1
|
Fornezza S, Delvecchio VS, Harvey WT, Dishuck PC, Eichler EE, Giannuzzi G. AGAP duplicons associate with structural diversity at Chromosome 10q11.22. Genome Res 2024; 34:1487-1499. [PMID: 39322278 PMCID: PMC11534156 DOI: 10.1101/gr.279454.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
The 10q11.22 chromosomal region is a duplication-rich interval of the human genome and one of the last to be fully assembled. It carries copy number-variable genes associated with intellectual disability, bipolar disorder, and obesity. In this study, we characterized the structural diversity at this locus by analyzing 64 haploid assemblies produced by the Human Pangenome Reference Consortium. We identified 11 alternative haplotypes that differ in the copy number and/or orientation of large genomic segments, ranging from hundreds of kilobase pairs (kbp) to over one megabase pair (Mbp). We uncovered a 2.4 Mbp size difference between the shortest and longest haplotypes. Breakpoint analysis revealed that genomic instability results from nonallelic homologous recombination between segmental duplication (SD) pairs with varying similarity (94.4%-99.6%). Nonetheless, these pairs generally recombine at positions where their identity is higher (>99.6%). Recurrent inversions occur with different breakpoints within the same inverted SD pair. Inversion polymorphisms shuffle the entire SD arrangement, creating new predispositions to copy-number variations. The SD architecture is associated with a catarrhine-specific subgroup of the AGAP gene family, which likely triggered the accumulation of SDs at this locus over the past 25 million years of human evolution. Our results reveal extensive structural diversity and genomic instability at the 10q11.22 locus, and expand the general understanding of the mutational mechanisms behind SD-mediated rearrangements.
Collapse
Affiliation(s)
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
2
|
Grochowski CM, Bengtsson JD, Du H, Gandhi M, Lun MY, Mehaffey MG, Park K, Höps W, Benito E, Hasenfeld P, Korbel JO, Mahmoud M, Paulin LF, Jhangiani SN, Hwang JP, Bhamidipati SV, Muzny DM, Fatih JM, Gibbs RA, Pendleton M, Harrington E, Juul S, Lindstrand A, Sedlazeck FJ, Pehlivan D, Lupski JR, Carvalho CMB. Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci. CELL GENOMICS 2024; 4:100590. [PMID: 38908378 PMCID: PMC11293582 DOI: 10.1016/j.xgen.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2-5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci.
Collapse
Affiliation(s)
| | | | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mira Gandhi
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | | | - KyungHee Park
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Wolfram Höps
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Eva Benito
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Medhat Mahmoud
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James Paul Hwang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sravya V Bhamidipati
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Sissel Juul
- Oxford Nanopore Technologies, New York, NY 10013, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Fritz J Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Rice University, Houston TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
3
|
Grochowski CM, Bengtsson JD, Du H, Gandhi M, Lun MY, Mehaffey MG, Park K, Höps W, Benito-Garagorri E, Hasenfeld P, Korbel JO, Mahmoud M, Paulin LF, Jhangiani SN, Muzny DM, Fatih JM, Gibbs RA, Pendleton M, Harrington E, Juul S, Lindstrand A, Sedlazeck FJ, Pehlivan D, Lupski JR, Carvalho CMB. Break-induced replication underlies formation of inverted triplications and generates unexpected diversity in haplotype structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560172. [PMID: 37873367 PMCID: PMC10592851 DOI: 10.1101/2023.10.02.560172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions in cis . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes. Results Here we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the genomic DNA of 24 patients with neurodevelopmental disorders identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted SV haplotypes. Using a combination of short-read genome sequencing (GS), long- read GS, optical genome mapping and StrandSeq the haplotype structure was resolved in 18 samples. This approach refined the point of template switching between inverted LCRs in 4 samples revealing a DNA segment of ∼2.2-5.5 kb of 100% nucleotide similarity. A prediction model was developed to infer the LCR used to mediate the non-allelic homology repair. Conclusions These data provide experimental evidence supporting the hypothesis that inverted LCRs act as a recombinant substrate in replication-based repair mechanisms. Such inverted repeats are particularly relevant for formation of copy-number associated inversions, including the DUP-TRP/INV-DUP structures. Moreover, this type of CGR can result in multiple conformers which contributes to generate diverse SV haplotypes in susceptible loci .
Collapse
|
4
|
Yanovsky-Dagan S, Frumkin A, Lupski JR, Harel T. CRISPR/Cas9-induced gene conversion between ATAD3 paralogs. HGG ADVANCES 2022; 3:100092. [PMID: 35199044 PMCID: PMC8844715 DOI: 10.1016/j.xhgg.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Paralogs and pseudogenes are abundant within the human genome, and can mediate non-allelic homologous recombination (NAHR) or gene conversion events. The ATAD3 locus contains three paralogs situated in tandem, and is therefore prone to NAHR-mediated deletions and duplications associated with severe neurological phenotypes. To study this locus further, we aimed to generate biallelic loss-of-function variants in ATAD3A by CRISPR/Cas9 genome editing. Unexpectedly, two of the generated clones underwent gene conversion, as evidenced by replacement of the targeted sequence of ATAD3A by a donor sequence from its paralog ATAD3B. We highlight the complexity of CRISPR/Cas9 design, end-product formation, and recombination repair mechanisms for CRISPR/Cas9 delivery as a nucleic acid molecular therapy when targeting genes that have paralogs or pseudogenes, and advocate meticulous evaluation of resultant clones in model organisms. In addition, we suggest that endogenous gene conversion may be used to repair missense variants in genes with paralogs or pseudogenes.
