1
|
Holt RR, Munafo JP, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A Nutrient-Dense Food To Help Address World Hunger, Promote Health, and Support a Regenerative Food System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2697-2707. [PMID: 38054424 PMCID: PMC10853969 DOI: 10.1021/acs.jafc.3c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
There is a need for transformational innovation within the existing food system to achieve United Nations Sustainable Development Goal 2 of ending hunger within a sustainable agricultural system by 2030. Mycelium, the vegetative growth form of filamentous fungi, may represent a convergence of several features crucial for the development of food products that are nutritious, desirable, scalable, affordable, and environmentally sustainable. Mycelium has gained interest as technology advances demonstrate its ability to provide scalable biomass for food production delivering good flavor and quality protein, fiber, and essential micronutrients urgently needed to improve public health. We review the potential of mycelium as an environmentally sustainable food to address malnutrition and undernutrition, driven by food insecurity and caloric dense diets with less than optimal macro- and micronutrient density.
Collapse
Affiliation(s)
- Roberta R. Holt
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - John P. Munafo
- Department
of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Julie Salmen
- Nutritious
Ideas, LLC, Saint John, Indiana 46373, United States
| | - Carl L. Keen
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - Behroze S. Mistry
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Justin M. Whiteley
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Harold H. Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate
School of Management, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Kikuchi DW, Allen WL, Arbuckle K, Aubier TG, Briolat ES, Burdfield-Steel ER, Cheney KL, Daňková K, Elias M, Hämäläinen L, Herberstein ME, Hossie TJ, Joron M, Kunte K, Leavell BC, Lindstedt C, Lorioux-Chevalier U, McClure M, McLellan CF, Medina I, Nawge V, Páez E, Pal A, Pekár S, Penacchio O, Raška J, Reader T, Rojas B, Rönkä KH, Rößler DC, Rowe C, Rowland HM, Roy A, Schaal KA, Sherratt TN, Skelhorn J, Smart HR, Stankowich T, Stefan AM, Summers K, Taylor CH, Thorogood R, Umbers K, Winters AE, Yeager J, Exnerová A. The evolution and ecology of multiple antipredator defences. J Evol Biol 2023; 36:975-991. [PMID: 37363877 DOI: 10.1111/jeb.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023]
Abstract
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- Evolutionary Biology, Universität Bielefeld, Bielefeld, Germany
| | | | - Kevin Arbuckle
- Department of Biosciences, Swansea University, Swansea, UK
| | - Thomas G Aubier
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, Toulouse, France
| | | | - Emily R Burdfield-Steel
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Klára Daňková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Liisa Hämäläinen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marie E Herberstein
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas J Hossie
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Mathieu Joron
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Brian C Leavell
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Carita Lindstedt
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ugo Lorioux-Chevalier
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Melanie McClure
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | | | - Iliana Medina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Viraj Nawge
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Erika Páez
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Arka Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olivier Penacchio
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan Raška
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tom Reader
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Bibiana Rojas
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Biology and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Katja H Rönkä
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela C Rößler
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Candy Rowe
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Arlety Roy
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Kaitlin A Schaal
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | - John Skelhorn
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah R Smart
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Ted Stankowich
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Amanda M Stefan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | - Rose Thorogood
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kate Umbers
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science Western Sydney University, Penrith, New South Wales, Australia
| | - Anne E Winters
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Justin Yeager
- Grupo de Biodiversidad Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Alice Exnerová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Lev‐Yadun S. The phenomenon of red and yellow autumn leaves: Hypotheses, agreements and disagreements. J Evol Biol 2022; 35:1245-1282. [PMID: 35975328 PMCID: PMC9804425 DOI: 10.1111/jeb.14069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 01/05/2023]
Abstract
Yellow and red autumn leaves are typical of many temperate/boreal woody plants. Since the 19th century, it has been either considered the non-functional outcome of chlorophyll degradation that unmasks the pre-existing yellow and red pigments or that the de novo synthesis of red anthocyanins in autumn leaves indicated that it should have a physiological function, although it was commonly ignored. Defending free amino acids and various other resources released especially following the breakdown of the photosynthetic system, and mobilizing them for storage in other organs before leaf fall, is the cornerstone of both the physiological and anti-herbivory hypotheses about the functions of yellow and red autumn leaf colouration. The complicated phenomenon of conspicuous autumn leaf colouration has received significant attention since the year 2000, especially because ecologists started paying attention to its anti-herbivory potential. The obvious imperfection of the hypotheses put forth in several papers stimulated many other scientists. Hot debates among physiologists, among ecologists, and between physiologists and ecologists have been common since the year 2000, first because the various functions of yellow and red autumn leaf colouration are non-exclusive, and second because many scientists were trained to focus on a single subject. Here, I will review the debates, especially between the photoprotective and the anti-herbivory hypotheses, and describe both the progress in their understanding and the required progress.
