1
|
Adams E, Leeb C, Brühl CA. Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:213-223. [PMID: 33471271 PMCID: PMC7902574 DOI: 10.1007/s10646-020-02335-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 05/08/2023]
Abstract
Amphibian populations are declining worldwide at alarming rates. Among the large variety of contributing stressors, chemical pollutants like pesticides have been identified as a major factor for this decline. Besides direct effects on aquatic and terrestrial amphibian stages, sublethal effects like impairments in reproduction can affect a population. Therefore, we investigated the reproductive capacity of common toads (Bufo bufo) in the pesticide-intensive viticultural landscape of Palatinate in Southwest Germany along a pesticide gradient. In a semi-field study, we captured reproductively active common toad pairs of five breeding ponds with different pesticide contamination level and kept them in a net cage until spawning. Toads from more contaminated ponds showed an increased fecundity (more eggs) but decreased fertilization rates (fewer hatching tadpoles) as well as lower survival rates and reduced size in Gosner stage 25, suggesting that the higher exposed populations suffer from long-term reproductive impairments. In combination with acute toxicity effects, the detected sublethal effects, which are mostly not addressed in the ecological risk assessment of pesticides, pose a serious threat on amphibian populations in agricultural landscapes.
Collapse
Affiliation(s)
- Elena Adams
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany.
| | - Christoph Leeb
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| |
Collapse
|
2
|
Spermcast mating with release of zygotes in the small dioecious bivalve Digitaria digitaria. Sci Rep 2020; 10:12605. [PMID: 32724126 PMCID: PMC7387346 DOI: 10.1038/s41598-020-69457-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Digitaria digitaria, a small astartid usually less than 10 mm in length, has a non-brooding behaviour in spite of its limited space for gonad development. This species lives in highly unstable environments with strong currents, which represent a challenge for fertilization and larval settlement. The studied population of D. digitaria from the Strait of Gibraltar area was dioecious, with significant predominance of females and sexual dimorphism, where females are larger than males. The reproductive cycle is asynchronous throughout the year, without a resting period, but with successive partial spawning events. The presence of stored sperm in the suprabranchial chamber and inside the gonad of some females, together with the release of eggs along the dorsal axis of both gills, points to internal oocyte fertilization. Bacteriocytes were found in the female and male follicle walls, but no bacteria were observed inside any of the gametes. Digitaria digitaria could represent a “missing link” between spermcast mating bivalves with brooded offspring and bivalves with broadcast release of eggs and sperm. The small size, limiting the oocyte production, together with the unstable environment could represent evolutionary pressures towards sperm uptake in D. digitaria.
Collapse
|
3
|
Trackenberg SN, Richardson EL, Allen JD. Effects of embryo energy, egg size, and larval food supply on the development of asteroid echinoderms. Ecol Evol 2020; 10:7839-7850. [PMID: 32760568 PMCID: PMC7391326 DOI: 10.1002/ece3.6511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022] Open
Abstract
Organisms have limited resources available to invest in reproduction, causing a trade-off between the number and size of offspring. One consequence of this trade-off is the evolution of disparate egg sizes and, by extension, developmental modes. In particular, echinoid echinoderms (sea urchins and sand dollars) have been widely used to experimentally manipulate how changes in egg size affect development. Here, we test the generality of the echinoid results by (a) using laser ablations of blastomeres to experimentally reduce embryo energy in the asteroid echinoderms (sea stars), Pisaster ochraceus and Asterias forbesi and (b) comparing naturally produced, variably sized eggs (1.7-fold volume difference between large and small eggs) in A. forbesi. In P. ochraceus and A. forbesi, there were no significant differences between juveniles from both experimentally reduced embryos and naturally produced eggs of variable size. However, in both embryo reduction and egg size variation experiments, simultaneous reductions in larval food had a significant and large effect on larval and juvenile development. These results indicate that (a) food levels are more important than embryo energy or egg size in determining larval and juvenile quality in sea stars and (b) the relative importance of embryo energy or egg size to fundamental life history parameters (time to and size at metamorphosis) does not appear to be consistent within echinoderms.