Collapse
Affiliation(s)
| | - Ayala Frumkin
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Corresponding author
| |
Collapse
|
5
|
Kehrer-Sawatzki H, Cooper DN. Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Hum Genet 2021; 140:1635-1649. [PMID: 34535841 PMCID: PMC8553723 DOI: 10.1007/s00439-021-02363-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023]
Abstract
An estimated 5–11% of patients with neurofibromatosis type-1 (NF1) harbour large deletions encompassing the NF1 gene and flanking regions. These NF1 microdeletions are subclassified into type 1, 2, 3 and atypical deletions which are distinguishable from each other by their extent and by the number of genes included within the deletion regions as well as the frequency of mosaicism with normal cells. Most common are type-1 NF1 deletions which encompass 1.4-Mb and 14 protein-coding genes. Type-1 deletions are frequently associated with overgrowth, global developmental delay, cognitive disability and dysmorphic facial features which are uncommon in patients with intragenic pathogenic NF1 gene variants. Further, patients with type-1 NF1 deletions frequently exhibit high numbers of neurofibromas and have an increased risk of malignant peripheral nerve sheath tumours. Genes located within the type-1 NF1 microdeletion interval and co-deleted with NF1 are likely to act as modifiers responsible for the severe disease phenotype in patients with NF1 microdeletions, thereby causing the NF1 microdeletion syndrome. Genotype/phenotype correlations in patients with NF1 microdeletions of different lengths are important to identify such modifier genes. However, these correlations are critically dependent upon the accurate characterization of the deletions in terms of their extent. In this review, we outline the utility as well as the shortcomings of multiplex ligation-dependent probe amplification (MLPA) to classify the different types of NF1 microdeletion and indicate the importance of high-resolution microarray analysis for correct classification, a necessary precondition to identify those genes responsible for the NF1 microdeletion syndrome.
Collapse
Affiliation(s)
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
6
|
Further evidence for lack of association of PRDM9 polymorphisms and 22q11.2 deletion syndrome. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Buckley RM, Grahn RA, Gandolfi B, Herrick JR, Kittleson MD, Bateman HL, Newsom J, Swanson WF, Prieur DJ, Lyons LA. Assisted reproduction mediated resurrection of a feline model for Chediak-Higashi syndrome caused by a large duplication in LYST. Sci Rep 2020; 10:64. [PMID: 31919397 PMCID: PMC6952417 DOI: 10.1038/s41598-019-56896-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
Chediak-Higashi Syndrome (CHS) is a well-characterized, autosomal recessively inherited lysosomal disease caused by mutations in lysosomal trafficking regulator (LYST). The feline model for CHS was originally maintained for ~20 years. However, the colonies were disbanded and the CHS cat model was lost to the research community before the causative mutation was identified. To resurrect the cat model, semen was collected and cryopreserved from a lone, fertile, CHS carrier male. Using cryopreserved semen, laparoscopic oviductal artificial insemination was performed on three queens, two queens produced 11 viable kittens. To identify the causative mutation, a fibroblast cell line, derived from an affected cat from the original colony, was whole genome sequenced. Visual inspection of the sequence data identified a candidate causal variant as a ~20 kb tandem duplication within LYST, spanning exons 30 through to 38 (NM_001290242.1:c.8347-2422_9548 + 1749dup). PCR genotyping of the produced offspring demonstrated three individuals inherited the mutant allele from the CHS carrier male. This study demonstrated the successful use of cryopreservation and assisted reproduction to maintain and resurrect biomedical models and has defined the variant causing Chediak-Higashi syndrome in the domestic cat.
Collapse
Affiliation(s)
- R M Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - R A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
- Veterinary Genetics Laboratory, University of California - Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - B Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - J R Herrick
- Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, 68107, USA
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, Cincinnati, Ohio, 45220, USA
| | - M D Kittleson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, CA, 95616, USA
| | - H L Bateman
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, Cincinnati, Ohio, 45220, USA
| | - J Newsom
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, Cincinnati, Ohio, 45220, USA
| | - W F Swanson
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, Cincinnati, Ohio, 45220, USA
| | - D J Prieur
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA
| | - L A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
8
|
Sordino P, D'Aniello S, Pelletier E, Wincker P, Nittoli V, Stemmann L, Mazzocchi MG, Lombard F, Iudicone D, Caputi L. Into the bloom: Molecular response of pelagic tunicates to fluctuating food availability. Mol Ecol 2019; 29:292-307. [PMID: 31793138 DOI: 10.1111/mec.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023]
Abstract
The planktonic tunicates appendicularians and thaliaceans are highly efficient filter feeders on a wide range of prey size including bacteria and have shorter generation times than any other marine grazers. These traits allow some tunicate species to reach high population densities and ensure their success in a favourable environment. However, there are still few studies focusing on which genes and gene pathways are associated with responses of pelagic tunicates to environmental variability. Herein, we present the effect of food availability increase on tunicate community and gene expression at the Marquesas Islands (South-East Pacific Ocean). By using data from the Tara Oceans expedition, we show that changes in phytoplankton density and composition trigger the success of a dominant larvacean species (an undescribed appendicularian). Transcriptional signature to the autotroph bloom suggests key functions in specific physiological processes, i.e., energy metabolism, muscle contraction, membrane trafficking, and proteostasis. The relative abundance of reverse transcription-related Pfams was lower at bloom conditions, suggesting a link with adaptive genetic diversity in tunicates in natural ecosystems. Downstream of the bloom, pelagic tunicates were outcompeted by copepods. Our work represents the first metaomics study of the biological effects of phytoplankton bloom on a key zooplankton taxon.
