1
|
Piot E, Hippauf L, Charlanne L, Picard B, Badaut J, Gilbert C, Guinet C. From land to ocean: One month for southern elephant seal pups to acquire aquatic skills prior to their first departure to sea. Physiol Behav 2024; 279:114525. [PMID: 38531424 DOI: 10.1016/j.physbeh.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Weaned southern elephant seals (SES) quickly transition from terrestrial to aquatic life after a 5- to 6-week post-weaning period. At sea, juveniles and adult elephant seals present extreme, continuous diving behaviour. Previous studies have highlighted the importance of the post-weaning period for weanlings to prepare for the physiological challenges of their future sea life. However, very little is known about how their body condition during this period may influence the development of their behaviour and brain activities. To characterise changes in the behavioural and brain activity of weanlings prior to ocean departure, we implemented a multi-logger approach combining measurements of movements (related to behaviour), pressure (related to diving), and brain electrical activity. As pups age, the amount of time allocated to resting decreases in favour of physical activity. Most resting (9.6 ± 1.2 h/day) takes place during daytime, with periods of slow-wave sleep representing 4.9 ± 0.9 h/day during the first 2 weeks. Furthermore, an increasing proportion of physical activity transitions from land to shore. Additionally, pups in poorer condition (lean group) are more active earlier than those in better condition (corpulent group). Finally, at weaning, clear circadian activity with two peaks at dawn and dusk is observed, and this pattern remains unchanged during the 4 weeks on land. This circadian pattern matches the one observed in adults at sea, with more prey catches at dawn and dusk, raising the question of whether it is endogenous or triggered by the mother during lactation.
Collapse
Affiliation(s)
- Erwan Piot
- Laboratoire MECADEV, UMR 7179 CNRS/MNHN, 1 Avenue du Petit Château, 91800 Brunoy, France; CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France.
| | - Lea Hippauf
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - Laura Charlanne
- Université de Strasbourg, CNRS, IPHC, Département d'Ecologie, Physiologie et Ethologie, 23 rue Becquerel, 67087 Strasbourg, France
| | - Baptiste Picard
- Centre d'Études Biologiques de Chizé-Centre National de la Recherche Scientifique (CEBC-CNRS), UMR 7372 CNRS/Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Jérôme Badaut
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - Caroline Gilbert
- Laboratoire MECADEV, UMR 7179 CNRS/MNHN, 1 Avenue du Petit Château, 91800 Brunoy, France; École Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94704 Maisons-Alfort cedex, France
| | - Christophe Guinet
- Centre d'Études Biologiques de Chizé-Centre National de la Recherche Scientifique (CEBC-CNRS), UMR 7372 CNRS/Université de La Rochelle, 79360 Villiers-en-Bois, France
| |
Collapse
|
2
|
Jouma'a J, Orgeret F, Picard B, Robinson PW, Weimerskirch H, Guinet C, Costa DP, Beltran RS. Contrasting offspring dependence periods and diving development rates in two closely related marine mammal species. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230666. [PMID: 38179081 PMCID: PMC10762441 DOI: 10.1098/rsos.230666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024]
Abstract
Understanding the ontogeny of diving behaviour in marine megafauna is crucial owing to its influence on foraging success, energy budgets, and mortality. We compared the ontogeny of diving behaviour in two closely related species-northern elephant seals (Mirounga angustirostris, n = 4) and southern elephant seals (Mirounga leonina, n = 9)-to shed light on the ecological processes underlying migration. Although both species have similar sizes and behaviours as adults, we discovered that juvenile northern elephant seals have superior diving development, reaching 260 m diving depth in just 30 days, while southern elephant seals require 160 days. Similarly, northern elephant seals achieve dive durations of approximately 11 min on their first day of migration, while southern elephant seals take 125 days. The faster physiological maturation of northern elephant seals could be related to longer offspring dependency and post-weaning fast durations, allowing them to develop their endogenous oxygen stores. Comparison across both species suggests that weaned seal pups face a trade-off between leaving early with higher energy stores but poorer physiological abilities or leaving later with improved physiology but reduced fat stores. This trade-off might be influenced by their evolutionary history, which shapes their migration behaviours in changing environments over time.
Collapse
Affiliation(s)
- Joffrey Jouma'a
- Ecology and Evolutionary Biology, University of California Santa Cruz, CA, USA
| | - Florian Orgeret
- Marine Apex Predator Research Unit, Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Baptiste Picard
- Centre d'Etudes Biologiques de Chizé, UMR 7372 La Rochelle University-CNRS, La Rochelle, France
| | - Patrick W. Robinson
- Ecology and Evolutionary Biology, University of California Santa Cruz, CA, USA
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372 La Rochelle University-CNRS, La Rochelle, France
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, UMR 7372 La Rochelle University-CNRS, La Rochelle, France
| | - Daniel P. Costa
- Ecology and Evolutionary Biology, University of California Santa Cruz, CA, USA
- Institute of Marine Sciences, University of California Santa Cruz, CA, USA
| | - Roxanne S. Beltran
- Ecology and Evolutionary Biology, University of California Santa Cruz, CA, USA
| |
Collapse
|
3
|
Nowak BVR, Bowen WD, den Heyer CE, Lang SLC, Lidgard DC. Ontogeny of movement patterns in naïve grey seal pups inhabiting a complex continental shelf ecosystem. PLoS One 2023; 18:e0290707. [PMID: 37756252 PMCID: PMC10529606 DOI: 10.1371/journal.pone.0290707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Most vertebrate offspring must transition from the relative security of parental care (nutrition and protection) to independent foraging. Offspring face many challenges during this critical period, particularly in species where parental care ends at weaning, such as the grey seal (Halichoerus grypus). We studied the development of movement behaviour in naïve grey seal pups from their first trips to sea to about five months of age. Twenty-five (12 males and 13 females) newly-weaned pups were fitted with satellite-linked GPS tags on Sable Island, Nova Scotia, Canada in January 2016. The influence of fixed effects (pup size, sex, week) and the random effect of pup identity on trip characteristics were examined. Movement behaviour was analyzed using a move persistence mixed-effects model. Habitat use was highly variable among individuals and covered much of the geographic distribution of the population. Unlike older juveniles, subadults, and adults in this population, most naïve pups used multiple haulout sites to begin and end trips. There was little evidence of area-restricted search behaviour during trips, suggesting that naïve pups were using an opportunistic foraging tactic that may result in more variable foraging success than that of older, experienced animals. Naïve pups made longer trips with longer haulout durations between them than observed for older greys seals. Males and females differed in some trip characteristics, but sex effects were small over the first few months of life. Offspring size at weaning was not a useful predictor of trip characteristics. Move persistence of grey seal pups was initially high and then decreased over time as individuals gained experience. Both intrinsic and extrinsic factors were influential on the movements of grey seal pups. Greater body length at weaning, longer duration spent on shore after weaning, shallower water column depth, and farther distance from shore were all associated with lower move persistence. Female grey seal pups had lower move persistence than males. Overall, the movements of naïve grey seal pups during the first few months of life were characterized by extensive exploration, but move persistence decreased over time suggesting they may be using an exploration-refinement foraging tactic.
Collapse
Affiliation(s)
- Benia V. R. Nowak
- Biology Department, Life Science Centre Dalhousie University, Halifax, Nova Scotia, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - W. Don Bowen
- Biology Department, Life Science Centre Dalhousie University, Halifax, Nova Scotia, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Cornelia E. den Heyer
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Shelley L. C. Lang
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
- Northwest Atlantic Fisheries Centre, St. John’s, Newfoundland, Canada
| | - Damian C. Lidgard
- Biology Department, Life Science Centre Dalhousie University, Halifax, Nova Scotia, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| |
Collapse
|
4
|
Validation of quantitative fatty acid signature analysis for estimating the diet composition of free-ranging killer whales. Sci Rep 2022; 12:7938. [PMID: 35562583 PMCID: PMC9106655 DOI: 10.1038/s41598-022-11660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
Accurate diet estimates are necessary to assess trophic interactions and food web dynamics in ecosystems, particularly for apex predators like cetaceans, which can regulate entire food webs. Quantitative fatty acid analysis (QFASA) has been used to estimate the diets of marine predators in the last decade but has yet to be implemented on free-ranging cetaceans, from which typically only biopsy samples containing outer blubber are available, due to a lack of empirically determined calibration coefficients (CCs) that account for fatty acid (FA) metabolism. Here, we develop and validate QFASA for killer whales using full blubber from managed-care and free-ranging individuals. First, we compute full, inner, and outer blubber CCs from the FA signatures across the blubber layers of managed-care killer whales and their long-term diet items. We then run cross-validating simulations on the managed-care individuals to evaluate the accuracy of diet estimates by comparing full-depth and depth-specific estimates to true diets. Finally, we apply these approaches to subsistence-harvested killer whales from Greenland to test the utility of the method for free-ranging killer whales, particularly for the outer blubber. Accurate diet estimates for the managed-care killer whales were only achieved using killer whale-specific and blubber-layer-specific CCs. Modeled diets for the Greenlandic killer whales largely consisted of seals (75.9 ± 4.7%) and/or fish (20.4 ± 2.4%), mainly mackerel, which was consistent with stomach content data and limited literature on this population. Given the remote habitats and below surface feeding of most cetaceans, this newly developed cetacean-specific QFASA method, which can be applied to outer-layer biopsies, offers promise to provide a significant new understanding of diet dynamics of free-ranging odontocetes and perhaps other cetacean species throughout the world's oceans.