Collapse
Affiliation(s)
- Stacy N. Trackenberg
- Biology DepartmentWilliam & MaryWilliamsburgVirginiaUSA
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Emily L. Richardson
- Biology DepartmentWilliam & MaryWilliamsburgVirginiaUSA
- School of Biological SciencesMonash UniversityMelbourneVic.Australia
| | | |
Collapse
|
4
|
Delia J, Bravo‐Valencia L, Warkentin KM. The evolution of extended parental care in glassfrogs: Do egg‐clutch phenotypes mediate coevolution between the sexes? ECOL MONOGR 2020. [DOI: 10.1002/ecm.1411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jesse Delia
- Department of Biology Boston University Boston 02214 Massachusetts USA
| | - Laura Bravo‐Valencia
- Profesional equipo de fauna silvestre Corantioquia Santa Fe de Antioquia Colombia
| | - Karen M. Warkentin
- Department of Biology Boston University Boston 02214 Massachusetts USA
- Smithsonian Tropical Research Institute Panamá 0843-03092 República de Panamá
| |
Collapse
|
5
|
Bókony V, Üveges B, Ujhegyi N, Verebélyi V, Nemesházi E, Csíkvári O, Hettyey A. Endocrine disruptors in breeding ponds and reproductive health of toads in agricultural, urban and natural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1335-1345. [PMID: 29710633 DOI: 10.1016/j.scitotenv.2018.03.363] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 05/24/2023]
Abstract
Many chemical pollutants have endocrine disrupting effects which can cause lifelong reproductive abnormalities in animals. Amphibians are the most threatened group of vertebrates, but there is little information on the nature and quantity of pollutants occurring in typical amphibian breeding habitats and on the reproductive capacities of amphibian populations inhabiting polluted areas. In this study we investigated the occurrence and concentrations of endocrine disrupting chemicals in the water and sediment of under-studied amphibian breeding habitats in natural, agricultural and urbanized landscapes. Also, we captured reproductively active common toads (Bufo bufo) from these habitats and let them spawn in a 'common garden' to assess among-population differences in reproductive capacity. Across 12 ponds, we detected 41 out of the 133 contaminants we screened for, with unusually high concentrations of glyphosate and carbamazepine. Levels of polycyclic aromatic hydrocarbons, nonylphenol and bisphenol-A increased with urban land use, whereas levels of organochlorine and triazine pesticides and sex hormones increased with agricultural land use. Toads from all habitats had high fecundity, fertilization rate and offspring viability, but the F1 generation originating from agricultural and urban ponds had reduced development rates and lower body mass both as larvae and as juveniles. Females with small clutch mass produced thicker jelly coat around their eggs if they originated from agricultural and urban ponds compared with natural ponds. These results suggest that the observed pollution levels did not compromise reproductive potential in toads, but individual fitness and population viability may be reduced in anthropogenically influenced habitats, perhaps due to transgenerational effects and/or costs of tolerance to chemical contaminants.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary; Institute for Biology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Olivér Csíkvári
- HPLC and HPLC-MS Group, Organic Analytical Department, Bálint Analitika Kft, Fehérvári út 144, 1116 Budapest, Hungary; Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| |
Collapse
|
6
|
Foo SA, Deaker D, Byrne M. Cherchez la femme - impact of ocean acidification on the egg jelly coat and attractants for sperm. J Exp Biol 2018; 221:jeb.177188. [DOI: 10.1242/jeb.177188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 01/03/2023]
Abstract
The impact of ocean acidification on marine invertebrate eggs and consequences for sperm chemotaxis are unknown. In the sea urchins Heliocidaris tuberculata and H. erythrogramma, with small (93µm) and large (393µm) eggs, respectively, we documented the effect of decreased pH on the egg jelly coat, an extracellular matrix that increases target size for sperm and contains sperm attracting molecules. In near future conditions (pH 7.8, 7.6) the jelly coat of H. tuberculata decreased by 11 and 21%, reducing egg target size by 9 and 17%, respectively. In contrast, the egg jelly coat of H. erythrogramma was not affected. The reduction in the jelly coat has implications for sperm chemotaxis in H. tuberculata. In the presence of decreased pH and egg chemicals, the sperm of this species increased their velocity, motility and linearity, behaviour that was opposite to that seen for sperm exposed to egg chemicals in ambient conditions. Egg chemistry appears to cause a reduction in sperm velocity where attractants guide them in the direction of the egg. Investigation of the effects of decreased pH on sperm isolated from egg chemistry does not provide an integrative assessment of the effects of ocean acidification on sperm function. Differences in the sensitivity of the jelly coat of the two species is likely associated with egg evolution in H. erythrogramma. We highlight important unappreciated impacts of ocean acidification on marine gamete functionality, and insights into potential winners and losers in a changing ocean, pointing to the advantage conveyed by evolution of large eggs.
Collapse
Affiliation(s)
- Shawna A. Foo
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Dione Deaker
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Vermeij GJ, Grosberg RK. Rarity and persistence. Ecol Lett 2017; 21:3-8. [PMID: 29110416 DOI: 10.1111/ele.12872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023]
Abstract
Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual-level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long-distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind- or water-driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions.