Collapse
Affiliation(s)
| | | | - Eric Pelletier
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Patrick Wincker
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | | | - Lars Stemmann
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | | |
Collapse
|
9
|
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, Lupski JR. Predicting human genes susceptible to genomic instability associated with Alu/ Alu-mediated rearrangements. Genome Res 2018; 28:1228-1242. [PMID: 29907612 PMCID: PMC6071635 DOI: 10.1101/gr.229401.117] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Liu J, Zhou Y, Liu S, Song X, Yang XZ, Fan Y, Chen W, Akdemir ZC, Yan Z, Zuo Y, Du R, Liu Z, Yuan B, Zhao S, Liu G, Chen Y, Zhao Y, Lin M, Zhu Q, Niu Y, Liu P, Ikegawa S, Song YQ, Posey JE, Qiu G, Zhang F, Wu Z, Lupski JR, Wu N. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum Genet 2018; 137:553-567. [PMID: 30019117 DOI: 10.1007/s00439-018-1910-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/07/2018] [Indexed: 01/25/2023]
Abstract
With the recent advance in genome-wide association studies (GWAS), disease-associated single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) have been extensively reported. Accordingly, the issue of incorrect identification of recombination events that can induce the distortion of multi-allelic or hemizygous variants has received more attention. However, the potential distorted calculation bias or significance of a detected association in a GWAS due to the coexistence of CNVs and SNPs in the same genomic region may remain under-recognized. Here we performed the association study within a congenital scoliosis (CS) cohort whose genetic etiology was recently elucidated as a compound inheritance model, including mostly one rare variant deletion CNV null allele and one common variant non-coding hypomorphic haplotype of the TBX6 gene. We demonstrated that the existence of a deletion in TBX6 led to an overestimation of the contribution of the SNPs on the hypomorphic allele. Furthermore, we generalized a model to explain the calculation bias, or distorted significance calculation for an association study, that can be 'induced' by CNVs at a locus. Meanwhile, overlapping between the disease-associated SNPs from published GWAS and common CNVs (overlap 10%) and pathogenic/likely pathogenic CNVs (overlap 99.69%) was significantly higher than the random distribution (p < 1 × 10-6 and p = 0.034, respectively), indicating that such co-existence of CNV and SNV alleles might generally influence data interpretation and potential outcomes of a GWAS. We also verified and assessed the influence of colocalizing CNVs to the detection sensitivity of disease-associated SNP variant alleles in another adolescent idiopathic scoliosis (AIS) genome-wide association study. We proposed that detecting co-existent CNVs when evaluating the association signals between SNPs and disease traits could improve genetic model analyses and better integrate GWAS with robust Mendelian principles.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xin-Zhuang Yang
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhenlei Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiankun Zhu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 108-8639, Japan
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
11
|
Pronounced maternal parent-of-origin bias for type-1 NF1 microdeletions. Hum Genet 2018; 137:365-373. [PMID: 29730711 DOI: 10.1007/s00439-018-1888-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
Abstract
Neurofibromatosis type 1 (NF1) is caused, in 4.7-11% of cases, by large deletions encompassing the NF1 gene and its flanking regions within 17q11.2. Different types of large NF1 deletion occur which are distinguishable by their breakpoint location and underlying mutational mechanism. Most common are the type-1 NF1 deletions of 1.4 Mb which exhibit recurrent breakpoints caused by nonallelic homologous recombination (NAHR), also termed unequal crossover. Here, we analyzed 37 unrelated families of patients with de novo type-1 NF1 deletions by means of short tandem repeat (STR) profiling to determine the parental origin of the deletions. We observed that 33 of the 37 type-1 deletions were of maternal origin (89.2% of cases; p < 0.0001). Analysis of the patients' siblings indicated that, in 14 informative cases, ten (71.4%) deletions resulted from interchromosomal unequal crossover during meiosis I. Our findings indicate a strong maternal parent-of-origin bias for type-1 NF1 deletions. A similarly pronounced maternal transmission bias has been reported for recurrent copy number variants (CNVs) within 16p11.2 associated with autism, but not so far for any other NAHR-mediated pathogenic CNVs. Region-specific genomic features are likely to be responsible for the maternal bias in the origin of both the 16p11.2 CNVs and type-1 NF1 deletions.