Collapse
Affiliation(s)
- Simcha Lev‐Yadun
- Department of Biology & Environment, Faculty of Natural SciencesUniversity of HaifaTivonIsrael
| |
Collapse
|
4
|
Bu X, Bai H. Recent Progress of Bio-inspired Camouflage Materials: From Visible to Infrared Range. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Lev-Yadun S. Avoiding rather than resisting herbivore attacks is often the first line of plant defence. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
A common idea is that resisting or blocking herbivore attacks by structural, chemical and molecular means after they have commenced is the first line of plant defence. However, these are all secondary defences, operating only when all the various methods of avoiding attack have failed. The real first line of plant defence from herbivory and herbivore-transmitted pathogens is avoiding such attacks altogether. Several visual, chemical and ‘statistical’ methods (and commonly their combined effects) have been proposed to allow avoidance of herbivore attacks. The visual types are camouflage, masquerade, aposematic coloration of toxic or physically defended plants (including Müllerian/Batesian mimicry), undermining herbivorous insect camouflage, delayed greening, dazzle and trickery coloration, heterophylly that undermines host identification, leaf movements, and signalling that colourful autumn leaves are soon to be shed. The mimicry types include: herbivore damage, insects and other animals, fungal infestation, dead/dry leaves or branches, animal droppings, and stones and soil. Olfactory-based tactics include odour aposematism by poisonous plants, various repelling volatiles, mimicry of faeces and carrion odours, and mimicry of aphid alarm pheromones. The ‘statistical’ methods are mast fruiting, flowering only once in many years and being rare. In addition to the theoretical aspects, understanding these mechanisms may have considerable potential for agricultural or forestry applications.
Collapse
Affiliation(s)
- Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa – Oranim, Tivon 36006, Israel
| |
Collapse
|
6
|
Kikuchi DW, Herberstein ME, Barfield M, Holt RD, Mappes J. Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol Rev Camb Philos Soc 2021; 96:2446-2460. [PMID: 34128583 DOI: 10.1111/brv.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. Here, we explore factors likely to determine the prevalence of warning signals in prey assemblages. These factors include the nature of prey defences and any constraints upon them, the behavioural interactions of predators with different prey defences, the numerical responses of predators governed by movement and reproduction, the diversity and abundance of undefended alternative prey and Batesian mimics in the community, and variability in other ecological circumstances. We also discuss the macroevolution of warning signals. Our review finds that we have a basic understanding of how many species in some taxonomic groups have warning signals, but very little information on the interrelationships among population abundances across prey communities, the diversity of signal phenotypes, and prey defences. We also have detailed knowledge of how a few generalist predator species forage in artificial laboratory environments, but we know much less about how predators forage in complex natural communities with variable prey defences. We describe how empirical work to address each of these knowledge gaps can test specific hypotheses for why warning signals exhibit their particular patterns of distribution. This will help us to understand how behavioural interactions shape ecological communities.
