliation(s)
- Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Joan Subiron I Folguera
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland; Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, ES-08028 Barcelona, Spain
| | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Anssi Vainikka
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Aquatic Population Dynamics, Yliopistokatu 6, FI-80100, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| |
Collapse
|
4
|
Rudin FS, Simmons LW, Tomkins JL. Social cues affect quantitative genetic variation and covariation in animal personality traits. Evolution 2019; 73:540-553. [PMID: 30549262 DOI: 10.1111/evo.13661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022]
Abstract
The social environment is expected to have substantial effects on behavior, and as a consequence, its heritability and evolvability. We investigated these effects by exposing Australian field crickets (Teleogryllus oceanicus) to either silence or recordings of male acoustic sexual signals. We used a combined pedigree and full-sib/half-sib breeding design to estimate the repeatability, heritability, and evolvability of behaviors related to boldness, exploration, and activity. All behaviors measured were significantly repeatable in both social environments. Additionally, most behaviors showed significant heritabilities in the two environments. We found no difference in repeatabilities between the silent and the acoustic environment but did find significant differences in the heritabilities and evolvabilities between these environments. There was a high degree of similarity between the phenotypic covariance matrices across the two environments, while the genotypic covariance matrices were highly dissimilar. Reflecting this, we found significant genotype-by-environment interactions for most of the behaviors. Lastly, we found that the repeatable aspect of behavior ("personality") was significantly heritable for most behaviors, but that these heritabilities were higher in the acoustic than in the silent environment. We conclude that the social environment can have a significant impact on the heritability and evolvability of behavior, and argue that evolutionary inferences from phenotypic studies should be made with caution.
Collapse
Affiliation(s)
- Fabian S Rudin
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
5
|
Gerken AR, Scully ED, Campbell JF. Red Flour Beetle (Coleoptera: Tenebrionidae) Response to Volatile Cues Varies With Strain and Behavioral Assay. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1252-1265. [PMID: 30010815 DOI: 10.1093/ee/nvy107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), is a major pest of facilities where grain is processed because of its ability to find and colonize food resource patches. Traps baited with pheromone and kairomone lures are commonly used to monitor for the presence of insects in warehouses or flour mills, for example. However, two nonmutually exclusive components, environment and genetics, could influence insect responsiveness to volatiles, impacting the efficacy of monitoring. Intraspecific variation in attraction behavior to food and mates is largely unexplored in stored-product insects, but tapping into natural genetic variation could provide a baseline for identifying genetic mechanisms associated with finding resources. Here, we assess eight strains of T. castaneum for variation in response to kairomone- and pheromone-based lures using three behavioral assays: paired choice with no forced air flow, upwind attraction with forced air flow, and movement pattern in an arena with a single odor source. We find strain-specific responses to kairomones and pheromones and evidence for heritability in behavioral responses. However, environmental coefficients for behavioral responses to both lures are high, suggesting that environment, and its potential interaction with genotype, strongly influences behavioral outcomes in these assays. Furthermore, despite the different environmental conditions among the different behavioral assays, we find a correlation for volatile preference among the assays. Our results provide a baseline assessment of natural variation for preference to kairomone and pheromone lures and suggest that careful consideration of behavioral assay is key to understanding the mechanisms of attraction in these stored-product pests.
Collapse
Affiliation(s)
- Alison R Gerken
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - Erin D Scully
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| | - James F Campbell
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS
| |
Collapse
|
6
|
Ponzi E, Keller LF, Bonnet T, Muff S. Heritability, selection, and the response to selection in the presence of phenotypic measurement error: Effects, cures, and the role of repeated measurements. Evolution 2018; 72:1992-2004. [DOI: 10.1111/evo.13573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Erica Ponzi
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichWinterthurerstrasse 190 8057 Zürich Switzerland
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention InstituteUniversity of ZürichHirschengraben 84 8001 Zürich Switzerland
| | - Lukas F. Keller
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichWinterthurerstrasse 190 8057 Zürich Switzerland
- Zoological MuseumUniversity of ZürichKarl‐Schmid‐Strasse 4 8006 Zürich Switzerland
| | - Timothée Bonnet
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichWinterthurerstrasse 190 8057 Zürich Switzerland
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActon Canberra ACT 2601 Australia
| | - Stefanie Muff
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichWinterthurerstrasse 190 8057 Zürich Switzerland
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention InstituteUniversity of ZürichHirschengraben 84 8001 Zürich Switzerland
| |
Collapse
|
7
|
Abstract
Recent years have seen an increase in studies that associate genomic loci with behavioral variation both within and across animal species. Ryan York compiles and analyzes over 1,000 of these loci, finding that the genetic... Although most animal behaviors are associated with some form of heritable genetic variation, we do not yet understand how genes sculpt behavior across evolution, either directly or indirectly. To address this, I here compile a data set comprised of over 1000 genomic loci representing a spectrum of behavioral variation across animal taxa. Comparative analyses reveal that courtship and feeding behaviors are associated with genomic regions of significantly greater effect than other traits, on average threefold greater than other behaviors. Investigations of whole-genome sequencing and phenotypic data for 87 behavioral traits from the Drosophila Genetics Reference Panel indicate that courtship and feeding behaviors have significantly greater genetic contributions and that, in general, behavioral traits overlap little in individual base pairs but increasingly interact at the levels of genes and traits. These results provide evidence that different types of behavior are associated with variable genetic bases and suggest that, across animal evolution, the genetic landscape of behavior is more rugged, yet predictable, than previously thought.