Collapse
|
12
|
Alves I, Houle AA, Hussin JG, Awadalla P. The impact of recombination on human mutation load and disease. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160465. [PMID: 29109227 PMCID: PMC5698626 DOI: 10.1098/rstb.2016.0465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Recombination promotes genomic integrity among cells and tissues through double-strand break repair, and is critical for gamete formation and fertility through a strict regulation of the molecular mechanisms associated with proper chromosomal disjunction. In humans, congenital defects and recurrent structural abnormalities can be attributed to aberrant meiotic recombination. Moreover, mutations affecting genes involved in recombination pathways are directly linked to pathologies including infertility and cancer. Recombination is among the most prominent mechanism shaping genome variation, and is associated with not only the structuring of genomic variability, but is also tightly linked with the purging of deleterious mutations from populations. Together, these observations highlight the multiple roles of recombination in human genetics: its ability to act as a major force of evolution, its molecular potential to maintain genome repair and integrity in cell division and its mutagenic cost impacting disease evolution.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Isabel Alves
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
| | - Armande Ang Houle
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
- Department of Molecular Genetics, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Julie G Hussin
- Montreal Heart Institute, Department of Medicine, University of Montreal, 5000 Rue Bélanger, Montréal, Quebec, Canada H1T 1C8
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Philip Awadalla
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
- Department of Molecular Genetics, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
13
|
Hillmer M, Summerer A, Mautner VF, Högel J, Cooper DN, Kehrer-Sawatzki H. Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Hum Mutat 2017; 38:1711-1722. [PMID: 28862369 DOI: 10.1002/humu.23319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 01/30/2023]
Abstract
Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR-mediated rearrangements has generally been performed by comparison of the breakpoint-spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint-mapping. We studied the transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild-type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9-binding sites. Sequence comparisons between the parental wild-type PRS1 or PRS2 haplotypes and the deletion breakpoint-spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269-bp in contrast to 502-bp by method #1. Our findings imply that paralog-specific haplotype diversity of NAHR hotspots (such as PRS2) and population-specific haplotype diversity must be taken into account in order to accurately ascertain NAHR-mediated rearrangement breakpoints.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
14
|
The next generation of population-based spinal muscular atrophy carrier screening: comprehensive pan-ethnic SMN1 copy-number and sequence variant analysis by massively parallel sequencing. Genet Med 2017; 19:936-944. [PMID: 28125085 DOI: 10.1038/gim.2016.215] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate pan-ethnic SMN1 copy-number and sequence variation by hybridization-based target enrichment coupled with massively parallel sequencing or next-generation sequencing (NGS). METHODS NGS reads aligned to SMN1 and SMN2 exon 7 were quantified to determine the total combined copy number of SMN1 and SMN2. The ratio of SMN1 to SMN2 was calculated based on a single-nucleotide difference that distinguishes the two genes. SMN1 copy-number results were compared between the NGS and quantitative polymerase chain reaction and/or multiplex ligation-dependent probe amplification. The NGS data set was also queried for the g.27134T>G single-nucleotide polymorphism (SNP) and other SMN1 sequence pathogenic variants. RESULTS The sensitivity of the test to detect spinal muscular atrophy (SMA) carriers with one copy of SMN1 was 100% (95% confidence interval (CI): 95.9-100%; n = 90) and specificity was 99.6% (95% CI: 99.4-99.7%; n = 6,648). Detection of the g.27134T>G SNP by NGS was 100% concordant with an restriction fragment-length polymorphism method (n = 493). Ten single-nucleotide variants in SMN1 were detectable by NGS and confirmed by gene-specific amplicon-based sequencing. This comprehensive approach yielded SMA carrier detection rates of 90.3-95.0% in five ethnic groups studied. CONCLUSION We have developed a novel, comprehensive SMN1 copy-number and sequence variant analysis method by NGS that demonstrated improved SMA carrier detection rates across the entire population examined.Genet Med advance online publication 19 January 2017.
Collapse
|
15
|
Diagnosis and clinical management of duplications and deletions. Fertil Steril 2017; 107:12-18. [DOI: 10.1016/j.fertnstert.2016.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023]
|
16
|
Nguyen HT, Boocock J, Merriman TR, Black MA. SRBreak: A Read-Depth and Split-Read Framework to Identify Breakpoints of Different Events Inside Simple Copy-Number Variable Regions. Front Genet 2016; 7:160. [PMID: 27695476 PMCID: PMC5023681 DOI: 10.3389/fgene.2016.00160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
Copy-number variation (CNV) has been associated with increased risk of complex diseases. High-throughput sequencing (HTS) technologies facilitate the detection of copy-number variable regions (CNVRs) and their breakpoints. This helps in understanding genome structure as well as their evolution process. Various approaches have been proposed for detecting CNV breakpoints, but currently it is still challenging for tools based on a single analysis method to identify breakpoints of CNVs. It has been shown, however, that pipelines which integrate multiple approaches are able to report more reliable breakpoints. Here, based on HTS data, we have developed a pipeline to identify approximate breakpoints (±10 bp) relating to different ancestral events within a specific CNVR. The pipeline combines read-depth and split-read information to infer breakpoints, using information from multiple samples to allow an imputation approach to be taken. The main steps involve using a normal mixture model to cluster samples into different groups, followed by simple kernel-based approaches to maximize information obtained from read-depth and split-read approaches, after which common breakpoints of groups are inferred. The pipeline uses split-read information directly from CIGAR strings of BAM files, without using a re-alignment step. On simulated data sets, it was able to report breakpoints for very low-coverage samples including those for which only single-end reads were available. When applied to three loci from existing human resequencing data sets (NEGR1, LCE3, IRGM) the pipeline obtained good concordance with results from the 1000 Genomes Project (92, 100, and 82%, respectively). The package is available at https://github.com/hoangtn/SRBreak, and also as a docker-based application at https://registry.hub.docker.com/u/hoangtn/srbreak/.