Collapse
Affiliation(s)
- Geerat J Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Richard K Grosberg
- Department of Evolution and Ecology, Coastal and Marine Sciences Institute, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Parker GA, Ramm SA, Lehtonen J, Henshaw JM. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast-spawning invertebrates. Biol Rev Camb Philos Soc 2017; 93:693-753. [PMID: 28921784 DOI: 10.1111/brv.12363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/22/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023]
Abstract
Sedentary broadcast-spawning marine invertebrates, which release both eggs and sperm into the water for fertilization, are of special interest for sexual selection studies. They provide unique insight into the early stages of the evolutionary succession leading to the often-intense operation of both pre- and post-mating sexual selection in mobile gonochorists. Since they are sessile or only weakly mobile, adults can interact only to a limited extent with other adults and with their own fertilized offspring. They are consequently subject mainly to selection on gamete production and gamete success, and so high gonad expenditure is expected in both sexes. We review literature on gonadosomatic index (GSI; the proportion of body tissue devoted to gamete production) of gonochoristic broadcast spawners, which we use as a proxy for gonad expenditure. We show that such taxa most often have a high GSI that is approximately equal in both sexes. When GSI is asymmetric, female GSI usually exceeds male GSI, at least in echinoderms (the majority of species recorded). Intriguingly, though, higher male GSI also occurs in some species and appears more common than female-biased GSI in certain orders of gastropod molluscs. Our limited data also suggest that higher male GSI may be the prevalent pattern in sperm casters (where only males release gametes). We explore how selection might have shaped these patterns using game theoretic models for gonad expenditure that consider possible trade-offs with (i) somatic maintenance or (ii) growth, while also considering sperm competition, sperm limitation, and polyspermy. Our models of the trade-off between somatic tissue (which increases survival) and gonad (which increases reproductive success) predict that GSI should be equal for the two sexes when sperm competition is intense, as is probably common in broadcast spawners due to synchronous spawning in aggregations. Higher female GSI occurs under low sperm competition. Sperm limitation appears unlikely to alter these conclusions qualitatively, but can also act as a force to keep male GSI high, and close to that of females. Polyspermy can act to reduce male GSI. Higher male than female GSI is predicted to be less common (as observed in the data), but can occur when ova/ovaries are sufficiently more resource-intensive to produce than sperm/testes, for which some evidence exists. We also show that sex-specific trade-offs between gonads and growth can generate different life-history strategies for males and females, with males beginning reproduction earlier. This could lead to apparently higher male GSI in empirical studies if immature females are included in calculations of mean GSI. The existence of higher male GSI nonetheless remains somewhat problematic and requires further investigation. When sperm limitation is low, we suggest that the natural logarithm of the male/female GSI ratio may be a suitable index for sperm competition level in broadcast spawners, and that this may also be considered as an index for internally fertilizing taxa.
Collapse
Affiliation(s)
- Geoff A Parker
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Jonathan M Henshaw
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 2601, Canberra, Australia.,Institute of Zoology, University of Graz, Graz, 8010, Austria
| |
Collapse
|
9
|
Griffith AW, Gobler CJ. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors. Sci Rep 2017; 7:11394. [PMID: 28900271 PMCID: PMC5595845 DOI: 10.1038/s41598-017-11442-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/24/2017] [Indexed: 11/15/2022] Open
Abstract
While early life-stage marine bivalves are vulnerable to ocean acidification, effects over successive generations are poorly characterized. The objective of this work was to assess the transgenerational effects of ocean acidification on two species of North Atlantic bivalve shellfish, Mercenaria mercenaria and Argopecten irradians. Adults of both species were subjected to high and low pCO2 conditions during gametogenesis. Resultant larvae were exposed to low and ambient pH conditions in addition to multiple, additional stressors including thermal stress, food-limitation, and exposure to a harmful alga. There were no indications of transgenerational acclimation to ocean acidification during experiments. Offspring of elevated pCO2-treatment adults were significantly more vulnerable to acidification as well as the additional stressors. Our results suggest that clams and scallops are unlikely to acclimate to ocean acidification over short time scales and that as coastal oceans continue to acidify, negative effects on these populations may become compounded and more severe.