Collapse
|
8
|
Tan B, Grattapaglia D, Wu HX, Ingvarsson PK. Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:84-93. [PMID: 29362102 DOI: 10.1016/j.plantsci.2017.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 05/23/2023]
Abstract
Non-additive genetic effects can be effectively exploited in control-pollinated families with the availability of genome-wide markers. We used 41,304 SNP markers and compared pedigree vs. marker-based genetic models by analysing height, diameter, basic density and pulp yield for Eucalyptus urophylla × E.grandis control-pollinated families represented by 949 informative individuals. We evaluated models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance). We showed that the models can capture a large proportion of the genetic variance from dominance and epistasis for growth traits as those components are typically not independent. We also showed that we could partition genetic variances more precisely when using relationship matrices derived from markers compared to using only pedigree information. In addition, phenotypic prediction accuracies were only slightly increased by including dominance effects for growth traits since estimates of non-additive variances yielded rather high standard errors. This novel result improves our current understanding of the architecture of quantitative traits and recommends accounting for dominance variance when developing genomic selection strategies in hybrid Eucalyptus.
Collapse
Affiliation(s)
- Biyue Tan
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden; Biomaterials Division, Stora Enso AB, SE-131 04, Nacka, Sweden
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology-EPqB, 70770-910, Brasilia, DF, Brazil; Universidade Católica de Brasília- SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
9
|
Kasper C, Kölliker M, Postma E, Taborsky B. Consistent cooperation in a cichlid fish is caused by maternal and developmental effects rather than heritable genetic variation. Proc Biol Sci 2018; 284:rspb.2017.0369. [PMID: 28701555 DOI: 10.1098/rspb.2017.0369] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/05/2017] [Indexed: 01/29/2023] Open
Abstract
Studies on the evolution of cooperative behaviour are typically confined to understanding its adaptive value. It is equally essential, however, to understand its potential to evolve, requiring knowledge about the phenotypic consistency and genetic basis of cooperative behaviour. While previous observational studies reported considerably high heritabilities of helping behaviour in cooperatively breeding vertebrates, experimental studies disentangling the relevant genetic and non-genetic components of cooperative behaviour are lacking. In a half-sibling breeding experiment, we investigated the repeatability and heritability of three major helping behaviours performed by subordinates of the cooperatively breeding fish Neolamprologus pulcher To experimentally manipulate the amount of help needed in a territory, we raised the fish in two environments differing in egg predation risk. All three helping behaviours were significantly repeatable, but had very low heritabilities. The high within-individual consistencies were predominantly due to maternal and permanent environment effects. The perceived egg predation risk had no effect on helping, but social interactions significantly influenced helping propensities. Our results reveal that developmentally plastic adjustments of provided help to social context shape cooperative phenotypes, whereas heritable genetic variation plays a minor role.
Collapse
Affiliation(s)
- Claudia Kasper
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland
| | - Mathias Kölliker
- Institute of Evolutionary Biology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Erik Postma
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,Center for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE
| | - Barbara Taborsky
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland
| |
Collapse
|
10
|
Morinay J, Forsman JT, Kivelä SM, Gustafsson L, Doligez B. Heterospecific Nest Site Copying Behavior in a Wild Bird: Assessing the Influence of Genetics and Past Experience on a Joint Breeding Phenotype. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2017.00167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Abstract
Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist. Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach might have been underestimated by critics of contemporary evolutionary biology.