Collapse
Affiliation(s)
- Hoang T Nguyen
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand; Department of Psychiatry, Mount Sinai School of Medicine, New YorkNY, USA; Department of Mathematics, Cao Thang College of TechnologyHo Chi Minh City, Vietnam
| | - James Boocock
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand; Department of Psychiatry, Mount Sinai School of Medicine, New YorkNY, USA
| | - Tony R Merriman
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of OtagoDunedin, New Zealand; Virtual Institute of Statistical GeneticsDunedin, New Zealand
| |
Collapse
|
17
|
Guo X, Delio M, Haque N, Castellanos R, Hestand MS, Vermeesch JR, Morrow BE, Zheng D. Variant discovery and breakpoint region prediction for studying the human 22q11.2 deletion using BAC clone and whole genome sequencing analysis. Hum Mol Genet 2016; 25:3754-3767. [PMID: 27436579 DOI: 10.1093/hmg/ddw221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11.2DS) is caused by meiotic non-allelic homologous recombination events between flanking low copy repeats termed LCR22A and LCR22D, resulting in a 3 million base pair (Mb) deletion. Due to their complex structure, large size and high sequence identity, genetic variation within LCR22s among different individuals has not been well characterized. In this study, we sequenced 13 BAC clones derived from LCR22A/D and aligned them with 15 previously available BAC sequences to create a new genetic variation map. The thousands of variants identified by this analysis were not uniformly distributed in the two LCR22s. Moreover, shared single nucleotide variants between LCR22A and LCR22D were enriched in the Breakpoint Cluster Region pseudogene (BCRP) block, suggesting the existence of a possible recombination hotspot there. Interestingly, breakpoints for atypical 22q11.2 rearrangements have previously been located to BCRPs To further explore this finding, we carried out in-depth analyses of whole genome sequence (WGS) data from two unrelated probands harbouring a de novo 3Mb 22q11.2 deletion and their normal parents. By focusing primarily on WGS reads uniquely mapped to LCR22A, using the variation map from our BAC analysis to help resolve allele ambiguity, and by performing PCR analysis, we infer that the deletion breakpoints were most likely located near or within the BCRP module. In summary, we found a high degree of sequence variation in LCR22A and LCR22D and a potential recombination breakpoint near or within the BCRP block, providing a starting point for future breakpoint mapping using additional trios.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deyou Zheng
- Department of Neurology .,Department of Genetics.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Abstract
During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations.
Collapse
|
19
|
Campbell IM, Gambin T, Jhangiani S, Grove ML, Veeraraghavan N, Muzny DM, Shaw CA, Gibbs RA, Boerwinkle E, Yu F, Lupski JR. Multiallelic Positions in the Human Genome: Challenges for Genetic Analyses. Hum Mutat 2015; 37:231-234. [PMID: 26670213 DOI: 10.1002/humu.22944] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/03/2015] [Indexed: 11/11/2022]
Abstract
As the amount of human genomic sequence available from personal genomes and exomes has increased, so too has the observation of genomic positions having two or more alternative alleles, so-called multiallelic sites. For portions of the haploid genome that are present in more than one copy, including segmental duplications, variation at such multisite variant positions becomes even more complex. Despite the frequency of multiallelic variants, a number of commonly used resources and tools in genomic research and diagnostics do not support these multiallelic variants all together or require special modifications. Here, we explore the frequency of multiallelic sites in large samples with whole exome sequencing and discuss potential outcomes of failing to account for multiple variant alleles. We also briefly discuss some commonly utilized resources that fully support multiallelic sites.
Collapse
Affiliation(s)
- Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | | | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genetics Center, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Fuli Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Hillmer M, Wagner D, Summerer A, Daiber M, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H. Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions. Hum Mol Genet 2015; 25:484-96. [PMID: 26614388 DOI: 10.1093/hmg/ddv487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - David Wagner
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Michaela Daiber
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35242, USA and
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
21
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
22
|
Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:419-36. [PMID: 25892534 PMCID: PMC4609214 DOI: 10.1002/em.21943] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 05/19/2023]
Abstract
Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. Environ. Mol. Mutagen. 56:419-436, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza Room 604B, Houston, Texas
| |
Collapse
|
23
|
Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication. PLoS Genet 2015; 11:e1005050. [PMID: 25749076 PMCID: PMC4352052 DOI: 10.1371/journal.pgen.1005050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals-16/17 were found to have a DUP-TRP/INV-DUP rearrangement product. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion structural variation found frequently amongst normal individuals. We show that a homology-or homeology-driven replicative mechanism of DNA repair can apparently mediate template switches within stretches of microhomology. Moreover, we provide evidence that quadruplication and potentially higher order amplification of a genomic interval can occur in a manner consistent with rolling circle amplification as predicted by the microhomology-mediated break induced replication (MMBIR) model.