Collapse
Affiliation(s)
- David W Kikuchi
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Evolutionary Biology, Universität Bielefeld, Konsequez 45, Bielefeld, 33615, Germany
| | - Marie E Herberstein
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Johanna Mappes
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
7
|
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW, Flores-Moreno H, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson RH, Powell J, Schildhauer M, Schilling J, Treseder KK. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev Camb Philos Soc 2019; 95:409-433. [PMID: 31763752 DOI: 10.1111/brv.12570] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
Collapse
Affiliation(s)
- Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, FL, 33146, U.S.A
| | - Carlos A Aguilar-Trigueros
- Freie Universität-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Scott Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, U.S.A
| | | | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97330, U.S.A
| | - Natalie Christian
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, U.S.A.,Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Habacuc Flores-Moreno
- Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Dimitrios Floudas
- Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research & Education Center, University of Florida, Homestead, FL, 33031, U.S.A
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, 01610, U.S.A
| | - Peter Kennedy
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, WI, 53726, U.S.A
| | - Daniel S Maynard
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Amy M Milo
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Rolf Henrik Nilsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Box 461, 405 30, Göteborg, Sweden
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Mark Schildhauer
- National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA, 93101, U.S.A
| | - Jonathan Schilling
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, U.S.A
| |
Collapse
|
8
|
Krah FS, Büntgen U, Schaefer H, Müller J, Andrew C, Boddy L, Diez J, Egli S, Freckleton R, Gange AC, Halvorsen R, Heegaard E, Heideroth A, Heibl C, Heilmann-Clausen J, Høiland K, Kar R, Kauserud H, Kirk PM, Kuyper TW, Krisai-Greilhuber I, Norden J, Papastefanou P, Senn-Irlet B, Bässler C. European mushroom assemblages are darker in cold climates. Nat Commun 2019; 10:2890. [PMID: 31253790 PMCID: PMC6599080 DOI: 10.1038/s41467-019-10767-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species' geographical distributions will be critical in predicting ecosystem responses to global warming.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany.
- Bavarian Forest National Park, 94481, Grafenau, Germany.
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
- Global Change Research Centre and Masaryk University, 61300, Brno, Czech Republic
| | - Hanno Schaefer
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany
| | - Jörg Müller
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, 96181, Rauhenebrach, Germany
| | - Carrie Andrew
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Simon Egli
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Robert Freckleton
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alan C Gange
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Blindern, 0318, Oslo, Norway
| | - Einar Heegaard
- Norwegian Institute of Bioeconomy Research, 5244, Fana, Norway
| | - Antje Heideroth
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Ecology Research Group, Department of Biology, Philipps Uuniversity Marburg, 35043, Marburg, Germany
| | | | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Klaus Høiland
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Ritwika Kar
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076, Tuebingen, Germany
| | - Håvard Kauserud
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Paul M Kirk
- Mycology Section, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, TW9 3DS, UK
| | - Thomas W Kuyper
- Department of Soil Quality, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Irmgard Krisai-Greilhuber
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - Jenni Norden
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Phillip Papastefanou
- TUM School of Life Sciences Weihenstephan, Land Surface-Atmosphere Interactions, Technical University of Munich, 85354, Freising, Germany
| | - Beatrice Senn-Irlet
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Claus Bässler
- Bavarian Forest National Park, 94481, Grafenau, Germany.
- Technical University of Munich, Chair for Terrestrial Ecology, 85354, Freising, Germany.
| |
Collapse
|
9
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
10
|
Toxicity of Potential Fungal Defense Proteins towards the Fungivorous Nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. Appl Environ Microbiol 2018; 84:AEM.02051-18. [PMID: 30242007 PMCID: PMC6238071 DOI: 10.1128/aem.02051-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 01/27/2023] Open
Abstract
Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops. Resistance of fungi to predation is thought to be mediated by toxic metabolites and proteins. Many of these fungal defense effectors are highly abundant in the fruiting body and not produced in the vegetative mycelium. The defense function of fruiting body-specific proteins, however, including cytoplasmically localized lectins and antinutritional proteins such as biotin-binding proteins, is mainly based on toxicity assays using bacteria as a heterologous expression system, with bacterivorous/omnivorous model organisms as predators. Here, we present an ecologically more relevant experimental setup to assess the toxicity of potential fungal defense proteins towards the fungivorous, stylet-feeding nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. As a heterologous expression host, we exploited the filamentous fungus Ashbya gossypii. Using this new system, we assessed the toxicity of six previously characterized, cytoplasmically localized, potential defense proteins from fruiting bodies of different fungal phyla against the two fungivorous nematodes. We found that all of the tested proteins were toxic against both nematodes, albeit to various degrees. The toxicity of these proteins against both fungivorous and bacterivorous nematodes suggests that their targets have been conserved between the different feeding groups of nematodes and that bacterivorous nematodes are valid model organisms to assess the nematotoxicity of potential fungal defense proteins. IMPORTANCE Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops.