Collapse
Affiliation(s)
- Erik I Svensson
- Evolutionary Ecology Unit, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
12
|
Kasper C, Vierbuchen M, Ernst U, Fischer S, Radersma R, Raulo A, Cunha-Saraiva F, Wu M, Mobley KB, Taborsky B. Genetics and developmental biology of cooperation. Mol Ecol 2017. [PMID: 28626971 DOI: 10.1111/mec.14208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop "Genetics and Development of Cooperation," organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue that including nongenetic inheritance, such as transgenerational epigenetic effects, parental effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of cooperation. We summarize those genes and molecular pathways in a range of species that seem promising candidates for mechanisms underlying cooperative behaviours. Concerning the neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the ability to cooperate: (i) event memory, (ii) synchrony with others and (iii) responsiveness to others. Taking a closer look at the developmental trajectories that lead to the expression of cooperative behaviours, we discuss the dichotomy between early morphological specialization in social insects and more flexible behavioural specialization in cooperatively breeding vertebrates. Finally, we provide recommendations for which biological systems and species may be particularly suitable, which specific traits and parameters should be measured, what type of approaches should be followed, and which methods should be employed in studies of cooperation to better understand how cooperation evolves and manifests in nature.
Collapse
Affiliation(s)
- Claudia Kasper
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ulrich Ernst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Fischer
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Aura Raulo
- Department of Zoology, University of Oxford, Oxford, UK
| | - Filipa Cunha-Saraiva
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, Vetmeduni Vienna, Vienna, Austria
| | - Min Wu
- Department of Environmental Sciences, Zoology and Evolution, University of Basel, Basel, Switzerland
| | - Kenyon B Mobley
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Barbara Taborsky
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Vallée A, Daures J, van Arendonk JAM, Bovenhuis H. Genome-wide association study for behavior, type traits, and muscular development in Charolais beef cattle. J Anim Sci 2017; 94:2307-16. [PMID: 27285908 DOI: 10.2527/jas.2016-0319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Behavior, type traits, and muscular development are of interest for beef cattle breeding. Genome-wide association studies (GWAS) enable the identification of candidate genes, which enables gene-based selection and provides insight in the genetic architecture of these traits. The objective of the current study was to perform a GWAS for 3 behavior traits, 12 type traits, and muscular development in Charolais cattle. Behavior traits, including aggressiveness at parturition, aggressiveness during gestation period, and maternal care, were scored by farmers. Type traits, including udder conformation, teat, feet and legs, and locomotion, were scored by trained classifiers. Data used in the GWAS consisted of 3,274 cows with phenotypic records and genotyping information for 44,930 SNP. When SNP had a false discovery rate (FDR) smaller than 0.05, they were referred to as significant. When SNP had a FDR between 0.05 and 0.20, they were referred to as suggestive. Four significant and 12 suggestive regions were detected for aggressiveness during gestation, maternal care, udder balance, teat thinness, teat length, foot angle, foot depth, and locomotion. These 4 significant and 12 suggestive regions were not supported by other significant SNP in close proximity. No SNP with major effects were detected for behavior and type traits, and SNP associations for these traits were spread across the genome, suggesting that behavior and type traits were influenced by many genes, each explaining a small part of genetic variance. The GWAS identified 1 region on chromosome 2 significantly associated with muscular development, which included the myostatin gene (), which is known to affect muscularity. No other regions associated with muscular development were found. Results showed that the myostatin region associated with muscular development had pleiotropic effects on udder volume, teat thinness, rear leg, and leg angle.
Collapse
|
14
|
Saltz JB. Genetic variation in social environment construction influences the development of aggressive behavior in Drosophila melanogaster. Heredity (Edinb) 2016; 118:340-347. [PMID: 27848947 DOI: 10.1038/hdy.2016.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Individuals are not merely subject to their social environments; they choose and create them, through a process called social environment (or social niche) construction. When genotypes differ in social environment-constructing behaviors, different genotypes are expected to experience different social environments. As social experience often affects behavioral development, quantitative genetics and psychology theories predict that genetic variation in social environment construction should have an important role in determining phenotypic variation; however, this hypothesis has not been tested directly. I identify multiple mechanisms of social environment construction that differ among natural genotypes of Drosophila melanogaster and investigate their consequences for the development of aggressive behavior. Male genotypes differed in the group sizes that they preferred and in their aggressive behavior; both of these behaviors influenced social experience, demonstrating that these behaviors function as social environment-constructing traits. Further, the effects of social experience-as determined in part by social environment construction-carried over to affect focal male aggression at a later time and with a new opponent. These results provide manipulative experimental support for longstanding hypotheses in psychology, that genetic variation in social environment construction has a causal role in behavioral development. More broadly, these results imply that studies of the genetic basis of complex traits should be expanded to include mechanisms by which genetic variation shapes the environments that individuals experience.