Collapse
Affiliation(s)
- Andrew W Griffith
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| |
Collapse
|
10
|
Foo SA, Byrne M. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg. MARINE ENVIRONMENTAL RESEARCH 2017; 128:12-24. [PMID: 28237403 DOI: 10.1016/j.marenvres.2017.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
In marine invertebrates, the environmental history of the mother can influence fecundity and egg size. Acclimation of females in climate change stressors, increased temperature and low pH, results in a decrease in egg number and size in many taxa, with the exception of cephalopods, where eggs increase in size. With respect to spawned eggs, near future levels of ocean acidification can interfere with the egg's block to polyspermy and intracellular pH. Reduction of the extracellular egg jelly coat seen in low pH conditions has implications for impaired egg function and fertilization. Some fast generation species (e.g. copepods, polychaetes) have shown restoration of female reproductive output after several generations in treatments. It will be important to determine if the changes to egg number and size induced by exposure to climate change stressors are heritable.
Collapse
Affiliation(s)
- Shawna A Foo
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Monro K, Marshall DJ. Two sexes, one body: intra- and intersex covariation of gamete phenotypes in simultaneous hermaphrodites. Ecol Evol 2014; 4:1340-6. [PMID: 24834330 PMCID: PMC4020693 DOI: 10.1002/ece3.1035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 11/24/2022] Open
Abstract
By harboring male and female functions in the same genome and expressing them in every individual, simultaneous hermaphrodites may incur sexual conflict unless both sex functions can evolve phenotypic optima independently of each other. The first step toward understanding their capacity to do so lies in understanding whether sex functions are phenotypically correlated within individuals, but remarkably few data address this issue. We tested the potential for intra- and intersex covariation of gamete phenotypes to mediate sexual conflict in broadcast-spawning hermaphrodites (the ascidians Ciona intestinalis and Pyura praeputialis), for which sex-specific selection acts predominantly on sperm–egg interactions in the water column. In both species, gamete phenotypes covaried within and across sex functions, implying that selection may be unable to target them independently because its direct effects on male gametes translate into correlated effects on female gametes and vice versa. This alone does not preclude the evolution of a different phenotypic optimum for each sex function, but imposes the more restrictive requirement that selection – which ultimately sorts among whole individuals, not sex functions – aligns with the direction in which gamete phenotypes covary at this level.
Collapse
Affiliation(s)
- Keyne Monro
- School of Biological Sciences, Monash University Melbourne, Victoria, 3800, Australia
| | - Dustin J Marshall
- School of Biological Sciences, Monash University Melbourne, Victoria, 3800, Australia
| |
Collapse
|
12
|
Crimaldi JP, Zimmer RK. The physics of broadcast spawning in benthic invertebrates. ANNUAL REVIEW OF MARINE SCIENCE 2013; 6:141-165. [PMID: 23957600 DOI: 10.1146/annurev-marine-010213-135119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most benthic invertebrates broadcast their gametes into the sea, whereupon successful fertilization relies on the complex interaction between the physics of the surrounding fluid flow and the biological properties and behavior of eggs and sperm. We present a holistic overview of the impact of instantaneous flow processes on fertilization across a range of scales. At large scales, transport and stirring by the flow control the distribution of gametes. Although mean dilution of gametes by turbulence is deleterious to fertilization, a variety of instantaneous flow phenomena can aggregate gametes before dilution occurs. We argue that these instantaneous flow processes are key to fertilization efficiency. At small scales, sperm motility and taxis enhance contact rates between sperm and chemoattractant-releasing eggs. We argue that sperm motility is a biological adaptation that replaces molecular diffusion in conventional mixing processes and enables gametes to bridge the gap that remains after aggregation by the flow.
Collapse
Affiliation(s)
- John P Crimaldi
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309-0428;
| | | |
Collapse
|
13
|
Moran AL, McAlister JS, Whitehill EAG. Eggs as energy: revisiting the scaling of egg size and energetic content among echinoderms. THE BIOLOGICAL BULLETIN 2013; 224:184-191. [PMID: 23995742 DOI: 10.1086/bblv224n3p184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Marine organisms exhibit substantial life-history diversity, of which egg size is one fundamental parameter. The size of an egg is generally assumed to reflect the amount of energy it contains and the amount of per-offspring maternal investment. Egg size and energy are thought to scale isometrically. We investigated this relationship by updating published datasets for echinoderms, increasing the number of species over those in previous studies by 62%. When we plotted egg energy versus egg size in the updated dataset we found that planktotrophs have a scaling factor significantly lower than 1, demonstrating an overall trend toward lower energy density in larger planktotrophic eggs. By looking within three genera, Echinometra, Strongylocentrotus, and Arbacia, we also found that the scaling exponent differed among taxa, and that in Echinometra, energy density was significantly lower in species with larger eggs. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life-history evolution. These data suggest that the evolution of egg size and egg energy content can be decoupled, possibly facilitating response to selective factors such as sperm limitation which could act on volume alone.