Collapse
|
11
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Fungal Secondary Metabolism in the Light of Animal–Fungus Interactions: From Mechanism to Ecological Function. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
|
14
|
Sawada A, Sato H, Inoue E, Otani Y, Hanya G. Mycophagy among Japanese macaques in Yakushima: fungal species diversity and behavioral patterns. Primates 2013; 55:249-57. [PMID: 24338126 DOI: 10.1007/s10329-013-0396-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/23/2013] [Indexed: 10/25/2022]
Abstract
Mycophagy (fungus-feeding) by Japanese macaques (Macaca fuscata yakui) in Yakushima has been observed by many researchers, but no detailed information is available on this behavior, including which fungal species are consumed. To provide a general description of mycophagy and to understand how and whether macaques avoid poisonous fungi, we conducted behavioral observation of wild Japanese macaques in Yakushima and used molecular techniques to identify fungal species. The results indicate that the diet of the macaques contains a large variety of fungal species (67 possible species in 31 genera), although they compose a very small portion of the total diet (2.2% of annual feeding time). Fungi which were eaten by macaques immediately after they were picked up were less likely to be poisonous than those which were examined (sniffed, nibbled, carefully handled) by macaques. However, such examining behaviors did not appear to increase the macaques' abilities to detect poisonous fungi. Fungi that were only partially consumed included more poisonous species than those fully consumed with/without examining behavior, yet this was not significant. Taste, therefore, might also play an important role in discriminating poisonous from non-poisonous.
Collapse
Affiliation(s)
- Akiko Sawada
- Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi, 484-8506, Japan.
| | - Hirotoshi Sato
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eiji Inoue
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yosuke Otani
- Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi, 484-8506, Japan
| | - Goro Hanya
- Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
15
|
Debban CL, Dyer KA. No evidence for behavioural adaptations to nematode parasitism by the fly Drosophila putrida. J Evol Biol 2013; 26:1646-54. [PMID: 23663194 DOI: 10.1111/jeb.12158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 02/27/2013] [Accepted: 03/15/2013] [Indexed: 11/30/2022]
Abstract
Behavioural adaptations of hosts to their parasites form an important component of the evolutionary dynamics of host-parasite interactions. As mushroom-feeding Drosophila can tolerate deadly mycotoxins, but their Howardula nematode parasites cannot, we asked how consuming the potent mycotoxin α-amanitin has affected this host-parasite interaction. We used the fly D. putrida and its parasite H. aoronymphium, which is both highly virulent and at high prevalence in some populations, and investigated whether adult flies utilize food with toxin to prevent infection in the next generation or consume the toxin to reduce the virulence of an already established infection. First, we found that uninfected females did not prefer to eat or lay their eggs on toxic food, indicating that selection has not acted on the flies to alter their behaviour towards α-amanitin to prevent their offspring from becoming infected by Howardula. However, we cannot rule out that flies use an alternate cue that is associated with toxin presence in the wild. Second, we found that infected females did not prefer to eat food with α-amanitin and that consuming α-amanitin did not cure or reduce the virulence of the parasite in adults that were already infected. In sum, our results indicate there are no direct effects of eating α-amanitin on this host-parasite interaction, and we suggest that toxin tolerance is more likely maintained by selection due to competition for resources than as a mechanism to avoid parasite infection or to reduce the virulence of infection.