Collapse
Affiliation(s)
- J B Saltz
- Biosciences at Rice University, Houston, TX, USA
| |
Collapse
|
15
|
Soudi S, Reinhold K, Engqvist L. Genetic architecture underlying host choice differentiation in the sympatric host races of Lochmaea capreae leaf beetles. Genetica 2016; 144:147-56. [PMID: 26857373 DOI: 10.1007/s10709-016-9885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Speciation in herbivorous insects has received considerable attention during the last few decades. Much of this group's diversity originates from adaptive population divergence onto different host plants, which often involves the evolution of specialized patterns of host choice behaviour. Differences in host choice often translates directly into divergence in mating sites, and therefore positive assortative mating will be created which will act as a strong barrier to gene flow. In this study, we first explored whether host choice is a genetically determined trait in the sympatric willow and birch host races of the leaf feeding beetle Lochmaea capreae, or whether larval experience influences adult host choice. Once we had established that host choice is a genetically based trait we determined its genetic architecture. To achieve this, we employed a reciprocal transplant design in which offspring from pure willow and birch cross-types, F1, F2 and backcrosses were raised on each host plant and their preference was determined upon reaching adulthood. We then applied joint-scaling analysis to uncover the genetic architecture of host preference. Our results suggest that rearing host does not have a pronounced effect on adult's host choice; rather the segregation pattern implies the existence of genetic loci affecting host choice in these host races. The joint-scaling analysis revealed that population differences in host choice are mainly influenced by the contribution of additive genetic effects and also maternally inherited cytoplasmic effects. We explore the implications of our findings for evolutionary dynamics of sympatric host race formation and speciation.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| | - Klaus Reinhold
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany
| | - Leif Engqvist
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.,Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032, Hinterkappelen, Switzerland
| |
Collapse
|
16
|
Blankers T, Lübke AK, Hennig RM. Phenotypic variation and covariation indicate high evolvability of acoustic communication in crickets. J Evol Biol 2015; 28:1656-69. [DOI: 10.1111/jeb.12686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
Affiliation(s)
- T. Blankers
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
- Museum für Naturkunde Berlin; Leibniz Institute for Evolution and Biodiversity Science; Berlin Germany
| | - A. K. Lübke
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
| | - R. M. Hennig
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|
17
|
Dochtermann NA, Schwab T, Sih A. The contribution of additive genetic variation to personality variation: heritability of personality. Proc Biol Sci 2015; 282:20142201. [PMID: 25392476 DOI: 10.1098/rspb.2014.2201] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as 'animal personality'. Personality differences can arise, for example, from differences in permanent environmental effects--including parental and epigenetic contributors--and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified.
Collapse
Affiliation(s)
- Ned A Dochtermann
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Tori Schwab
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Bleakley BH, Welter SM, McCauley-Cole K, Shuster SM, Moore AJ. Cannibalism as an interacting phenotype: precannibalistic aggression is influenced by social partners in the endangered Socorro Isopod (Thermosphaeroma thermophilum). J Evol Biol 2013; 26:832-42. [PMID: 23516960 DOI: 10.1111/jeb.12098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
Models for the evolution of cannibalism highlight the importance of asymmetries between individuals in initiating cannibalistic attacks. Studies may include measures of body size but typically group individuals into size/age classes or compare populations. Such broad comparisons may obscure the details of interactions that ultimately determine how socially contingent characteristics evolve. We propose that understanding cannibalism is facilitated by using an interacting phenotypes perspective that includes the influences of the phenotype of a social partner on the behaviour of a focal individual and focuses on variation in individual pairwise interactions. We investigated how relative body size, a composite trait between a focal individual and its social partner, and the sex of the partners influenced precannibalistic aggression in the endangered Socorro isopod, Thermosphaeroma thermophilum. We also investigated whether differences in mating interest among males and females influenced cannibalism in mixed sex pairs. We studied these questions in three populations that differ markedly in range of body size and opportunities for interactions among individuals. We found that relative body size influences the probability of and latency to attack. We observed differences in the likelihood of and latency to attack based on both an individual's sex and the sex of its partner but found no evidence of sexual conflict. The instigation of precannibalistic aggression in these isopods is therefore a property of both an individual and its social partner. Our results suggest that interacting phenotype models would be improved by incorporating a new conditional ψ, which describes the strength of a social partner's influence on focal behaviour.