Collapse
|
5
|
Pearson LE, Weitzner EL, Tomanek L, Liwanag HEM. Metabolic cost of thermoregulation decreases after the molt in developing Weddell seal pups. J Exp Biol 2022; 225:274807. [PMID: 35217875 DOI: 10.1242/jeb.242773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Allocation of energy to thermoregulation greatly contributes to the metabolic cost of endothermy, especially in extreme ambient conditions. Weddell seal (Leptonychotes weddellii) pups born in Antarctica must survive both on ice and in water, two environments with very different thermal conductivities. This disparity likely requires pups to allocate additional energy toward thermoregulation rather than growth or development of swimming capabilities required for independent foraging. We measured longitudinal changes in resting metabolic rate (RMR) for Weddell seal pups (n=8) in air and water from one to seven weeks of age, using open-flow respirometry. Concurrently, we collected molt, morphometric, and dive behavior data. Absolute-MR in air followed the expected allometric relationship with mass. Absolute-MR in water was not allometric with mass, despite a 3-fold increase in mass between one and seven weeks of age. Developmental stage (or molting stage), rather than calendar age, determined when pups were thermally capable of being in the water. We consistently observed post-molt pups had lower RMR in air and water (6.67±1.4 and 7.90±2.38 ml O2 min-1kg-1, respectively) than pre-molt (air: 9.37±2.42 ml O2 min-1kg-1, water: 13.40±3.46 ml O2 min-1kg-1) and molting pups (air: 8.45±2.05 ml O2 min-1kg-1, water: 10.4±1.63 ml O2 min-1kg-1). RMR in air and water were equivalent only for post-molt pups. Despite the increased energy cost, molting pups spent 3x more time in the water than other pups. These results support the idea of an energetic trade-off during early development; pups expend more energy for thermoregulation in water, yet gain experience needed for independence.
Collapse
Affiliation(s)
- Linnea E Pearson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Emma L Weitzner
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Lars Tomanek
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Heather E M Liwanag
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| |
Collapse
|
6
|
Neises VM, Karpovich SA, Keogh MJ, King RS, Trumble SJ. Regional, seasonal and age class blubber fatty acid signature analysis of harbour seals in Alaska from 1997 to 2010. CONSERVATION PHYSIOLOGY 2021; 9:coab036. [PMID: 35685345 PMCID: PMC8628356 DOI: 10.1093/conphys/coab036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/31/2021] [Accepted: 05/07/2021] [Indexed: 06/15/2023]
Abstract
Alaskan harbour seal populations are currently listed as a species of special concern. Although there is evidence of recent stabilization or even partial recovery of harbour seal numbers in areas of historic decline, most populations have not made substantial recoveries. To date, few data exist regarding spatial and seasonal changes in blubber fatty acids (FAs) for Alaskan harbour seal populations. The purpose of this study was to qualitatively investigate harbour seal blubber FA profiles for regional, seasonal and age class differences. Blubber FA concentrations were analysed using MANOVA and linear discriminant analysis (LDA) from 760 individual harbour seals across Bristol Bay, Kodiak, Prince William Sound and Southeast Alaska from 1997 to 2010. Our results suggest spatial and seasonal differences are largely driven by monounsaturated FAs, most notably 14:1n-5, 16:1n-7 and 18:1n-7. In addition, our data revealed a progression in blubber FAs from pups to adults, with a shift from saturated FAs and short-chained monounsaturated FAs in the pup blubber to more long-chain monounsaturated FAs and polyunsaturated FAs in adults. Lastly, harbour seals pups had elevated saturated FA 16:0 concentrations when compared to other age classes, regardless of location or period. With this vast spatial and seasonal FA information, we believe future sampling of blubber FAs from Alaskan harbour seal populations could be a useful tool in assessing the response of this species and its ecosystem to changes associated with natural and anthropogenic pressures.
Collapse
Affiliation(s)
| | | | - Mandy J Keogh
- Alaska Department of Fish and Game, Fairbanks, AK 99701, USA
| | - Ryan S King
- Department of Biology, Baylor University, Waco, TX
76798, USA
| | | |
Collapse
|
7
|
Weitzner EL, Fanter CE, Hindle AG. Pinniped Ontogeny as a Window into the Comparative Physiology and Genomics of Hypoxia Tolerance. Integr Comp Biol 2020; 60:1414-1424. [PMID: 32559283 DOI: 10.1093/icb/icaa083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diving physiology has received considerable scientific attention as it is a central element of the extreme phenotype of marine mammals. Many scientific discoveries have illuminated physiological mechanisms supporting diving, such as massive, internally bound oxygen stores and dramatic cardiovascular regulation. However, the cellular and molecular mechanisms that support the diving phenotype remain mostly unexplored as logistic and legal restrictions limit the extent of scientific manipulation possible. With next-generation sequencing (NGS) tools becoming more widespread and cost-effective, there are new opportunities to explore the diving phenotype. Genomic investigations come with their own challenges, particularly those including cross-species comparisons. Studying the regulatory pathways that underlie diving mammal ontogeny could provide a window into the comparative physiology of hypoxia tolerance. Specifically, in pinnipeds, which shift from terrestrial pups to elite diving adults, there is potential to characterize the transcriptional, epigenetic, and posttranslational differences between contrasting phenotypes while leveraging a common genome. Here we review the current literature detailing the maturation of the diving phenotype in pinnipeds, which has primarily been explored via biomarkers of metabolic capability including antioxidants, muscle fiber typing, and key aerobic and anaerobic metabolic enzymes. We also discuss how NGS tools have been leveraged to study phenotypic shifts within species through ontogeny, and how this approach may be applied to investigate the biochemical and physiological mechanisms that develop as pups become elite diving adults. We conclude with a specific example of the Antarctic Weddell seal by overlapping protein biomarkers with gene regulatory microRNA datasets.
Collapse
Affiliation(s)
- Emma L Weitzner
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Cornelia E Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
8
|
Noren SR. Postnatal development of diving physiology: implications of anthropogenic disturbance for immature marine mammals. ACTA ACUST UNITED AC 2020; 223:223/17/jeb227736. [PMID: 32917778 DOI: 10.1242/jeb.227736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Marine mammals endure extended breath-holds while performing active behaviors, which has fascinated scientists for over a century. It is now known that these animals have large onboard oxygen stores and utilize oxygen-conserving mechanisms to prolong aerobically supported dives to great depths, while typically avoiding (or tolerating) hypoxia, hypercarbia, acidosis and decompression sickness (DCS). Over the last few decades, research has revealed that diving physiology is underdeveloped at birth. Here, I review the postnatal development of the body's oxygen stores, cardiorespiratory system and other attributes of diving physiology for pinnipeds and cetaceans to assess how physiological immaturity makes young marine mammals vulnerable to disturbance. Generally, the duration required for body oxygen stores to mature varies across species in accordance with the maternal dependency period, which can be over 2 years long in some species. However, some Arctic and deep-diving species achieve mature oxygen stores comparatively early in life (prior to weaning). Accelerated development in these species supports survival during prolonged hypoxic periods when calves accompany their mothers under sea ice and to the bathypelagic zone, respectively. Studies on oxygen utilization patterns and heart rates while diving are limited, but the data indicate that immature marine mammals have a limited capacity to regulate heart rate (and hence oxygen utilization) during breath-hold. Underdeveloped diving physiology, in combination with small body size, limits diving and swimming performance. This makes immature marine mammals particularly vulnerable to mortality during periods of food limitation, habitat alterations associated with global climate change, fishery interactions and other anthropogenic disturbances, such as exposure to sonar.