Collapse
|
24
|
Abstract
Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies.
Collapse
|
25
|
Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC. The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet 2014; 15:215-244. [PMID: 24773319 DOI: 10.1146/annurev-genom-091212-153408] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra/CSIC, 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Centro Nacional de Análisis Genómico, 08023 Barcelona, Spain
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
26
|
Mussotter T, Bengesser K, Högel J, Cooper DN, Kehrer-Sawatzki H. Population-specific differences in gene conversion patterns between human SUZ12 and SUZ12P are indicative of the dynamic nature of interparalog gene conversion. Hum Genet 2014; 133:383-401. [PMID: 24385046 DOI: 10.1007/s00439-013-1410-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/08/2013] [Indexed: 11/29/2022]
Abstract
Nonallelic homologous gene conversion (NAHGC) resulting from interparalog recombination without crossover represents an important influence on the evolution of duplicated sequences in the human genome. In 17q11.2, different paralogous sequences mediate large NF1 deletions by nonallelic homologous recombination with crossover (NAHR). Among these paralogs are SUZ12 and its pseudogene SUZ12P which harbour the breakpoints of type-2 (1.2-Mb) NF1 deletions. Such deletions are caused predominantly by mitotic NAHR since somatic mosaicism with normal cells is evident in most patients. Investigating whether SUZ12 and SUZ12P have also been involved in NAHGC, we observed gene conversion tracts between these paralogs in both Africans (AFR) and Europeans (EUR). Since germline type-2 NF1 deletions resulting from meiotic NAHR are very rare, the vast majority of the gene conversion tracts in SUZ12 and SUZ12P are likely to have resulted from mitotic recombination during premeiotic cell divisions of germ cells. A higher number of gene conversion tracts were noted within SUZ12 and SUZ12P in AFR as compared to EUR. Further, the distinctive signature of NAHGC (a high number of SNPs per paralog and a high number of shared SNPs between paralogs), a characteristic of many actively recombining paralogs, was observed in both SUZ12 and SUZ12P but only in AFR and not in EUR. A novel polymorphic 2.3-kb deletion in SUZ12P was identified which exhibited a high allele frequency in EUR. We postulate that this interparalog structural difference, together with low allelic recombination rates, could have caused a reduction in NAHGC between SUZ12 and SUZ12P during human evolution.
Collapse
Affiliation(s)
- Tanja Mussotter
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | | | | | |
Collapse
|
27
|
Bengesser K, Vogt J, Mussotter T, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H. Analysis of crossover breakpoints yields new insights into the nature of the gene conversion events associated with large NF1 deletions mediated by nonallelic homologous recombination. Hum Mutat 2013; 35:215-26. [PMID: 24186807 DOI: 10.1002/humu.22473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Large NF1 deletions are mediated by nonallelic homologous recombination (NAHR). An in-depth analysis of gene conversion operating in the breakpoint-flanking regions of large NF1 deletions was performed to investigate whether the rate of discontinuous gene conversion during NAHR with crossover is increased, as has been previously noted in NAHR-mediated rearrangements. All 20 germline type-1 NF1 deletions analyzed were mediated by NAHR associated with continuous gene conversion within the breakpoint-flanking regions. Continuous gene conversion was also observed in 31/32 type-2 NF1 deletions investigated. In contrast to the meiotic type-1 NF1 deletions, type-2 NF1 deletions are predominantly of post-zygotic origin. Our findings therefore imply that the mitotic as well as the meiotic NAHR intermediates of large NF1 deletions are processed by long-patch mismatch repair (MMR), thereby ensuring gene conversion tract continuity instead of the discontinuous gene conversion that is characteristic of short-patch repair. However, the single type-2 NF1 deletion not exhibiting continuous gene conversion was processed without MMR, yielding two different deletion-bearing chromosomes, which were distinguishable in terms of their breakpoint positions. Our findings indicate that MMR failure during NAHR, followed by post-meiotic/mitotic segregation, has the potential to give rise to somatic mosaicism in human genomic rearrangements by generating breakpoint heterogeneity.