Collapse
Affiliation(s)
- C L Debban
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
16
|
Marmeisse R, Nehls U, Öpik M, Selosse MA, Pringle A. Bridging mycorrhizal genomics, metagenomics and forest ecology. THE NEW PHYTOLOGIST 2013; 198:343-346. [PMID: 23510186 DOI: 10.1111/nph.12205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Roland Marmeisse
- Ecologie Microbienne, CNRS-Université Lyon 1, Villeurbanne, France
| | - Uwe Nehls
- Department of Ecology, University of Bremen, Bremen, Germany
| | - Maarja Öpik
- Department of Botany, University of Tartu, Tartu, Estonia
| | - Marc-André Selosse
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-Université Montpellier II, Muséum National d'Histoire Naturelle (Paris), Montpellier, France
| | - Anne Pringle
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Berendsen RL, Schrier N, Kalkhove SIC, Lugones LG, Baars JJP, Zijlstra C, de Weerdt M, Wösten HAB, Bakker PAHM. Absence of induced resistance in Agaricus bisporus against Lecanicillium fungicola. Antonie van Leeuwenhoek 2012; 103:539-50. [PMID: 23100063 DOI: 10.1007/s10482-012-9836-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Lecanicillium fungicola causes dry bubble disease and is an important problem in the cultivation of Agaricus bisporus. Little is known about the defense of mushrooms against pathogens in general and L. fungicola in particular. In plants and animals, a first attack by a pathogen often induces a systemic response that results in an acquired resistance to subsequent attacks by the same pathogen. The development of functionally similar responses in these two eukaryotic kingdoms indicates that they are important to all multi-cellular organisms. We investigated if such responses also occur in the interaction between the white button mushroom and L. fungicola. A first infection of mushrooms of the commercial A. bisporus strain Sylvan A15 by L. fungicola did not induce systemic resistance against a subsequent infection. Similar results were obtained with the A. bisporus strain MES01497, which was demonstrated to be more resistant to dry bubble disease. Apparently, fruiting bodies of A. bisporus do not express induced resistance against L. fungicola.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Berendsen RL, Baars JJP, Kalkhove SIC, Lugones LG, Wösten HAB, Bakker PAHM. Lecanicillium fungicola: causal agent of dry bubble disease in white-button mushroom. MOLECULAR PLANT PATHOLOGY 2010; 11:585-95. [PMID: 20695998 PMCID: PMC6640384 DOI: 10.1111/j.1364-3703.2010.00627.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lecanicillium fungicola causes dry bubble disease in commercially cultivated mushroom. This review summarizes current knowledge on the biology of the pathogen and the interaction between the pathogen and its most important host, the white-button mushroom, Agaricus bisporus. The ecology of the pathogen is discussed with emphasis on host range, dispersal and primary source of infection. In addition, current knowledge on mushroom defence mechanisms is reviewed. TAXONOMY Lecanicillium fungicola (Preuss) Zare and Gams: Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreales; Order Hypocreomycetidae; Family Cordycipitaceae; genus Lecanicillium. HOST RANGE Agaricus bisporus, Agaricus bitorquis and Pleurotus ostreatus. Although its pathogenicity for other species has not been established, it has been isolated from numerous other basidiomycetes. DISEASE SYMPTOMS Disease symptoms vary from small necrotic lesions on the caps of the fruiting bodies to partially deformed fruiting bodies, called stipe blow-out, or totally deformed and undifferentiated masses of mushroom tissue, called dry bubble. The disease symptoms and severity depend on the time point of infection. Small necrotic lesions result from late infections on the fruiting bodies, whereas stipe blow-out and dry bubble are the result of interactions between the pathogen and the host in the casing layer. ECONOMIC IMPORTANCE Lecanicillium fungicola is a devastating pathogen in the mushroom industry and causes significant losses in the commercial production of its main host, Agaricus bisporus. Annual costs for mushroom growers are estimated at 2-4% of total revenue. Reports on the disease originate mainly from North America and Europe. Although China is the main producer of white-button mushrooms in the world, little is known in the international literature about the impact of dry bubble disease in this region. CONTROL The control of L. fungicola relies on strict hygiene and the use of fungicides. Few chemicals can be used for the control of dry bubble because the host is also sensitive to fungicides. Notably, the development of resistance of L. fungicola has been reported against the fungicides that are used to control dry bubble disease. In addition, some of these fungicides may be banned in the near future. USEFUL WEBSITES http://www.mycobank.org; http://www.isms.biz; http://www.cbs.knaw.nl.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Lev-Yadun S. The shared and separate roles of aposematic (warning) coloration and the co-evolution hypothesis in defending autumn leaves. PLANT SIGNALING & BEHAVIOR 2010; 5:937-939. [PMID: 20495371 PMCID: PMC3115166 DOI: 10.4161/psb.5.8.12034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 05/29/2023]