Collapse
Affiliation(s)
- Shawn R Noren
- Institute of Marine Science, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
9
|
Hermann-Sorensen H, Thometz NM, Woodie K, Dennison-Gibby S, Reichmuth C. In Vivo Measurements of Lung Volumes in Ringed Seals: Insights from Biomedical Imaging. J Exp Biol 2020:jeb.235507. [PMID: 34005800 DOI: 10.1242/jeb.235507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022]
Abstract
Marine mammals rely on oxygen stored in blood, muscle, and lungs to support breath-hold diving and foraging at sea. Here, we used biomedical imaging to examine lung oxygen stores and other key respiratory parameters in living ringed seals (Pusa hispida). Three-dimensional models created from computed tomography (CT) images were used to quantify total lung capacity (TLC), respiratory dead space, minimum air volume, and total body volume to improve assessments of lung oxygen storage capacity, scaling relationships, and buoyant force estimates. Results suggest that lung oxygen stores determined in vivo are smaller than those derived from postmortem measurements. We also demonstrate that-while established allometric relationships hold well for most pinnipeds-these relationships consistently overestimate TLC for the smallest phocid seal. Finally, measures of total body volume reveal differences in body density and net vertical forces in the water column that influence costs associated with diving and foraging in free-ranging seals.
Collapse
Affiliation(s)
- Holly Hermann-Sorensen
- University of California Santa Cruz. Department of Ocean Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Nicole M Thometz
- University of San Francisco, Department of Biology. 2130 Fulton Street, San Francisco, CA 94117, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Kathleen Woodie
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
| | | | - Colleen Reichmuth
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| |
Collapse
|
10
|
Shero MR, Reiser PJ, Simonitis L, Burns JM. Links between muscle phenotype and life history: differentiation of myosin heavy chain composition and muscle biochemistry in precocial and altricial pinniped pups. J Comp Physiol B 2019; 189:717-734. [DOI: 10.1007/s00360-019-01240-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
|
11
|
Goertz CEC, Reichmuth C, Thometz NM, Ziel H, Boveng P. Comparative Health Assessments of Alaskan Ice Seals. Front Vet Sci 2019; 6:4. [PMID: 30792982 PMCID: PMC6375287 DOI: 10.3389/fvets.2019.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/10/2019] [Indexed: 01/07/2023] Open
Abstract
Bearded (Erignathus barbatus), ringed (Pusa hispida), spotted (Phoca largha), and ribbon (Histriophoca fasciata) seals rely on seasonal sea-ice in Arctic and sub-Arctic regions. Many aspects of the biology and physiology of these seals are poorly known, and species-typical health parameters are not available for all species. Such information has proven difficult to obtain due to the challenges of studying Arctic seals in the wild and their minimal historic representation in aquaria. Here, we combine diagnostic information gathered between 2000 and 2017 from free-ranging seals, seals in short-term rehabilitation, and seals living in long-term human care to evaluate and compare key health parameters. For individuals in apparent good health, hematology, and blood chemistry values are reported by the source group for 10 bearded, 13 ringed, 73 spotted, and 81 ribbon seals from Alaskan waters. For a smaller set of individuals handled during veterinary or necropsy procedures, the presence of parasites and pathogens is described, as well as exposure to a variety of infectious diseases known to affect marine mammals and/or humans, with positive titers observed for Brucella, Leptospira, avian influenza, herpesvirus PhHV-1, and morbillivirus. These data provide initial baseline parameters for hematology, serum chemistries, and other species-level indicators of health that can be used to assess the condition of individual seals, inform monitoring and management efforts, and guide directed research efforts for Alaskan populations of ice-associated seals.
Collapse
Affiliation(s)
| | - Colleen Reichmuth
- Alaska SeaLife Center, Seward, AK, United States.,Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Nicole M Thometz
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States.,Department of Biology, University of San Francisco, San Francisco, CA, United States
| | - Heather Ziel
- Polar Ecosystems Program, Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | - Peter Boveng
- Polar Ecosystems Program, Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| |
Collapse
|
12
|
Noren SR, Poll CP, Edwards MS. Body Growth and Rapid Hematological Development Support Breath Hold of Baby Belugas (Delphinapterus leucas) during Subice Transit. Physiol Biochem Zool 2017; 91:691-704. [PMID: 29125799 DOI: 10.1086/694920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Body size and oxygen stores in the blood and muscle set breath-hold limits in marine mammals, yet these characteristics are understudied in immature cetaceans. We examined body mass and hematology from birth through adulthood in beluga whales (Delphinapterus leucas). At birth, body mass was 8% and 6% of the maximum mass recorded for adult females and males, respectively. Body mass then increased rapidly, approaching an asymptote around 12 yr for females and 18 yr for males. Interestingly, red blood cell counts, hemoglobin content, and hematocrit levels decreased after birth; this neonatal anemia was reversed as levels increased after 2 mo postpartum. Mature levels were obtained at approximately 8, 9, and 11 mo postpartum, respectively. Neonatal mean corpuscular hemoglobin also increased with ontogeny; mature levels were achieved by approximately 13 mo after birth. In contrast, mean corpuscular volume and mean corpuscular hemoglobin concentration demonstrated a significant but subtle increase throughout ontogeny. Our results indicate that postnatal maturation was required and that maturation occurred far earlier than the age at weaning (i.e., 2-3 yr postpartum). This is atypical of marine mammals, which generally achieve mature hemoglobin levels at weaning. Hematological maturation before maternal independence undoubtedly supports the prolonged breath holds of young belugas transiting under sea ice. This assessment enhances our knowledge of cetacean physiology and provides important inputs for determining age-specific dive capacity, yielding insights into age-specific flexibility to alter underwater behaviors, as will be required for future regime shifts and disturbances.
Collapse
|
13
|
Noren SR, West K. Muscle biochemistry of a pelagic delphinid (Stenella longirostris longirostris): insight into fishery-induced separation of mothers and calves. J Exp Biol 2017; 220:1490-1496. [DOI: 10.1242/jeb.153668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The length of time required for postnatal maturation of the locomotor muscle (longissimus dorsi) biochemistry [myoglobin (Mb) content and buffering capacity] in marine mammals typically varies with nursing duration, but it can be accelerated by species-specific behavioral demands, such as deep-diving and sub-ice transit. We examined how the swimming demands of a pelagic lifestyle influence postnatal maturation of Mb and buffering capacity in spinner dolphins (Stenella longirostris longirostris). Mb content of newborn (1.16±0.07 g Mb per 100 g wet muscle mass, n=6) and juvenile (2.77±0.22 g per 100 g, n=4) spinner dolphins were only 19% and 46% of adult levels (6.00±0.74 g per 100 g, n=6), respectively. At birth, buffering capacity was 52.70±4.48 slykes (n=6) and increased to 78.53±1.91 slykes (n=6) once a body length of 141 cm was achieved, representing 1.6- to 2.0-year-old dolphins. Based on the age of weaning (1.3–1.6 years post-partum), muscle maturation occurred just after weaning as described for coastal bottlenose dolphins (Tursiops truncatus). Thus, a pelagic lifestyle does not promote rapid maturation of muscle biochemistry. Rather, it promotes enhanced muscle biochemistry: newborn and adult spinner dolphins had four- and two-times greater Mb contents than newborn and adult bottlenose dolphins, respectively. Indeed, adult levels rivaled those of deep-diving cetaceans. Nonetheless, the relatively underdeveloped muscle biochemistry of calves likely contributes to documented mother–calf separations for spinner dolphins chased by the tuna purse-seine fishery.
Collapse
Affiliation(s)
- Shawn R. Noren
- Institute of Marine Science, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Kristi West
- College of Natural and Computational Sciences, Hawaii Pacific University, 45-045 Kamehameha Hwy., Kaneohe, HI 96744, USA
| |
Collapse
|
14
|
Fago A, Parraga DG, Petersen EE, Kristensen N, Giouri L, Jensen FB. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals. Comp Biochem Physiol A Mol Integr Physiol 2016; 205:35-40. [PMID: 27993597 DOI: 10.1016/j.cbpa.2016.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023]
Abstract
The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Elin E Petersen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Niels Kristensen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Lea Giouri
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
15
|
Hückstädt LA, Tift MS, Riet-Sapriza F, Franco-Trecu V, Baylis AMM, Orben RA, Arnould JPY, Sepulveda M, Santos-Carvallo M, Burns JM, Costa DP. Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia). ACTA ACUST UNITED AC 2016; 219:2320-30. [PMID: 27247316 DOI: 10.1242/jeb.138677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases.