Collapse
Affiliation(s)
- B H Bleakley
- Department of Biology, Stonehill College, Easton, MA 02357, USA.
| | | | | | | | | |
Collapse
|
19
|
Peiman KS, Robinson BW. Diversifying and correlational selection on behavior toward conspecific and heterospecific competitors in brook stickleback (Culaea inconstans). Ecol Evol 2012; 2:2141-54. [PMID: 23139874 PMCID: PMC3488666 DOI: 10.1002/ece3.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022] Open
Abstract
Behaviors toward heterospecifics and conspecifics may be correlated because of shared mechanisms of expression in both social contexts (nonadaptive covariation) or because correlational selection favors adaptive covariation. We evaluated these hypotheses by comparing behavior toward conspecifics and heterospecifics in brook stickleback (Culaea inconstans) from three populations sympatric with and three allopatric from a competitor, the ninespine stickleback (Pungitius pungitius). Behavioral traits were classified into three multivariate components: overt aggression, sociability, and activity. The correlation of behavior between social contexts for both overt aggression and activity varied among populations in a way unrelated to sympatry with ninespine stickleback, while mean aggression was reduced in sympatry. Correlations in allopatric populations suggest that overt aggression and activity may genetically covary between social contexts for nonadaptive reasons. Sociability was rarely correlated in allopatry but was consistently correlated in sympatry despite reduced mean sociability, suggesting that correlational selection may favor a sociability syndrome in brook stickleback when they coexist with ninespine stickleback. Thus, interspecific competition may impose diversifying selection on behavior among populations, although the causes of correlated behavior toward conspecifics and heterospecifics and whether it can evolve in one social context independent of the other may depend on the type of behavior.
Collapse
Affiliation(s)
- Kathryn S Peiman
- Department of Integrative Biology, University of Guelph Guelph, Ontario, Canada
| | | |
Collapse
|
20
|
|
21
|
Bendesky A, Bargmann CI. Genetic contributions to behavioural diversity at the gene-environment interface. Nat Rev Genet 2011; 12:809-20. [PMID: 22064512 DOI: 10.1038/nrg3065] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work on behavioural variation within and between species has furthered our understanding of the genetic architecture of behavioural traits, the identities of relevant genes and the ways in which genetic variants affect neuronal circuits to modify behaviour. Here we review our understanding of the genetics of natural behavioural variation in non-human animals and highlight the implications of these findings for human genetics. We suggest that gene-environment interactions are central to natural genetic variation in behaviour and that genes affecting neuromodulatory pathways and sensory processing are preferred sites of naturally occurring mutations.
Collapse
Affiliation(s)
- Andres Bendesky
- Howard Hughes Medical Institute, Laboratory for Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
22
|
|
23
|
|
24
|
Reid JM, Arcese P, Sardell RJ, Keller LF. Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia). Proc Biol Sci 2010; 278:1114-20. [PMID: 20980302 PMCID: PMC3049030 DOI: 10.1098/rspb.2010.1704] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The forces driving the evolution of extra-pair reproduction in socially monogamous animals remain widely debated and unresolved. One key hypothesis is that female extra-pair reproduction evolves through indirect genetic benefits, reflecting increased additive genetic value of extra-pair offspring. Such evolution requires that a female's propensity to produce offspring that are sired by an extra-pair male is heritable. However, additive genetic variance and heritability in female extra-pair paternity (EPP) rate have not been quantified, precluding accurate estimation of the force of indirect selection. Sixteen years of comprehensive paternity and pedigree data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) showed significant additive genetic variance and heritability in the proportion of a female's offspring that was sired by an extra-pair male, constituting major components of the genetic architecture required for extra-pair reproduction to evolve through indirect additive genetic benefits. However, estimated heritabilities were moderately small (0.12 and 0.18 on the observed and underlying latent scales, respectively). The force of selection on extra-pair reproduction through indirect additive genetic benefits may consequently be relatively weak. However, the additive genetic variance and non-zero heritability observed in female EPP rate allow for multiple further genetic mechanisms to drive and constrain mating system evolution.