Abstract
The potential anti-herbivory functions of colorful (red and yellow) autumn leaves received considerable attention in the last decade. The most studied and discussed is the co-evolutionary hypothesis, according to which autumn coloration signals the quality of defense to insects that migrate to the trees in autumn. In addition to classic aposematism (repellency due to signaling unpalatability, non profitability of consumption, or danger for whatever reasons) that operates immediately, this hypothesis also proposes that the reduced fitness of the insects is in their next generation hatching in the spring from eggs laid on the trees in autumn. Supporters of the co-evolutionary hypothesis either posited that this hypothesis differs from visual aposematism or ignored the issue of aposematism. Interestingly, other authors that cited their papers considered the co-evolutionary hypothesis as visual aposematism. Recently, the overlap between the co-evolutionary hypothesis and visual aposematism was finally recognized, with the exception of yellow autumn leaves not signaling defense to aphids, which are known to be attracted to yellow leaves. However, the detailed relationships between these two hypotheses have not been discussed yet. Here I propose that the co-evolutionary hypothesis generally equals visual aposematism in red and yellow autumn leaves towards all herbivores except for yellow not operating with aphids. The co-evolutionary signaling extends beyond classic aposematism because it may operate later and not only immediately. The possibility that for yellow autumn leaves the co-evolutionary hypothesis may also operate via olfactory aposematism should not be dismissed.
Collapse
|
20
|
Fungal secondary metabolite biosynthesis – a chemical defence strategy against antagonistic animals? FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2009.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Yang J, Smith HG, Sherratt TN, Wilkinson DM. Is there a size limit for cosmopolitan distribution in free-living microorganisms? A biogeographical analysis of testate amoebae from polar areas. MICROBIAL ECOLOGY 2010; 59:635-645. [PMID: 19956939 DOI: 10.1007/s00248-009-9615-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/01/2009] [Indexed: 05/26/2023]
Abstract
A long-standing debate in microbial ecology is the extent to which free-living microorganisms exhibit cosmopolitan distributions. We use a comparison of testate amoebae communities in cold "polar" locations (Arctic, Antarctic, and Tibet) to investigate how a microorganism's size affects its probability of having a cosmopolitan distribution. We show that the probability a given taxa being reported in all three locations increases as testate size decreases. Likewise, excluding those testates found only in Tibet, very small testates (<20 microm) are more likely to occur in both the Arctic and Antarctic than in either of these poles alone. Attempting to correct for phylogeny reduces the number of statistically significant relationships--both because of decreased sample size and potentially real phylogenetic patterns, although some size-dependent effects were still apparent. In particular, taxa found in both the Arctic and Antarctic poles were significantly smaller than congeneric taxa found only in Tibet. This pattern may in part be due to habitat effects, with the Tibetan samples being more likely to have come from aquatic sites which may be more suitable for larger taxa. Overall, our analysis suggests that, at least within testate amoebae, a cosmopolitan distribution becomes increasingly common as median taxon size decreases.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Dadao, Xiamen, 361021, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Abstract
The vast repertoire of toxic fungal secondary metabolites has long been assumed to have an evolved protective role against fungivory. It still remains elusive, however, whether fungi contain these compounds as an anti-predator adaptation. We demonstrate that loss of secondary metabolites in the soil mould Aspergillus nidulans causes, under the attack of the fungivorous springtail Folsomia candida, a disadvantage to the fungus. Springtails exhibited a distinct preference for feeding on a mutant deleted for LaeA, a global regulator of Aspergillus secondary metabolites. Consumption of the mutant yielded a reproductive advantage to the arthropod but detrimental effects on fungal biomass compared with a wild-type fungus capable of producing the entire arsenal of secondary metabolites. Our results demonstrate that fungal secondary metabolites shape food choice behaviour, can affect population dynamics of fungivores, and suggest that fungivores may provide a selective force favouring secondary metabolites synthesis in fungi.
Collapse
Affiliation(s)
- Marko Rohlfs
- Zoological Institute, Department of Animal Ecology, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098 Kiel, Germany.
| | | | | | | |
Collapse
|