Collapse
Affiliation(s)
- Luis A Hückstädt
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Long Marine Laboratory, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Michael S Tift
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Federico Riet-Sapriza
- Laboratorio de Ecologia Molecular de Vertebrados Acuaticos (LEMVA), Departamento de Ciencias Biologicas, Facultad de Ciencias, Universidad de Los Andes, Carrera 1E, #18A-10, Bogota, Colombia
| | - Valentina Franco-Trecu
- Departamento de Ecología y Evolución Facultad de Ciencias, Universidad de la República, Iguá 4225 Esq. Mataojo C.P, 11400 Montevideo, Uruguay
| | - Alastair M M Baylis
- South Atlantic Environmental Research Institute, Stanley FIQQ1ZZ, Falkland Islands School of Life and Environmental Sciences, Deakin University, Warrnambool Campus, Geelong, Australia
| | - Rachael A Orben
- Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood Campus, Geelong, Australia
| | - Maritza Sepulveda
- Centro de Investigación y Gestión en Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Macarena Santos-Carvallo
- Centro de Investigación y Gestión en Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage. 3211 Providence Drive Anchorage, AK 99508, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Long Marine Laboratory, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| |
Collapse
|
16
|
Somo DA, Ensminger DC, Sharick JT, Kanatous SB, Crocker DE. Development of Dive Capacity in Northern Elephant Seals (Mirounga angustirostris): Reduced Body Reserves at Weaning Are Associated with Elevated Body Oxygen Stores during the Postweaning Fast. Physiol Biochem Zool 2015; 88:471-82. [PMID: 26658245 DOI: 10.1086/682386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Developmental increases in dive capacity have been reported in numerous species of air-breathing marine vertebrates. Previous studies in juvenile phocid seals suggest that increases in physiological dive capacity during the postweaning fast (PWF) are critical to support independent aquatic foraging. Although there is a strong relationship between size at weaning and PWF duration and body reserves at weaning vary considerably, few studies have considered whether such variation in body reserve magnitude promotes phenotypic modulation of dive capacity development during the PWF. Phenotypic modulation, a form of developmental plasticity in which rates and degrees of expression of the developmental program are modulated by environmental factors, may enhance diving capacity in weanlings with reduced PWF durations due to smaller body reserves at weaning if reduced body reserves promote accelerated development of dive capacity. We longitudinally measured changes in blood and muscle oxygen stores and muscle metabolic enzymes over the first 8 wk of the PWF in northern elephant seals and determined whether rates of change in these parameters varied with body reserves at weaning. We assessed whether erythropoietin (EPO), thyroid hormones, serum nonesterified fatty acid levels, and iron status influenced blood and muscle oxygen store development or were influenced by body reserves at weaning. Although mass-specific plasma volume and blood volume were relatively stable across the fast, both were elevated in animals with reduced body reserves. Surprisingly, hemoglobin and mean corpuscular hemoglobin concentrations declined over the PWF while hematocrit remained stable, and these variables were not associated with body reserves or EPO. Swimming muscle myoglobin and serum iron levels increased rapidly early in the PWF and were not related to body reserves. Patterns in maximal activities of muscle enzymes suggested a decline in total aerobic and anaerobic metabolic capacity over the PWF, despite maintenance of fat oxidation capacity. These results suggest that only development of blood volume is increased in smaller weanlings and that extended fasting durations in larger weanlings do not improve physiological dive capacity.
Collapse
Affiliation(s)
- Derek A Somo
- Department of Biology, Sonoma State University, Rohnert Park, California 94928; 2Extreme Physiology Laboratory, Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | | | | | | | | |
Collapse
|
17
|
Thomas A, Ono K. Diving Related Changes in the Blood Oxygen Stores of Rehabilitating Harbor Seal Pups (Phoca vitulina). PLoS One 2015; 10:e0128930. [PMID: 26061662 PMCID: PMC4465541 DOI: 10.1371/journal.pone.0128930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
Harbor seal (Phoca vitulina) pups begin diving within hours of birth, stimulating the development of the blood oxygen (O2) stores necessary to sustain underwater aerobic metabolism. Since harbor seals experience a brief nursing period, the early-life development of these blood O2 stores is necessary for successful post-weaning foraging. If mothers and pups become prematurely separated, the pup may be transported to a wildlife rehabilitation center for care. Previous studies suggest that the shallow pools and lack of diving in rehabilitation facilities may lead to under-developed blood O2 stores, but diving behavior during rehabilitation has not been investigated. This study aimed to simultaneously study the diving behaviors and blood O2 store development of rehabilitating harbor seal pups. Standard hematology measurements (Hct, Hb, RBC, MCV, MCH, MCHC) were taken to investigate O2 storage capacity and pups were equipped with time-depth recorders to investigate natural diving behavior while in rehabilitation. Linear mixed models of the data indicate that all measured blood parameters changed with age; however, when compared to literature values for wild harbor seal pups, rehabilitating pups have smaller red blood cells (RBCs) that can store less hemoglobin (Hb) and subsequently, less O2, potentially limiting their diving capabilities. Wild pups completed longer dives at younger ages (maximum reported <25 days of age: 9 min) in previous studies than the captive pups in this study (maximum <25 days of age: 2.86 min). However, captivity may only affect the rate of development, as long duration dives were observed (maximum during rehabilitation: 13.6 min at 89 days of age). Further, this study suggests that there may be a positive relationship between RBC size and the frequency of long duration dives. Thus, rehabilitating harbor seal pups should be encouraged to make frequent, long duration dives to prepare themselves for post-release foraging.
Collapse
Affiliation(s)
- Amber Thomas
- Department of Marine Sciences, University of New England, Biddeford, Maine, United States of America
| | - Kathryn Ono
- Department of Marine Sciences, University of New England, Biddeford, Maine, United States of America
| |
Collapse
|
18
|
Moore CD, Fahlman A, Crocker DE, Robbins KA, Trumble SJ. The degradation of proteins in pinniped skeletal muscle: viability of post-mortem tissue in physiological research. CONSERVATION PHYSIOLOGY 2015; 3:cov019. [PMID: 27293704 PMCID: PMC4778441 DOI: 10.1093/conphys/cov019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/21/2015] [Accepted: 04/11/2015] [Indexed: 06/06/2023]
Abstract
As marine divers, pinnipeds have a high capacity for exercise at depth while holding their breath. With finite access to oxygen, these species need to be capable of extended aerobic exercise and conservation of energy. Pinnipeds must deal with common physiological hurdles, such as hypoxia, exhaustion and acidosis, that are common to all exercising mammals. The physiological mechanisms in marine mammals used for managing oxygen and carbon dioxide have sparked much research, but access to animals and tissues is difficult and requires permits. Deceased animals that are either bycaught or stranded provide one potential source for tissues, but the validity of biochemical data from post-mortem samples has not been rigorously assessed. Tissues collected from stranded diving mammals may be a crucial source to add to our limited knowledge on the physiology of some of these animals and important to the conservation and management of these species. We aim to determine the reliability of biochemical assays derived from post-mortem tissue and to promote the immediate sampling of stranded animals for the purpose of physiological research. In this study, we mapped the temporal degradation of muscle enzymes from biopsied Northern elephant seals (Mirounga angustirostris) and highlight recommendations for storage protocols for the best preservation of tissue. We also compared the enzymatic activity of different muscle groups (pectoral and latissimus dorsi) in relation to locomotion and measured the effects of four freeze-thaw cycles on muscle tissue enzyme function. Results indicate that enzymatic activity fluctuates greatly, especially with varying storage temperature, storage time, species and muscle group being assayed. In contrast, proteins, such as myoglobin, remain relatively continuous in their increase at 4°C for 48 h. Stranded animals can be a valuable source of biochemical data, but enzyme assays should be used only with great caution in post-mortem tissues.
Collapse
Affiliation(s)
- Colby D. Moore
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Andreas Fahlman
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA
| | - Kathleen A. Robbins
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Stephen J. Trumble
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| |
Collapse
|
19
|
Thometz NM, Murray MJ, Williams TM. Ontogeny of Oxygen Storage Capacity and Diving Ability in the Southern Sea Otter (Enhydra lutris nereis): Costs and Benefits of Large Lungs. Physiol Biochem Zool 2015; 88:311-27. [DOI: 10.1086/681019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Noren SR, Jay CV, Burns JM, Fischbach AS. Rapid maturation of the muscle biochemistry that supports diving in pacific walruses (Odobenus rosmarus divergens). J Exp Biol 2015; 218:3319-29. [PMID: 26347559 DOI: 10.1242/jeb.125757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022]
Abstract
Physiological constraints dictate animals' abilities to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, 5 neonatal calves, a 3-month old, and 20 adults), ranging from 41.31 – 54.14 slykes and 42.00 – 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92 – 1.68 g 100 g wet muscle mass−1; supraspinatus: 0.88 – 1.64 g wet muscle mass−1). By 3 months postpartum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3-months postpartum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared to the supraspinatus. Walruses are unique among marine mammals because they are born with mature muscle acid buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared to adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.