Collapse
Affiliation(s)
- A L Moran
- Department of Biological Sciences, Clemson University, South Carolina 29631, USA.
| | | | | |
Collapse
|
14
|
Castro DA, Podolsky RD. Holding on to a shifting substrate: plasticity of egg mass tethers and tethering forces in soft sediment for an intertidal gastropod. THE BIOLOGICAL BULLETIN 2012; 223:300-311. [PMID: 23264476 DOI: 10.1086/bblv223n3p300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Staying attached at a favorable site can be a major challenge for organisms in flow. Meeting this challenge depends on properties of the attachment structure and substrate, the nature of fluid flow, and the ability to adjust attachment force in response to hydrodynamic conditions. A broad taxonomic range of adult stages use adhesion or suction to attach to hard substrates in intertidal habitats, which experience flow from waves and tidal currents. We address the unique challenges of attachment to soft sediment in reproductive structures deposited on tidal flats. Egg masses of the opisthobranch mollusc Melanochlamys diomedea are anchored to the sediment by a buried tether composed of gel and sediment. In the field, populations differed in absolute tethering force and tethering force per unit size (= tenacity). Population differences in tenacity persisted for egg masses oviposited under common conditions in the laboratory. Adults exposed to greater flow produced tethers with greater tenacity but without an increase in tether size. Tethers tended to fail by slippage rather than breakage, indicating that tethering force depends more on frictional interaction with sediment than on strength of the tether axis. These results suggest that adults respond to variation in risks of embryo dislodgment by adjusting the tethering properties of egg masses, and that these adjustments involve more than simple changes in tether length or mass.
Collapse
Affiliation(s)
- Diego A Castro
- College of Charleston, Department of Biology, Charleston, SC 29424, USA
| | | |
Collapse
|
15
|
McAlister JS, Moran AL. Relationships among egg size, composition, and energy: a comparative study of geminate sea urchins. PLoS One 2012; 7:e41599. [PMID: 22911821 PMCID: PMC3402426 DOI: 10.1371/journal.pone.0041599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Egg size is one of the fundamental parameters in the life histories of marine organisms. However, few studies have examined the relationships among egg size, composition, and energetic content in a phylogenetically controlled context. We investigated the associations among egg size, composition, and energy using a comparative system, geminate species formed by the closure of the Central American Seaway. We examined western Atlantic (WA) and eastern Pacific (EP) species in three echinoid genera, Echinometra, Eucidaris, and Diadema. In the genus with the largest difference in egg size between geminates (Echinometra), the eggs of WA species were larger, lipid rich and protein poor compared to the smaller eggs of their EP geminate. In addition, the larger WA eggs had significantly greater total egg energy and summed biochemical constituents yet significantly lower egg energy density (energy-per-unit-volume). However, the genera with smaller (Eucidaris) or no (Diadema) differences in egg size were not significantly different in summed biochemical constituents, total egg energy, or energy density. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life history evolution. We show that even among closely-related taxa, large eggs cannot be assumed to be scaled-up small eggs either in terms of energy or composition. Although our data comes exclusively from echinoid echinoderms, this pattern may be generalizable to other marine invertebrate taxa. Because egg composition and egg size do not necessarily evolve in lockstep, selective factors such as sperm limitation could act on egg volume without necessarily affecting maternal or larval energetics.
Collapse
Affiliation(s)
- Justin S McAlister
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America.
| | | |
Collapse
|
16
|
Pujolar JM, Pogson GH. Positive Darwinian selection in gamete recognition proteins of Strongylocentrotus sea urchins. Mol Ecol 2011; 20:4968-82. [PMID: 22060977 DOI: 10.1111/j.1365-294x.2011.05336.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gamete recognition proteins commonly experience positive Darwinian selection and evolve more rapidly than nonreproductive proteins, but the selective forces responsible for their adaptive diversification remain unclear. We examined the patterns of positive selection in the cognate interacting pair of proteins formed by sperm bindin and its egg receptor (EBR1) and in two regions of the sea urchin sperm receptor for egg jelly suREJ3 gene (exons 22 and 26) among four species of Strongylocentrotus sea urchins (S. purpuratus, S. droebachiensis, S. pallidus and S. franciscanus). The signatures of selection differed at each reproductive protein. A strong signal of positive selection was detected at bindin in all lineages even though the species compared had highly variable gamete traits and experience different intensities and forms of sexual selection and sexual conflict in nature. Weaker selection was observed at EBR1 but the small region studied precluded a clear understanding of the extent of sexual conflict between bindin and the EBR1 protein. At the suREJ3 locus, diversifying selection was observed in exon 22 but not exon 26, suggesting that these regions experience different selective pressures and evolutionary constraints. Positive selection was also detected within S. pallidus at suREJ-22 because of the presence of 12 amino acid replacement mutations segregating at frequencies >0.10. Our results suggest that sexual conflict may be the predominant evolutionary mechanism driving the rapid diversification of reproductive proteins between, and polymorphism within, strongylocentrotid sea urchins.