Collapse
|
28
|
Livnat A. Interaction-based evolution: how natural selection and nonrandom mutation work together. Biol Direct 2013; 8:24. [PMID: 24139515 PMCID: PMC4231362 DOI: 10.1186/1745-6150-8-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/26/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. PRESENTATION OF THE HYPOTHESIS Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation-while not Lamarckian, or "directed" to increase fitness-is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination's fitness. TESTING AND IMPLICATIONS OF THE HYPOTHESIS This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. REVIEWERS This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061,
USA
| |
Collapse
|
29
|
Dittwald P, Gambin T, Szafranski P, Li J, Amato S, Divon MY, Rodríguez Rojas LX, Elton LE, Scott DA, Schaaf CP, Torres-Martinez W, Stevens AK, Rosenfeld JA, Agadi S, Francis D, Kang SHL, Breman A, Lalani SR, Bacino CA, Bi W, Milosavljevic A, Beaudet AL, Patel A, Shaw CA, Lupski JR, Gambin A, Cheung SW, Stankiewicz P. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res 2013; 23:1395-409. [PMID: 23657883 PMCID: PMC3759717 DOI: 10.1101/gr.152454.112] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
We delineated and analyzed directly oriented paralogous low-copy repeats (DP-LCRs) in the most recent version of the human haploid reference genome. The computationally defined DP-LCRs were cross-referenced with our chromosomal microarray analysis (CMA) database of 25,144 patients subjected to genome-wide assays. This computationally guided approach to the empirically derived large data set allowed us to investigate genomic rearrangement relative frequencies and identify new loci for recurrent nonallelic homologous recombination (NAHR)-mediated copy-number variants (CNVs). The most commonly observed recurrent CNVs were NPHP1 duplications (233), CHRNA7 duplications (175), and 22q11.21 deletions (DiGeorge/velocardiofacial syndrome, 166). In the ∼25% of CMA cases for which parental studies were available, we identified 190 de novo recurrent CNVs. In this group, the most frequently observed events were deletions of 22q11.21 (48), 16p11.2 (autism, 34), and 7q11.23 (Williams-Beuren syndrome, 11). Several features of DP-LCRs, including length, distance between NAHR substrate elements, DNA sequence identity (fraction matching), GC content, and concentration of the homologous recombination (HR) hot spot motif 5'-CCNCCNTNNCCNC-3', correlate with the frequencies of the recurrent CNVs events. Four novel adjacent DP-LCR-flanked and NAHR-prone regions, involving 2q12.2q13, were elucidated in association with novel genomic disorders. Our study quantitates genome architectural features responsible for NAHR-mediated genomic instability and further elucidates the role of NAHR in human disease.
Collapse
Affiliation(s)
- Piotr Dittwald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Institute of Computer Science, Warsaw University of Technology, 02-665 Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jian Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stephen Amato
- Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona 85006, USA
| | | | | | - Lindsay E. Elton
- Child Neurology, Pediatric Specialty Services, Austin, Texas 78723, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wilfredo Torres-Martinez
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Abby K. Stevens
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jill A. Rosenfeld
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington 99207, USA
| | - Satish Agadi
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David Francis
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Sung-Hae L. Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
30
|
Fawcett JA, Innan H. The role of gene conversion in preserving rearrangement hotspots in the human genome. Trends Genet 2013; 29:561-8. [PMID: 23953668 DOI: 10.1016/j.tig.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/20/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
Abstract
Hotspots of non-allelic homologous recombination (NAHR) have a crucial role in creating genetic diversity and are also associated with dozens of genomic disorders. Recent studies suggest that many human NAHR hotspots have been preserved throughout the evolution of primates. NAHR hotspots are likely to remain active as long as the segmental duplications (SDs) promoting NAHR retain sufficient similarity. Here, we propose an evolutionary model of SDs that incorporates the effect of gene conversion and compare it with a null model that assumes SDs evolve independently without gene conversion. The gene conversion model predicts a much longer lifespan of NAHR hotspots compared with the null model. We show that the literature on copy number variants (CNVs) and genomic disorders, and also the results of additional analysis of CNVs, are all more consistent with the gene conversion model.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | | |
Collapse
|
31
|
Woods S, Coghlan A, Rivers D, Warnecke T, Jeffries SJ, Kwon T, Rogers A, Hurst LD, Ahringer J. Duplication and retention biases of essential and non-essential genes revealed by systematic knockdown analyses. PLoS Genet 2013; 9:e1003330. [PMID: 23675306 PMCID: PMC3649981 DOI: 10.1371/journal.pgen.1003330] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
When a duplicate gene has no apparent loss-of-function phenotype, it is commonly considered that the phenotype has been masked as a result of functional redundancy with the remaining paralog. This is supported by indirect evidence showing that multi-copy genes show loss-of-function phenotypes less often than single-copy genes and by direct tests of phenotype masking using select gene sets. Here we take a systematic genome-wide RNA interference approach to assess phenotype masking in paralog pairs in the Caenorhabditis elegans genome. Remarkably, in contrast to expectations, we find that phenotype masking makes only a minor contribution to the low knockdown phenotype rate for duplicate genes. Instead, we find that non-essential genes are highly over-represented among duplicates, leading to a low observed loss-of-function phenotype rate. We further find that duplicate pairs derived from essential and non-essential genes have contrasting evolutionary dynamics: whereas non-essential genes are both more often successfully duplicated (fixed) and lost, essential genes are less often duplicated but upon successful duplication are maintained over longer periods. We expect the fundamental evolutionary duplication dynamics presented here to be broadly applicable. Duplicate genes occur in all organisms. It has been found that mutations in duplicate genes cause defects much less often than when single copy genes are mutated. It is widely believed that this is due to functional redundancy—that is, the two genes can carry out similar functions so that the non-mutated duplicate gene can cover for or “mask” the phenotype of the mutation in the first duplicate. To determine whether this hypothesis is true, it is necessary to test systematically whether defects indeed occur in the organism when both duplicate genes are inhibited. We have for the first time carried out such an analysis in a multicellular organism, the nematode Caenorhabditis elegans. In contrast to expectations, we observed that when both copies of duplicate genes are inhibited deleterious effects are very rare. We show that this is because duplicate genes are much more often non-essential compared to genes where there is only a single copy. Non-essential genes are also lost from the genome much more often than essential genes. However, when essential genes are duplicated, they remain present in the genome over longer periods. Our results give a framework to explain the evolutionary dynamics of duplications in the genome.