Collapse
Affiliation(s)
- Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | | | | | |
Collapse
|
25
|
Blanchet S, Bernatchez L, Dodson JJ. Does interspecific competition influence relationships between heterozygosity and fitness-related behaviors in juvenile Atlantic salmon (Salmo salar)? Behav Ecol Sociobiol 2008. [DOI: 10.1007/s00265-008-0695-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Genetic architecture underlying convergent evolution of egg-laying behavior in a seed-feeding beetle. Genetica 2008; 136:179-87. [PMID: 19039667 DOI: 10.1007/s10709-008-9334-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Independent populations subjected to similar environments often exhibit convergent evolution. An unresolved question is the frequency with which such convergence reflects parallel genetic mechanisms. We examined the convergent evolution of egg-laying behavior in the seed-feeding beetle Callosobruchus maculatus. Females avoid ovipositing on seeds bearing conspecific eggs, but the degree of host discrimination varies among geographic populations. In a previous experiment, replicate lines switched from a small host to a large one evolved reduced discrimination after 40 generations. We used line crosses to determine the genetic architecture underlying this rapid response. The most parsimonious genetic models included dominance and/or epistasis for all crosses. The genetic architecture underlying reduced discrimination in two lines was not significantly different from the architecture underlying differences between geographic populations, but the architecture underlying the divergence of a third line differed from all others. We conclude that convergence of this complex trait may in some cases involve parallel genetic mechanisms.
Collapse
|
27
|
Gutiérrez-Gil B, Ball N, Burton D, Haskell M, Williams JL, Wiener P. Identification of quantitative trait loci affecting cattle temperament. J Hered 2008; 99:629-38. [PMID: 18784067 DOI: 10.1093/jhered/esn060] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In addition to its potential contribution to improving animal welfare, the study of the genetics of cattle behavior may provide more general insights into the genetic control of such complex traits. We carried out a genome scan in a Holstein x Charolais cross cattle population to identify quantitative trait loci (QTL) influencing temperament-related traits. Individuals belonging to the second-generation of this population (F(2) and backcross individuals) were subjected to 2 behavioral tests. The flight from feeder (FF) test measured the distance at which the animal moved away from an approaching human observer, whereas the social separation (SS) test categorized different activities which the animal engaged in when removed from its penmates. The entire population was genotyped with 165 microsatellite markers. A regression interval mapping analysis identified 29 regions exceeding the 5% chromosome-wide significance level, which individually explained a relatively small fraction of the phenotypic variance of the traits (from 3.8% to 8.4%). One of the significant associations influencing an FF test trait on chromosome 29 reached the 5% genome-wide significance level. Eight other QTL, all associated with an SS test trait, reached the 1% chromosome-wide significance level. The location of some QTL coincided with other previously reported temperament QTL in cattle, whereas those that are reported for the first time here may represent general loci controlling temperament differences between cattle breeds. No overlapping QTL were identified for the traits measured by the 2 different tests, supporting the hypothesis that different genetic factors influence behavioral responses to different situations.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Gil
- Roslin Institute and Royal School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian EH25 9PS, Scotland, UK
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Bleakley BH, Parker DJ, Brodie ED. Nonadditive effects of group membership can lead to additive group phenotypes for anti-predator behaviour of guppies, Poecilia reticulata. J Evol Biol 2007; 20:1375-84. [PMID: 17584232 DOI: 10.1111/j.1420-9101.2007.01342.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonadditive effects of group membership are generated when individuals respond differently to the same social environment and may alter predictions about how behavioural evolution will occur. Despite this importance, the relationship between an individual's behaviour in two different social contexts and how reciprocal interactions among individuals within groups influence group behaviour are poorly understood. Guppy anti-predator behaviour can be used to explore how individuals behaviourally respond to changes in social context. Individuals from two strains were tested for response to a model predator alone and in groups to evaluate how individuals alter their behaviour in response to social context and how group phenotype relates to individual behaviour. Nonadditive effects of group membership were detected for a number of behaviours, revealing that the effect of being in a group differed among individuals. These nonadditive effects, however, yielded an additive group phenotype. That is, the average behaviour of the group was equal to the average of its parts, for all behaviours in both strains. Such an additive group phenotype may have resulted because all individuals within a group respond to the specific social environment provided by the other members of their group.
Collapse
Affiliation(s)
- B H Bleakley
- Department of Biology and the Center for the Integrative Study of Behavior, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
30
|
Moretz JA, Martins EP, Robison BD. Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol 2007. [DOI: 10.1093/beheco/arm011] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Tucić N, Seslija D. Genetic architecture of differences in oviposition preference between ancestral and derived populations of the seed beetle Acanthoscelides obtectus. Heredity (Edinb) 2007; 98:268-73. [PMID: 17301741 DOI: 10.1038/sj.hdy.6800930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the additive, dominance and epistatic genetic effects underlying differentiation in oviposition preference between two populations of the seed beetle Acanthoscelides obtectus evolved in the laboratory for 102 generations on bean and chickpea seeds. We reared and tested females on each of two host legumes. The populations differed in mean oviposition preference; the preference for chickpea was stronger in population reared on the chickpea (C) than in population maintained on common bean (P). Observations in the parental populations indicated that females tend to prefer ovipositioning their eggs on the seeds they have already experienced. The patterns of the means in each of the parental populations and 12 types of hybrids (two F(1), two F(2) and eight backcrosses) indicated that population differences in oviposition preference from both rearing hosts could be explained by nonadditive genetic effects. Statistically detectable additive and dominance genetic effects were observed in the most parsimonious model only when females were reared on the chickpea. The most parsimonious models on both rearing hosts suggested a contribution of negative additive x additive epistasis to the divergence of oviposition preference between the P and C populations. This indicates a positive effect of epistasis on the performance of the second generations of hybrids.