Collapse
Affiliation(s)
- J M Pujolar
- Department of Biology, University of Padova, Padova 35131, Italy.
| | | |
Collapse
|
17
|
Sperm chemotaxis, fluid shear, and the evolution of sexual reproduction. Proc Natl Acad Sci U S A 2011; 108:13200-5. [PMID: 21788487 DOI: 10.1073/pnas.1018666108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemical communication is fundamental to sexual reproduction, but how sperm search for and find an egg remains enigmatic. For red abalone (Haliotis rufescens), a large marine snail, the relationship between chemical signaling and fluid motion largely determines fertilization success. Egg-derived attractant plumes are dynamic, changing their size and shape in response to unique combinations of physical and chemical environmental features. Attractant plumes that promote sexual reproduction, however, are limited to a precise set of hydrodynamic conditions. Performance-maximizing shears are those that most closely match flows in native spawning habitats. Under conditions in which reproductive success is chronically limited by sperm availability, gametes are under selection for mechanisms that increase sperm-egg encounter. Here, chemoattraction is found to provide a cheap evolutionary alternative for enhancing egg target size without enlarging cytoplasmic and/or cell volume. Because egg signaling and sperm response may be tuned to meet specific fluid-dynamic constraints, shear could act as a critical selective pressure that drives gamete evolution and determines fitness.
Collapse
|
18
|
KINDSVATER HK, BONSALL MB, ALONZO SH. Survival costs of reproduction predict age-dependent variation in maternal investment. J Evol Biol 2011; 24:2230-40. [DOI: 10.1111/j.1420-9101.2011.02351.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Kamel SJ, Grosberg RK, Marshall DJ. Family conflicts in the sea. Trends Ecol Evol 2010; 25:442-9. [DOI: 10.1016/j.tree.2010.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
20
|
Rosenheim JA, Alon U, Shinar G. Evolutionary balancing of fitness-limiting factors. Am Nat 2010; 175:662-74. [PMID: 20397907 DOI: 10.1086/652468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Debates concerning the roles of different factors that may limit an organism's reproductive success pervade evolutionary ecology. We suggest that a broad class of limiting-factors problems involving essential resources or essential components of reproductive effort can be analyzed with an evolutionary application of Liebig's law of the minimum. We explore life-history evolution using the metaphor of an organism that must harvest two essential resources (resources 1 and 2) from a stochastically varying environment. Our models make three predictions. First, organisms should overinvest, relative to the deterministic case, in harvesting the resource whose per-offspring harvest cost is smaller. Second, at the optimum, organisms balance multiple fitness-limiting factors rather than being consistently limited by one factor. Third, the optimal investment in harvesting a resource is directly linked to the probability that the organism's fitness will be limited by that resource. Under temporal variation, the optimal proportional investment in harvesting resource 1 is equal to the probability that resource 1 will limit fitness. Our results help to explain why the responses of populations to environmental perturbations are hard to predict: as an organism transitions between different limiting factors, its responses to perturbations of those factors will likewise change.
Collapse
Affiliation(s)
- Jay A Rosenheim
- Department of Entomology and Center for Population Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
21
|
Aagaard JE, Vacquier VD, MacCoss MJ, Swanson WJ. ZP domain proteins in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins. Mol Biol Evol 2010; 27:193-203. [PMID: 19767347 DOI: 10.1093/molbev/msp221] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope receptor for lysin (VERL). Rapid adaptive divergence of abalone lysin and VERL are an example of positive selection on interacting fertilization proteins contributing to reproductive isolation. Previously, we characterized a subset of the abalone VE proteins that share a structural feature, the zona pellucida (ZP) domain, which is common to VERL and the egg envelopes of vertebrates. Here, we use additional expressed sequence tag sequencing and shotgun proteomics to characterize this family of proteins in the abalone egg VE. We expand 3-fold the number of known ZP domain proteins present within the VE (now 30 in total) and identify a paralog of VERL (vitelline envelope zona pellucida domain protein [VEZP] 14) that contains a putative lysin-binding motif. We find that, like VERL, the divergence of VEZP14 among abalone species is driven by positive selection on the lysin-binding motif alone and that these paralogous egg VE proteins bind a similar set of sperm proteins including a rapidly evolving 18-kDa paralog of lysin, which may mediate sperm-egg fusion. This work identifies an egg coat paralog of VERL under positive selection and the candidate sperm proteins with which it may interact during abalone fertilization.