Collapse
Affiliation(s)
- Shawn R. Noren
- Institute of Marine Science, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Chadwick V. Jay
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Jennifer M. Burns
- University of Alaska, Anchorage, Department of Biological Sciences, CPSB 202C, 3101 Science Circle, University of Alaska, Anchorage, AK 99508, USA
| | - Anthony S. Fischbach
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| |
Collapse
|
21
|
Ramasco V, Barraquand F, Biuw M, McConnell B, Nilssen KT. The intensity of horizontal and vertical search in a diving forager: the harbour seal. MOVEMENT ECOLOGY 2015; 3:15. [PMID: 26019871 PMCID: PMC4445568 DOI: 10.1186/s40462-015-0042-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/07/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Free ranging foraging animals can vary their searching intensity in response to the profitability of the environment by modifying their movements. Marine diving animals forage in a three dimensional space and searching intensity can be varied in both the horizontal and vertical planes. Therefore understanding the relationship between the allocation of searching effort in these two spaces can provide a better understanding of searching strategies and a more robust identification of foraging behaviour from the multitude of foraging indices (FIs) available. We investigated the movement of a widespread marine coastal predator, the harbour seal (Phoca vitulina), and compared two sets of foraging indices reflecting searching intensity respectively in the horizontal plane (displacement speed, extensive vs. intensive movement types, residence time) and in the vertical dimension (time at the bottom of a dive). We then tested how several factors (dive depth, direction of the trip with respect to haul-out site, different predatory tactics, the presence of factors confounding the detection of foraging, and temporal resolution of the data) affected their relationships. RESULTS Overall the indices only showed a very weak positive correlation across the two spaces. However controlling for various factors strengthened the relationships. Resting at sea, a behaviour intrinsically static in the horizontal plane, was found to be strongly negatively related to the time spent at the bottom of the dives, indirectly weakening the relationship between horizontal and vertical foraging indices. Predatory tactic (benthic vs. pelagic) was found to directly affect the relationship. In benthic (as opposed to pelagic) foraging a stronger positive relationship was found between vertical and horizontal indices. CONCLUSIONS Our results indicated that movement responses, leading to an intensification of search, are similar in the two spaces (positive relationship), but additional factors need to be taken into account for this relationship to emerge. Foraging indices measuring residence in the horizontal plane tend to be inflated by resting events at sea, while vertical indices tend to distinguish mainly between periods of activity and inactivity, or of benthic and pelagic foraging. The simultaneous consideration of horizontal and vertical movements, as well as topographic information, allows additional behavioural states to be inferred, providing greater insight into the interpretation of foraging activity.
Collapse
Affiliation(s)
- Virginie Ramasco
- />Institute of Marine Research, Tromsø, Norway
- />University of Tromsø, Tromsø, Norway
| | | | | | | | | |
Collapse
|
22
|
Living in the fast lane: rapid development of the locomotor muscle in immature harbor porpoises (Phocoena phocoena). J Comp Physiol B 2014; 184:1065-76. [DOI: 10.1007/s00360-014-0854-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
|
23
|
Gerlinsky CD, Trites AW, Rosen DAS. Steller sea lions (Eumetopias jubatus) have greater blood volumes, higher diving metabolic rates and a longer aerobic dive limit when nutritionally stressed. ACTA ACUST UNITED AC 2013; 217:769-78. [PMID: 24198263 DOI: 10.1242/jeb.089599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marine mammal foraging behaviour inherently depends on diving ability. Declining populations of Steller sea lions may be facing nutritional stress that could affect their diving ability through changes in body composition or metabolism. Our objective was to determine whether nutritional stress (restricted food intake resulting in a 10% decrease in body mass) altered the calculated aerobic dive limit (cADL) of four captive sea lions diving in the open ocean, and how this related to changes in observed dive behaviour. We measured diving metabolic rate (DMR), blood O2 stores, body composition and dive behaviour prior to and while under nutritional restriction. We found that nutritionally stressed sea lions increased the duration of their single long dives, and the proportion of time they spent at the surface during a cycle of four dives. Nutritionally stressed sea lions lost both lipid and lean mass, resulting in potentially lower muscle O2 stores. However, total body O2 stores increased due to rises in blood O2 stores associated with having higher blood volumes. Nutritionally stressed sea lions also had higher mass-specific metabolic rates. The greater rise in O2 stores relative to the increase in mass-specific DMR resulted in the sea lions having a longer cADL when nutritionally stressed. We conclude that there was no negative effect of nutritional stress on the diving ability of sea lions. However, nutritional stress did lower foraging efficiency and require more foraging time to meet energy requirements due to increases in diving metabolic rates and surface recovery times.
Collapse
Affiliation(s)
- Carling D Gerlinsky
- Marine Mammal Research Unit, Fisheries Center and Department of Zoology, University of British Columbia, 2204 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
24
|
A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 2013; 184:23-53. [DOI: 10.1007/s00360-013-0782-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 11/26/2022]
|
25
|
Kielhorn CE, Dillaman RM, Kinsey ST, McLellan WA, Mark Gay D, Dearolf JL, Ann Pabst D. Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. J Morphol 2013; 274:663-75. [DOI: 10.1002/jmor.20124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/31/2012] [Accepted: 12/16/2012] [Indexed: 01/08/2023]
|
26
|
High diving metabolism results in a short aerobic dive limit for Steller sea lions (Eumetopias jubatus). J Comp Physiol B 2013; 183:699-708. [PMID: 23354410 DOI: 10.1007/s00360-013-0742-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/19/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
Abstract
The diving capacity of marine mammals is typically defined by the aerobic dive limit (ADL) which, in lieu of direct measurements, can be calculated (cADL) from total body oxygen stores (TBO) and diving metabolic rate (DMR). To estimate cADL, we measured blood oxygen stores, and combined this with diving oxygen consumption rates (VO2) recorded from 4 trained Steller sea lions diving in the open ocean to depths of 10 or 40 m. We also examined the effect of diving exercise on O2 stores by comparing blood O2 stores of our diving animals to non-diving individuals at an aquarium. Mass-specific blood volume of the non-diving individuals was higher in the winter than in summer, but there was no overall difference in blood O2 stores between the diving and non-diving groups. Estimated TBO (35.9 ml O2 kg(-1)) was slightly lower than previously reported for Steller sea lions and other Otariids. Calculated ADL was 3.0 min (based on an average DMR of 2.24 L O2 min(-1)) and was significantly shorter than the average 4.4 min dives our study animals performed when making single long dives-but was similar to the times recorded during diving bouts (a series of 4 dives followed by a recovery period on the surface), as well as the dive times of wild animals. Our study is the first to estimate cADL based on direct measures of VO2 and blood oxygen stores for an Otariid and indicates they have a much shorter ADL than previously thought.
Collapse
|
27
|
Trumble SJ, Robinson EM, Noren SR, Usenko S, Davis J, Kanatous SB. Assessment of legacy and emerging persistent organic pollutants in Weddell seal tissue (Leptonychotes weddellii) near McMurdo Sound, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 439:275-83. [PMID: 23085468 DOI: 10.1016/j.scitotenv.2012.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 05/22/2023]
Abstract
Muscle samples were collected from pup, juvenile and adult Weddell seals (Leptonychotes weddellii) near McMurdo Sound, Antarctica during the austral summer of 2006. Blubber samples were collected from juvenile and adult seals. Samples were analyzed for emerging and legacy persistent organic pollutants (POPs) including current and historic-use organochlorine pesticides, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Of the 41 target analytes, 28 contaminants were recovered from the Weddell seal blubber, in this order of prevalence: p,p'-DDE, p,p'-DDT, trans-nonachlor, mirex, cis-nonachlor, PCB 153, PCB 138, dieldrin, heptachlor epoxide, nonachlor III, PCB 187, oxychlordane, cis-chlordane, PCB 118, PBDE 47, PCB 156, PCB 149, PCB 180, PCB 101, PCB 170, PCB 105, o,p'-DDT, PCB 99, trans-chlordane, PCB 157, PCB 167, PCB 189, and PCB 114. Fewer POPs were found in the muscle samples, but were similar in the order of prevalence to that of the blubber: p,p'-DDE, o,p'-DDT, trans-nonachlor, nonachlor III, oxychlordane, p,p'-DDT, dieldrin, mirex, cis-nonachlor, PCB 138, and PCB 105. Besides differences in toxicant concentrations reported between the muscle and blubber, we found differences in POP levels according to age class and suggest that differences in blubber storage and/or mobilization of lipids result in age class differences in POPs. To our knowledge, such ontogenetic associations are novel. Importantly, data from this study suggest that p,p'-DDT is becoming less prevalent temporally, resulting in an increased proportion of its metabolite p,p'-DDE in the tissues of this top predator. In addition, this study is among the first to identify a PBDE congener in Weddell seals near the McMurdo Station. This may provide evidence of increased PBDE transport and encroachment in Antarctic wildlife.