Collapse
Affiliation(s)
- N Tucić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | | |
Collapse
|
32
|
Shuker DM, Phillimore AJ, Burton-Chellew MN, Hodge SE, West SA. The quantitative genetic basis of polyandry in the parasitoid wasp, Nasonia vitripennis. Heredity (Edinb) 2006; 98:69-73. [PMID: 16985510 DOI: 10.1038/sj.hdy.6800897] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding the evolution of female multiple mating (polyandry) is crucial for understanding sexual selection and sexual conflict. Despite this interest, little is known about its genetic basis or whether genetics influences the evolutionary origin or maintenance of polyandry. Here, we explore the quantitative genetic basis of polyandry in the parasitoid wasp Nasonia vitripennis, a species in which female re-mating has been observed to evolve in the laboratory. We performed a quantitative genetic experiment on a recently collected population of wasps. We found low heritabilities of female polyandry (re-mating frequency after 18 h), low heritability of courtship duration and a slightly higher heritability of copulation duration. However, the coefficients of additive genetic variance for these traits were all reasonably large (CV(A)>7.0). We also found considerable dam effects for all traits after controlling for common environment, suggesting either dominance or maternal effects. Our work adds to the evidence that nonadditive genetic effects may influence the evolution of mating behaviour in Nasonia vitripennis, and the evolution of polyandry more generally.
Collapse
Affiliation(s)
- D M Shuker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
33
|
Lieutenant-Gosselin M, Bernatchez L. LOCAL HETEROZYGOSITY-FITNESS CORRELATIONS WITH GLOBAL POSITIVE EFFECTS ON FITNESS IN THREESPINE STICKLEBACK. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb00510.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Danielson-François AM, Kelly JK, Greenfield MD. Genotype x environment interaction for male attractiveness in an acoustic moth: evidence for plasticity and canalization. J Evol Biol 2006; 19:532-42. [PMID: 16599929 DOI: 10.1111/j.1420-9101.2005.01006.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lek paradox arises when choosy females deplete the genetic variance for male display traits from a population, yet substantial additive genetic variation (V(A)) in male traits persists. Thus, the lek paradox can be more generally stated as one of the most fundamental evolutionary questions: What maintains genetic variation in natural populations? One solution to this problem may be found in the condition-dependent nature of many sexually selected traits. Genotype x environment (G x E) interactions can maintain V(A) under conditions of environmental heterogeneity provided certain restrictions are met, although antagonistic pleiotropy has also been proposed as a mechanism. Here, we provide evidence for G x E interactions and against the role of antagonistic pleiotropy in the maintenance of V(A) for sexually selected traits. Using inbred lines of the lesser waxmoth Achroia grisella, we measured V(A) for song attractiveness, condition and development rate under different competitive environments and found that genotypes differed in their plasticity. We argue that variation persists in natural populations because G x E interactions prevent any one variant from producing the optimal phenotype across all environments.
Collapse
Affiliation(s)
- A M Danielson-François
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.