Collapse
Affiliation(s)
- Jan E Aagaard
- Department of Genome Sciences, University of Washington, USA.
| | | | | | | |
Collapse
|
22
|
Moran AL, McAlister JS. Egg size as a life history character of marine invertebrates: Is it all it's cracked up to be? THE BIOLOGICAL BULLETIN 2009; 216:226-242. [PMID: 19556591 DOI: 10.1086/bblv216n3p226] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Egg size is one of the most important aspects of the life history of free-spawning marine organisms, and it is correlated with larval developmental mode and many other life-history characters. Egg size is simple to measure and data are available for a wide range of taxa, but we have a limited understanding of how large and small eggs differ in composition; size is not always the best measure of the characters under selection. Large eggs are generally considered to reflect increased maternal investment, but egg size alone can be a poor predictor of energetic content within and among taxa. We review techniques that have been used to measure the energetic content and biochemical makeup of invertebrate eggs and point out the strengths and difficulties associated with each. We also suggest a number of comparative and descriptive approaches to biochemical constituent analysis that would strengthen our understanding of how natural selection shapes oogenic strategies. Finally, we highlight recent empirical research on the intrinsic factors that drive intraspecific variation in egg size. We also highlight the relative paucity of these data in the literature and provide some suggestions for future research directions.
Collapse
Affiliation(s)
- Amy L Moran
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina 29634, USA.
| | | |
Collapse
|
23
|
|
24
|
Styan CA, Kupriyanova E, Havenhand JN. BARRIERS TO CROSS-FERTILIZATION BETWEEN POPULATIONS OF A WIDELY DISPERSED POLYCHAETE SPECIES ARE UNLIKELY TO HAVE ARISEN THROUGH GAMETIC COMPATIBILITY ARMS-RACES. Evolution 2008; 62:3041-55. [DOI: 10.1111/j.1558-5646.2008.00521.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Abstract
Sperm competition has classically been thought to maintain anisogamy (large eggs and smaller sperm) because males are thought to maximize their chance of winning fertilizations by trading sperm size for number. More recently it has been recognized that sperm quality (e.g., size, velocity) can also influence sperm competition, although studies have yielded conflicting results. Because sex evolved in the sea, debate has continued over the role of sperm competition and sperm environment in determining both sperm and egg size in externally fertilizing broadcast spawners. Remarkably, however, there have been no direct tests of whether broadcast spawners change the traits of their gametes depending on the likelihood of sperm competition. We manipulated the density (and thus, sperm environment) of a broadcast spawning ascidian (Styela plicata) in the field and then determined whether the phenotype of eggs and sperm changed. We found that sperm from adults kept at high density were larger and more motile than sperm from low-density adults. In vitro fertilizations revealed that sperm from high-density adults also lived longer and induced less polyspermy. Adult density also affected egg traits: eggs from high-density adults were smaller targets for sperm overall but produced larger ovicells than eggs from low-density adults. This suggests that broadcast spawning mothers balance (potentially conflicting) pre- and postzygotic selection pressures on egg size. Overall, our results suggest that sperm competition does not represent a strong force maintaining anisogamy in broadcast spawners. Instead, sperm limitation seems to select for large eggs and smaller, more numerous sperm.