Collapse
|
28
|
Villegas-Amtmann S, Atkinson S, Paras-Garcia A, Costa DP. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:413-20. [DOI: 10.1016/j.cbpa.2012.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/17/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
|
29
|
Trumble SJ, O'Neil D, Cornick LA, Gulland FMD, Castellini MA, Atkinson S. Endocrine Changes in Harbor Seal (Phoca vitulina) Pups Undergoing Rehabilitation. Zoo Biol 2012; 32:134-41. [DOI: 10.1002/zoo.21036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/01/2012] [Accepted: 06/18/2012] [Indexed: 11/11/2022]
Affiliation(s)
| | - Danielle O'Neil
- School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Fairbanks; Alaska
| | - Leslie A. Cornick
- Department of Environmental Science; Alaska Pacific University; Anchorage; Alaska
| | | | - Michael A. Castellini
- School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Fairbanks; Alaska
| | - Shannon Atkinson
- School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Fairbanks; Alaska
| |
Collapse
|
30
|
Trumble SJ, Kanatous SB. Fatty Acid use in Diving Mammals: More than Merely Fuel. Front Physiol 2012; 3:184. [PMID: 22707938 PMCID: PMC3374346 DOI: 10.3389/fphys.2012.00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023] Open
Abstract
Diving mammals, are under extreme pressure to conserve oxygen as well as produce adequate energy through aerobic pathways during breath-hold diving. Typically a major source of energy, lipids participate in structural and regulatory roles and have an important influence on the physiological functions of an organism. At the stoichiometric level, the metabolism of polyunsaturated fatty acids (PUFAs) utilizes less oxygen than metabolizing either monounsaturated fatty acids or saturated fatty acids (SFAs) and yields fewer ATP per same length fatty acid. However, there is evidence that indicates the cellular metabolic rate is directly correlated to the lipid composition of the membranes such that the greater the PUFA concentration in the membranes the greater the metabolic rate. These findings appear to be incompatible with diving mammals that ingest and metabolize high levels of unsaturated fatty acids while relying on stored oxygen. Growing evidence from birds to mammals including recent evidence in Weddell seals also indicates that at the whole animal level the utilization of PUFAs to fuel their metabolism actually conserves oxygen. In this paper, we make an initial attempt to ascertain the beneficial adaptations or limitations of lipids constituents and potential trade-offs in diving mammals. We discuss how changes in Antarctic climate are predicted to have numerous different environmental effects; such potential shifts in the availability of certain prey species or even changes in the lipid composition (increased SFA) of numerous fish species with increasing water temperatures and how this may impact the diving ability of Weddell seals.
Collapse
|
31
|
Shero MR, Andrews RD, Lestyk KC, Burns JM. Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J Comp Physiol B 2011; 182:425-36. [PMID: 22001970 DOI: 10.1007/s00360-011-0619-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
Northern fur seal (Callorhinus ursinus; NFS) populations have been declining, perhaps due to limited foraging ability of pups. Because a marine mammal's proficiency at exploiting underwater prey resources is based on the ability to store large amounts of oxygen (O(2)) and to utilize these reserves efficiently, this study was designed to determine if NFS pups had lower blood, muscle, and total body O(2) stores than adults. Pups (<1-month old) had a calculated aerobic dive limit only ~40% of adult females due to lower blood and, to a much greater extent, muscle O(2) stores. Development of the Pectoralis (Pec) and Longissimus dorsi (LD) skeletal muscles was further examined by determining their myosin heavy chain (MHC) composition and enzyme activities. In all animals, the slow MHC I and fast-twitch IIA proteins typical of oxidative fiber types were dominant, but adult muscles contained more (Pec ~50%; LD ~250% higher) fast-twitch MHC IID/X protein characteristic of glycolytic muscle fibers, than pup muscles. This suggests that adults have greater ability to generate muscle power rapidly and/or under anaerobic conditions. Pup muscles also had lower aerobic and anaerobic ATP production potential, as indicated by lower metabolically scaled citrate synthase, β-hydroxyacyl CoA dehydrogenase, and lactate dehydrogenase activities (all P values ≤0.001). In combination, these findings indicate that pups are biochemically and physiologically limited in their diving capabilities relative to adults. This may contribute to lower NFS first year survival.
Collapse
Affiliation(s)
- Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | | | | | | |
Collapse
|
32
|
Ponganis PJ, Meir JU, Williams CL. In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins. J Exp Biol 2011; 214:3325-39. [DOI: 10.1242/jeb.031252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Since the introduction of the aerobic dive limit (ADL) 30 years ago, the concept that most dives of marine mammals and sea birds are aerobic in nature has dominated the interpretation of their diving behavior and foraging ecology. Although there have been many measurements of body oxygen stores, there have been few investigations of the actual depletion of those stores during dives. Yet, it is the pattern, rate and magnitude of depletion of O2 stores that underlie the ADL. Therefore, in order to assess strategies of O2 store management, we review (a) the magnitude of O2 stores, (b) past studies of O2 store depletion and (c) our recent investigations of O2 store utilization during sleep apnea and dives of elephant seals (Mirounga angustirostris) and during dives of emperor penguins (Aptenodytes forsteri). We conclude with the implications of these findings for (a) the physiological responses underlying O2 store utilization, (b) the physiological basis of the ADL and (c) the value of extreme hypoxemic tolerance and the significance of the avoidance of re-perfusion injury in these animals.
Collapse
Affiliation(s)
- Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Jessica U. Meir
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cassondra L. Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
33
|
Hindle AG, Mellish JAE, Horning M. Aerobic dive limit does not decline in an aging pinniped. ACTA ACUST UNITED AC 2011; 315:544-52. [DOI: 10.1002/jez.703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 06/13/2011] [Accepted: 07/20/2011] [Indexed: 12/23/2022]
|
34
|
Verrier D, Guinet C, Authier M, Tremblay Y, Shaffer S, Costa DP, Groscolas R, Arnould JP. The ontogeny of diving abilities in subantarctic fur seal pups: developmental trade-off in response to extreme fasting? Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01846.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
|
36
|
Kikuchi M, Sakamoto KQ, Sato K. Acquisition of gliding skills by Weddell seal (Leptonychotes weddellii) pups during lactation. Polar Biol 2010. [DOI: 10.1007/s00300-010-0835-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Ponganis PJ, Welch TJ, Welch LS, Stockard TK. Myoglobin production in emperor penguins. J Exp Biol 2010; 213:1901-6. [DOI: 10.1242/jeb.042093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SUMMARY
Increased oxygen storage is essential to the diving capacities of marine mammals and seabirds. However, the molecular mechanisms underlying this adaptation are unknown. Myoglobin (Mb) and Mb mRNA concentrations were analyzed in emperor penguin (Aptenodytes forsteri) adults and chicks with spectrophotometric and RNase protection assays to evaluate production of their large Mb-bound O2 stores. Mean pectoral Mb concentration and Mb mRNA content increased throughout the pre-fledging period and were 15-fold and 3-fold greater, respectively, in adults than in 3.5 month old chicks. Mean Mb concentration in 5.9 month old juveniles was 2.7±0.4 g 100 g−1 muscle (44% that of wild adults), and in adults that had been captive all their lives it was 3.7±0.1 g 100 g−1 muscle. The Mb and Mb mRNA data are consistent with regulation of Mb production at the level of transcription as in other animals. Significant Mb and Mb mRNA production occurred in chicks and young juveniles even without any diving activity. The further increase in adult Mb concentrations appears to require the exercise/hypoxia of diving because Mb concentration in captive, non-diving adults only reached 60% of that of wild adults. The much greater relative increase in Mb concentration than in Mb mRNA content between young chicks and adults suggests that there is not a simple 1:1 relationship between Mb mRNA content and Mb concentration. Nutritional limitation in young chicks and post-transcriptional regulation of Mb concentration may also be involved.