| | | | | |
Collapse
|
35
|
Lieutenant-Gosselin M, Bernatchez L. LOCAL HETEROZYGOSITY-FITNESS CORRELATIONS WITH GLOBAL POSITIVE EFFECTS ON FITNESS IN THREESPINE STICKLEBACK. Evolution 2006. [DOI: 10.1554/05-459.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Higgins LA, Jones KM, Wayne ML. QUANTITATIVE GENETICS OF NATURAL VARIATION OF BEHAVIOR IN DROSOPHILA MELANOGASTER: THE POSSIBLE ROLE OF THE SOCIAL ENVIRONMENT ON CREATING PERSISTENT PATTERNS OF GROUP ACTIVITY. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01802.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Gibbons ME, Ferguson AM, Lee DR. Both learning and heritability affect foraging behaviour of red-backed salamanders, Plethodon cinereus. Anim Behav 2005. [DOI: 10.1016/j.anbehav.2004.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Higgins LA, Jones KM, Wayne ML. QUANTITATIVE GENETICS OF NATURAL VARIATION OF BEHAVIOR IN DROSOPHILA MELANOGASTER: THE POSSIBLE ROLE OF THE SOCIAL ENVIRONMENT ON CREATING PERSISTENT PATTERNS OF GROUP ACTIVITY. Evolution 2005. [DOI: 10.1554/04-762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Abstract
Currently, behavioral development is thought to result from the interplay among genetic inheritance, congenital characteristics, cultural contexts, and parental practices as they directly impact the individual. Evolutionary ecology points to another contributor, epigenetic inheritance, the transmission to offspring of parental phenotypic responses to environmental challenges-even when the young do not experience the challenges themselves. Genetic inheritance is not altered, gene expression is. Organismic pathways for such transmission exist. Maternal stress during the latter half of a daughter's gestation may affect not only the daughter's but also grand-offspring's physical growth. The author argues that temperamental variation may be influenced in the same way. Implications for theory and research design are presented along with testable predictions.
Collapse
Affiliation(s)
- Lawrence V Harper
- Department of Human and Community Development, University of California, Davis, CA 95616, USA.
| |
Collapse
|
40
|
Fox CW, Stillwell RC, Amarillo-S AR, Czesak ME, Messina FJ. Genetic architecture of population differences in oviposition behaviour of the seed beetle Callosobruchus maculatus. J Evol Biol 2004; 17:1141-51. [PMID: 15312086 DOI: 10.1111/j.1420-9101.2004.00719.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Few studies have examined the genetic architecture of population differences in behaviour and its implications for population differentiation and adaptation. Even fewer have examined whether differences in genetic architecture depend on the environment in which organisms are reared or tested. We examined the genetic basis of differences in oviposition preference and egg dispersion between Asian (SI) and African (BF) populations of the seed beetle, Callosobruchus maculatus. We reared and tested females on each of two host legumes (cowpea and mung bean). The two populations differed in mean oviposition preference (BF females preferred cowpea seeds more strongly than did SI females) and egg dispersion (SI females distributed eggs more uniformly among seeds than did BF females). Observations of hybrid and backcross individuals indicated that only the population difference in oviposition preference could be explained by complete additivity, whereas substantial dominance and epistasis contributed to the differences in egg dispersion. Both rearing host and test host affected the relative magnitude of population differences in egg dispersion and the composite genetic effects. Our results thus demonstrate that the relative influence of epistasis and dominance on the behaviour of hybrids depends on the behaviour measured and that different aspects of insect oviposition are under different genetic control. In addition, the observed effect of rearing host and oviposition host on the relative importance of dominance and epistasis indicates that the genetic basis of population differences depends on the environment in which genes are expressed.
Collapse
Affiliation(s)
- C W Fox
- Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | |
Collapse
|
41
|
Regan JL, Meffert LM, Bryant EH. A direct experimental test of founder-flush effects on the evolutionary potential for assortative mating. J Evol Biol 2003; 16:302-12. [PMID: 14635869 DOI: 10.1046/j.1420-9101.2003.00521.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Founder-flush speciation models propose that population bottlenecks can enhance evolutionary potential for reproductive isolation. To test this prediction, we subjected bottlenecked (three-pair founder-flush) and nonbottlenecked populations of the housefly to 18 generations of selection for assortative mating. After the selection regime, we analysed videotaped courtship bouts in these lines to identify correlated responses to the selection protocol. The realized heritabilities for assortative mating for both the bottlenecked and nonbottlenecked treatments were very low, but still significant. The founder-flush populations had thus responded to selection as well as the nonbottlenecked populations, although not significantly greater (i.e. total increases in assortative mating were 9.6 and 8.6%, respectively). Multivariate analyses on the courtship repertoires found that, although both bottlenecked and nonbottlenecked treatments attained similar levels of assortative mating, the treatments exhibited different evolutionary solutions in their correlated responses. Specifically, the bottlenecked lines demonstrated a significantly more diverse set of evolutionary trajectories (i.e. significant shifts along the second principal component for courtship). This suggests that the bottlenecked lines had greater potential for the evolution of novel phenotypes as predicted by founder-induced speciation models. Our results, however, cannot distinguish whether the more variable evolutionary responses resulted from increased heritabilities in courtship components, reduced potential to follow the convergent evolutionary trajectories noted for the nonbottlenecked lines, or some combination of both general processes in determining the resultant multivariate phenotype.
Collapse
Affiliation(s)
- J L Regan
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | | | | |
Collapse
|