Collapse
|
26
|
Inamdar MV, Kim T, Chung YK, Was AM, Xiang X, Wang CW, Takayama S, Lastoskie CM, Thomas FIM, Sastry AM. Assessment of sperm chemokinesis with exposure to jelly coats of sea urchin eggs and resact: a microfluidic experiment and numerical study. J Exp Biol 2007; 210:3805-20. [DOI: 10.1242/jeb.005439] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Specific peptides contained within the extracellular layer, or jelly coat,of a sea urchin egg have been hypothesized to play an important role in fertilization, though separate accounting of the effects of chemoattraction,chemokinesis, sperm agglomeration and the other possible roles of the jelly coat have not been reported. In the present study, we used a microfluidic device that allowed determination of the differences in the diffusion coefficients of sperm of the purple sea urchin Arbacia punctulatasubjected to two chemoattractants, namely the jelly coat and resact. Our objectives were twofold: (1) to experimentally determine and compare the diffusion coefficients of Arbacia punctulata spermatozoa in seawater,jelly coat solution and resact solution; and (2) to determine the effect of sea urchin sperm diffusion coefficient and egg size on the sperm–egg collision frequency using stochastic simulations. Numerical values of the diffusion coefficients obtained by diffusing the spermatozoa in seawater,resact solution and jelly coat solution were used to quantify the chemotactic effect. This allowed direct incorporation of known enlargements of the egg,and altered sperm diffusion coefficients in the presence of chemoattractant,in the stochastic simulations. Simulation results showed that increase in diffusion coefficient values and egg diameter values increased the collision frequency. From the simulation results, we concluded that type of sperm, egg diameter and diffusion coefficient are significant factors in egg fertilization. Increasing the motility of sperm appears to be the prominent role of the jelly coat.
Collapse
Affiliation(s)
- Munish V. Inamdar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
| | - Taeyong Kim
- Department of Mechanical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
| | - Yao-Kuang Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
| | - Alex M. Was
- Department of Mechanical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
| | - Xinran Xiang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
| | - Chia-Wei Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
| | - Christian M. Lastoskie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
- Department of Civil and Environmental Engineering and University of Michigan, Ann Arbor, 48109 MI, USA
| | | | - Ann Marie Sastry
- Department of Mechanical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor,48109 MI, USA
- Department of Materials Science and Engineering, University of Michigan,Ann Arbor, 48109 MI, USA
| |
Collapse
|
27
|
Abstract
Our view of sperm competition is largely shaped by game-theoretic models based on external fertilizers. External fertilization is of particular interest as it is the ancestral mode of reproduction and as such, relevant to the evolution and maintenance of anisogamy (i.e., large eggs and tiny, numerous sperm). Current game-theoretic models have been invaluable in generating predictions of male responses to sperm competition in a range of internal fertilizers but these models are less relevant to marine broadcast spawners, the most common and archetypal external fertilizers. Broadcast spawners typically have incomplete fertilization due to sperm limitation and/or polyspermy (too many sperm), but the effects of incomplete (<100% fertilization rates) fertilization on game-theoretic predictions are unclear particular with regards to polyspermy. We show that incorporating the effects of sperm concentration on fertilization success changes the predictions of a classic game-theoretic model, dramatically reversing the relationship between sperm competition and the evolutionarily stable sperm release strategy. Furthermore, our results suggest that male and female broadcast spawners are likely to be in conflict at both ends of the sperm environment continuum rather than only in conditions of excess sperm as previously thought. Across the majority of the parameter space we explored, males release either too little to too much sperm for females to achieve complete fertilization. This conflict could result in a coevolutionary race that may have led to the evolution of internal fertilization in marine organisms.
Collapse
Affiliation(s)
- Michael Bode
- School of Integrative Biology, The University of Queensland, Brisbane, 4072, QLD, Australia
| | | |
Collapse
|
28
|
R McEdward L, G Miner B. Chapter 5 Echinoid larval ecology. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2007. [DOI: 10.1016/s0167-9309(07)80069-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Abstract
When the availability of sperm limits female reproductive success, competition for sperm, may be an important broker of sexual selection. This is because sperm limitation can increase the variance in female reproductive success, resulting in strong selection on females to compete for limited fertilization opportunities. Sperm limitation is probably common in broadcast-spawning marine invertebrates, making these excellent candidates for investigating scramble competition between broods of eggs and its consequences for female reproductive success. Here, we report our findings from a series of experiments that investigate egg competition in the sessile, broadcast-spawning polychaete Galeolaria caespitosa. We initially tested whether the order in which eggs encounter sperm affects their fertilization success at two ecologically relevant current regimes. We used a split-clutch-split--ejaculate technique to compare the fertilization success of eggs from individual females that had either first access (competition-free treatment) or second access (egg competition treatment) to a batch of sperm. We found that fertilization success depended on the order in which eggs accessed sperm; eggs that were assigned to the competition-free treatment exhibited significantly higher fertilization rates than those assigned to the egg competition treatment at both current speeds. In subsequent experiments we found that prior exposure of sperm to eggs significantly reduced both the quantity and quality of sperm available to fertilize a second clutch of eggs, resulting in reductions in fertilization success at high and low sperm concentrations. These findings suggest that female traits that increase the likelihood of sperm-egg interactions (e.g. egg size) will respond to selection imposed by egg competition.
Collapse
Affiliation(s)
- D J Marshall
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|