Collapse
Affiliation(s)
- P. J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - T. J. Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430, USA
| | - L. S. Welch
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - T. K. Stockard
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
38
|
Trumble SJ, Noren SR, Cornick LA, Hawke TJ, Kanatous SB. Age-related differences in skeletal muscle lipid profiles of Weddell seals: clues to developmental changes. J Exp Biol 2010; 213:1676-84. [DOI: 10.1242/jeb.040923] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARY
Our objective was to elucidate age-related changes in lipids associated with skeletal muscle of Weddell seals and to suggest possible physiological implications. Muscle biopsies were collected from pups, juveniles and adults in McMurdo Sound, Antarctica and analyzed for intramuscular lipid (IML) and triacylglyceride (IMTG) amounts, fatty acid groups, as well as individual fatty acid profiles. The results from this study suggest a switch from primarily saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in the skeletal muscle of young pups to increases in polyunsaturated fatty acids (PUFAs) as the percentage of blubber increases, resulting in possible thermoregulatory benefits. As Weddell pups continue to develop into juveniles, fatty acids associated with the skeletal muscle changes such that MUFA levels are relatively higher, which may be in response to energy depletion associated with their restricted diving ability and rapid growth. As juveniles transform into adults, a reduction in n-3 PUFA levels in the muscle as the percentage of blubber increases may be indicative of a trigger to prepare for deep diving or could be a mechanism for oxygen conservation during long-duration dives. We speculate that the observed change in lipids associated with the skeletal muscle of Weddell seals is related to ontogenetic differences in thermoregulation and locomotion.
Collapse
Affiliation(s)
- Stephen J. Trumble
- Department of Biology, Baylor University, One Bear Place No. 97388, Waco, TX 76798, USA
| | - Shawn R. Noren
- Institute of Marine Science, University of California, 100 Shaffer Road, Santa Cruz, CA 95118
| | - Leslie A. Cornick
- Department of Environmental Science, Alaska Pacific University, 4101 University Drive, Anchorage, AK 99508, USA
| | - Thomas J. Hawke
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada M3J 1P3
| | - Shane B. Kanatous
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
39
|
Hassrick JL, Crocker DE, Teutschel NM, McDonald BI, Robinson PW, Simmons SE, Costa DP. Condition and mass impact oxygen stores and dive duration in adult female northern elephant seals. ACTA ACUST UNITED AC 2010; 213:585-92. [PMID: 20118309 DOI: 10.1242/jeb.037168] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The range of foraging behaviors available to deep-diving, air-breathing marine vertebrates is constrained by their physiological capacity to breath-hold dive. We measured body oxygen stores (blood volume and muscle myoglobin) and diving behavior in adult female northern elephant seals, Mirounga angustirostris, to investigate age-related effects on diving performance. Blood volume averaged 74.4+/-17.0 liters in female elephant seals or 20.2+/-2.0% of body mass. Plasma volume averaged 32.2+/-7.8 liters or 8.7+/-0.7% of body mass. Absolute plasma volume and blood volume increased independently with mass and age. Hematocrit decreased weakly with mass but did not vary with age. Muscle myoglobin concentration, while higher than previously reported (7.4+/-0.7 g%), did not vary with mass or age. Pregnancy status did not influence blood volume. Mean dive duration, a proxy for physiological demand, increased as a function of how long seals had been at sea, followed by mass and hematocrit. Strong effects of female body mass (range, 218-600 kg) on dive duration, which were independent of oxygen stores, suggest that larger females had lower diving metabolic rates. A tendency for dives to exceed calculated aerobic limits occurred more frequently later in the at-sea migration. Our data suggest that individual physiological state variables and condition interact to determine breath-hold ability and that both should be considered in life-history studies of foraging behavior.
Collapse
Affiliation(s)
- J L Hassrick
- Institute of Marine Sciences, University of California at Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Prewitt JS, Freistroffer DV, Schreer JF, Hammill MO, Burns JM. Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: limitations to diving behavior? J Comp Physiol B 2010; 180:757-66. [PMID: 20140678 DOI: 10.1007/s00360-010-0448-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Adult marine mammal muscles rely upon a suite of adaptations for sustained aerobic metabolism in the absence of freely available oxygen (O(2)). Although the importance of these adaptations for supporting aerobic diving patterns of adults is well understood, little is known about postnatal muscle development in young marine mammals. However, the typical pattern of vertebrate muscle development, and reduced tissue O(2) stores and diving ability of young marine mammals suggest that the physiological properties of harbor seal (Phoca vitulina) pup muscle will differ from those of adults. We examined myoglobin (Mb) concentration, and the activities of citrate synthase (CS), beta-hydroxyacyl coA dehydrogenase (HOAD), and lactate dehydrogenase (LDH) in muscle biopsies from harbor seal pups throughout the nursing period, and compared these biochemical parameters to those of adults. Pups had reduced O(2) carrying capacity ([Mb] 28-41% lower than adults) and reduced metabolically scaled catabolic enzyme activities (LDH/RMR 20-58% and CS/RMR 29-89% lower than adults), indicating that harbor seal pup muscles are biochemically immature at birth and weaning. This suggests that pup muscles do not have the ability to support either the aerobic or anaerobic performance of adult seals. This immaturity may contribute to the lower diving capacity and behavior in younger pups. In addition, the trends in myoglobin concentration and enzyme activity seen in this study appear to be developmental and/or exercise-driven responses that together work to produce the hypoxic endurance phenotype seen in adults, rather than allometric effects due to body size.
Collapse
Affiliation(s)
- J S Prewitt
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr, Anchorage, AK 99508, USA.
| | | | | | | | | |
Collapse
|
41
|
Villegas-Amtmann S, Costa DP. Oxygen stores plasticity linked to foraging behaviour and pregnancy in a diving predator, the Galapagos sea lion. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2009.01685.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Lestyk KC, Folkow LP, Blix AS, Hammill MO, Burns JM. Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. J Comp Physiol B 2009; 179:985-96. [PMID: 19565249 DOI: 10.1007/s00360-009-0378-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/08/2009] [Accepted: 06/12/2009] [Indexed: 12/01/2022]
Abstract
Pinnipeds rely on muscle oxygen stores to help support aerobic diving, therefore muscle maturation may influence the behavioral ecology of young pinnipeds. To investigate the pattern of muscle development, myoglobin concentration ([Mb]) and acid buffering ability (beta) was measured in ten muscles from 23 harp and 40 hooded seals of various ages. Adult [Mb] ranged from 28-97 to 35-104 mg g tissue(-1) in harp and hooded seals, respectively, with values increasing from the cervical, non-swimming muscles to the main swimming muscles of the lumbar region. Neonatal and weaned pup muscles exhibited lower (approximately 30% adult values) and less variable [Mb] across the body than adults. In contrast, adult beta showed little regional variation (60-90 slykes), while high pup values (approximately 75% adult values) indicate significant in utero development. These findings suggest that intra-uterine conditions are sufficiently hypoxic to stimulate prenatal beta development, but that [Mb] development requires additional postnatal signal such as exercise, and/or growth factors. However, because of limited development in both beta and [Mb] during the nursing period, pups are weaned with muscles with lower aerobic and anaerobic capacities than those of adults.
Collapse
Affiliation(s)
- Keri C Lestyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | | | | | | | | |
Collapse
|
43
|
Ahrens L, Siebert U, Ebinghaus R. Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (Phoca vitulina) from the German Bight. MARINE POLLUTION BULLETIN 2009; 58:520-525. [PMID: 19121527 DOI: 10.1016/j.marpolbul.2008.11.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 05/27/2023]
Abstract
Total body burden and tissue distribution of polyfluorinated compounds (PFCs) were investigated in harbor seals (Phoca vitulina) from the German Bight in 2007. A total number of 18 individual PFCs from the following groups could be quantified in the different tissues: perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs) and their precursors perfluorinated sulfinates (PFSiAs), perfluorinated sulfonamides, and sulfonamido ethanols. Perfluorooctanesulfonate (PFOS) was the predominant compound in all measured seal tissues (up to 1665 ng g(-1) wet weight in liver tissue). The dominant PFCAs were perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), but their concentrations were much lower compared to PFOS. The mean whole body burden in harbor seals of all detected PFCs was estimated to be 2665+/-1207 microg absolute. The major amount of the total PFCs burden in the bodies was in blood (38%) and liver (36%), followed by muscle (13%), lung (8%), kidney (2%), blubber (2%), heart (1%), brain (1%), thymus (<0.01%) and thyroid (<0.01%). These data suggest large differences in body burden and accumulation pattern of PFCs in marine mammals.
Collapse
Affiliation(s)
- Lutz Ahrens
- GKSS Research Centre Geesthacht, Department for Environmental Chemistry, Institute for Coastal Research, Max-Planck-Str. 1, DE-21502 Geesthacht, Germany.
| | | | | |
Collapse
|
44
|
Koopman HN, Zahorodny ZP. Life history constrains biochemical development in the highly specialized odontocete echolocation system. Proc Biol Sci 2008; 275:2327-34. [PMID: 18611851 DOI: 10.1098/rspb.2008.0457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vertebrate head has undergone enormous modification from the features borne by early ancestors. The growth of skull bones has been well studied in many species, yet little is known about corresponding soft tissue development. Among mammals, some of the most unusual examples of cranial evolution exist in the toothed whales (odontocetes). Specialized fat bodies in toothed whale heads play important roles in sound transmission and reception. These fat bodies contain unique endogenous lipids, with favourable acoustic properties, arranged in highly organized, three-dimensional patterns. We link variation in developmental rates of acoustic fats with life-history strategy, using bottlenose dolphins and harbour porpoises. Porpoise acoustic fats attain adult configurations earlier (less than 1 year) and at a faster pace than dolphins. The accelerated lipid accumulation in porpoises reflects the earlier need for fully functional echolocation systems. Dolphins enjoy 3-6 years of maternal care; porpoises must achieve total independence by approximately nine months. Further, a stereotypic 'blueprint' for the spatial distribution of lipids is established prior to birth, demonstrating the highly conserved nature of the intricate biochemical arrangement in acoustic tissues. This system illustrates an unusual case of soft tissue development being constrained by life history, rather than the more commonly observed mechanistic or phyletic constraints.
Collapse
Affiliation(s)
- Heather N Koopman
- Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA.
| | | |
Collapse
|
45
|
Kanatous SB, Hawke TJ, Trumble SJ, Pearson LE, Watson RR, Garry DJ, Williams TM, Davis RW. The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. ACTA ACUST UNITED AC 2008; 211:2559-65. [PMID: 18689409 DOI: 10.1242/jeb.018119] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our objective was to determine the ontogenetic changes in the skeletal muscles of Weddell seals that transform a non-diving pup into an elite diving adult. Muscle biopsies were collected from pups, juveniles and adults and analyzed for changes in fiber type, mitochondrial density, myoglobin concentrations and aerobic, lipolytic and anaerobic enzyme activities. The fiber type results demonstrated a decrease in slow-twitch oxidative (Type I) fibers and a significant increase in fast-twitch oxidative (Type IIA) fibers as the animals mature. In addition, the volume density of mitochondria and the activity of lipolytic enzymes significantly decreased as the seals matured. To our knowledge, this is the first quantitative account describing a decrease in aerobic fibers shifting towards an increase in fast-twitch oxidative fibers with a significant decrease in mitochondrial density as animals mature. These differences in the muscle physiology of Weddell seals are potentially due to their three very distinct stages of life history: non-diving pup, novice diving juvenile, and elite deep diving adult. During the first few weeks of life, pups are a non-diving terrestrial mammal that must rely on lanugo (natal fur) for thermoregulation in the harsh conditions of Antarctica. The increased aerobic capacity of pups, associated with increased mitochondrial volumes, acts to provide additional thermogenesis. As these future elite divers mature, their skeletal muscles transform to a more sedentary state in order to maintain the low levels of aerobic metabolism associated with long-duration diving.
Collapse
Affiliation(s)
- S B Kanatous
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zeno RL, Crocker DE, Hassrick JL, Allen SG, Costa DP. Development of foraging behavior in juvenile northern elephant seals. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2007.00371.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Brookens TJ, O'Hara TM, Taylor RJ, Bratton GR, Harvey JT. Total mercury body burden in Pacific harbor seal, Phoca vitulina richardii, pups from central California. MARINE POLLUTION BULLETIN 2008; 56:27-41. [PMID: 18061626 DOI: 10.1016/j.marpolbul.2007.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 05/25/2023]
Abstract
To determine body and tissue compartment-specific burdens (mg) of total mercury (THg), tissues were weighed and analyzed for THg concentration (microg/g fw) in Pacific harbor seal (Phoca vitulina richardii) pups from central California in 2006. THg concentrations were related as follows: hair >> liver = kidney = pelt > muscle > other = heart > brain > blubber > bone. THg burden, however, was related as: pelt = muscle > liver = other > kidney = blubber > brain = heart > bone. THg concentration and burden in muscle were strongly associated with delta(15)N. delta(13)C and delta(15)N values were significantly greater in muscle than liver, and delta(13)C was significantly lesser the longer animals were in rehabilitation. Because THg concentration and burden in muscle correlated most significantly with other tissue compartments, we recommend that muscle from the specific sites we sampled be used instead of liver or hair for biomonitoring THg in harbor seals. Assessment of proportional THg burdens within each tissue compartment for harbor seals pups included use of a conceptual model, allowing for more complete visual characterization of THg body burden.
Collapse
|
48
|
FOWLER SL, COSTA DP, ARNOULD JPY, GALES NJ, BURNS JM. Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01295.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Burns JM, Lestyk KC, Folkow LP, Hammill MO, Blix AS. Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J Comp Physiol B 2007; 177:687-700. [PMID: 17576570 DOI: 10.1007/s00360-007-0167-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 11/29/2022]
Abstract
Pinnipeds rely primarily on oxygen stores in blood and muscles to support aerobic diving; therefore rapid development of body oxygen stores (TBO(2)) is crucial for pups to transition from nursing to independent foraging. Here, we investigate TBO(2) development in 45 harp (Pagophilus groenlandicus) and 46 hooded (Cystophora cristata) seals ranging in age from neonates to adult females. We found that hooded seal adults have the largest TBO(2) stores yet reported (89.5 ml kg(-1)), while harp seal adults have values more similar to other phocids (71.6 ml kg(-1)). In adults, large TBO(2) stores resulted from large blood volume (harp169, hood 194 ml kg(-1)) and high muscle Mb content (harp 86.0, hood 94.8 mg g(-1)). In contrast, pups of both species had significantly lower mass-specific TBO(2 )stores than adults, and stores declined rather than increased during the nursing period. This decline was due to a reduction in mass-specific blood volume and the absence of an increase in the low Mb levels (harp 21.0, hood 31.5 mg g(-1)). Comparisons with other phocid species suggests that the pattern of blood and muscle development in the pre- and post-natal periods varies with terrestrial period, and that muscle maturation rates may influence the length of the postweaning fast. However, final maturation of TBO(2) stores does not take place until after foraging begins.
Collapse
Affiliation(s)
- J M Burns
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | | | | | | | | |
Collapse
|
50
|
Weise MJ, Costa DP. Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J Exp Biol 2007; 210:278-89. [PMID: 17210964 DOI: 10.1242/jeb.02643] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA defining physiological capability for air-breathing marine vertebrates is the amount of oxygen that can be stored in tissues and made available during dives. To evaluate the influence of oxygen storage capacity on aerobic diving capacity, we examined the extent to which blood and muscle oxygen stores varied as a function of age, body size and sex in the sexually dimorphic California sea lion, Zalophus californianus. We measured total body oxygen stores, including hematocrit, hemoglobin, MCHC, plasma volume, blood volume and muscle myoglobin in pups through adults of both sexes. Blood and muscle oxygen storage capacity was not fully developed by the end of the dependency period, with blood stores not fully developed until animals were larger juveniles (70 kg; 1.5-2.5 years) and muscle stores not until animals were sub-adult size (125 kg; 4-6 years). Differences in aerobic diving capacity among size classes were reflective of these major milestones in the development of oxygen stores. Male sea lions had greater absolute blood volume than females and reflected the larger mass of males, which became apparent when animals were large juveniles. Adult female sea lions had greater muscle myoglobin concentrations compared to males, resulting in greater mass-specific muscle and total oxygen stores. Delayed development of oxygen stores is consistent with the shallow epi-mesopelagic foraging behavior in this species. We hypothesize that the greater mass-specific oxygen stores of female sea lions compared to males is related to differences in foraging behavior between the sexes.
Collapse
Affiliation(s)
- Michael J Weise
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA.
| | | |
Collapse
|