Collapse
Affiliation(s)
- Shane Woods
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Avril Coghlan
- Department of Microbiology, University College Cork, Cork, Ireland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David Rivers
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tobias Warnecke
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
| | - Sean J. Jeffries
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Taejoon Kwon
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Anthony Rogers
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Laurence D. Hurst
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
- * E-mail: (LDH); (JA)
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (LDH); (JA)
| |
Collapse
|
32
|
Koren A, Polak P, Nemesh J, Michaelson JJ, Sebat J, Sunyaev SR, McCarroll SA. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet 2012. [PMID: 23176822 DOI: 10.1016/j.ajhg.2012.10.018] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human genetic variation is distributed nonrandomly across the genome, though the principles governing its distribution are only partially known. DNA replication creates opportunities for mutation, and the timing of DNA replication correlates with the density of SNPs across the human genome. To enable deeper investigation of how DNA replication timing relates to human mutation and variation, we generated a high-resolution map of the human genome's replication timing program and analyzed its relationship to point mutations, copy number variations, and the meiotic recombination hotspots utilized by males and females. DNA replication timing associated with point mutations far more strongly than predicted from earlier analyses and showed a stronger relationship to transversion than transition mutations. Structural mutations arising from recombination-based mechanisms and recombination hotspots used more extensively by females were enriched in early-replicating parts of the genome, though these relationships appeared to relate more strongly to the genomic distribution of causative sequence features. These results indicate differential and sex-specific relationship of DNA replication timing to different forms of mutation and recombination.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|
34
|
Vogt J, Mussotter T, Bengesser K, Claes K, Högel J, Chuzhanova N, Fu C, van den Ende J, Mautner VF, Cooper DN, Messiaen L, Kehrer-Sawatzki H. Identification of recurrent type-2 NF1 microdeletions reveals a mitotic nonallelic homologous recombination hotspot underlying a human genomic disorder. Hum Mutat 2012; 33:1599-609. [PMID: 22837079 DOI: 10.1002/humu.22171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
Nonallelic homologous recombination (NAHR) is one of the major mechanisms underlying copy number variation in the human genome. Although several disease-associated meiotic NAHR breakpoints have been analyzed in great detail, hotspots for mitotic NAHR are not well characterized. Type-2 NF1 microdeletions, which are predominantly of postzygotic origin, constitute a highly informative model with which to investigate the features of mitotic NAHR. Here, a custom-designed MLPA- and PCR-based approach was used to identify 23 novel NAHR-mediated type-2 NF1 deletions. Breakpoint analysis of these 23 type-2 deletions, together with 17 NAHR-mediated type-2 deletions identified previously, revealed that the breakpoints are nonuniformly distributed within the paralogous SUZ12 and SUZ12P sequences. Further, the analysis of this large group of type-2 deletions revealed breakpoint recurrence within short segments (ranging in size from 57 to 253-bp) as well as the existence of a novel NAHR hotspot of 1.9-kb (termed PRS4). This hotspot harbored 20% (8/40) of the type-2 deletion breakpoints and contains the 253-bp recurrent breakpoint region BR6 in which four independent type-2 deletion breakpoints were identified. Our findings indicate that a combination of an open chromatin conformation and short non-B DNA-forming repeats may predispose to recurrent mitotic NAHR events between SUZ12 and its pseudogene.
Collapse
Affiliation(s)
- Julia Vogt
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu GE, Bickhart DM. Copy number variation in the cattle genome. Funct Integr Genomics 2012; 12:609-24. [DOI: 10.1007/s10142-012-0289-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/13/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022]
|
36
|
Machado LR, Hardwick RJ, Bowdrey J, Bogle H, Knowles TJ, Sironi M, Hollox EJ. Evolutionary history of copy-number-variable locus for the low-affinity Fcγ receptor: mutation rate, autoimmune disease, and the legacy of helminth infection. Am J Hum Genet 2012; 90:973-85. [PMID: 22608500 DOI: 10.1016/j.ajhg.2012.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/22/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
Both sequence variation and copy-number variation (CNV) of the genes encoding receptors for immunoglobulin G (Fcγ receptors) have been genetically and functionally associated with a number of autoimmune diseases. However, the molecular nature and evolutionary context of this variation is unknown. Here, we describe the structure of the CNV, estimate its mutation rate and diversity, and place it in the context of the known functional alloantigen variation of these genes. Deletion of Fcγ receptor IIIB, associated with systemic lupus erythematosus, is a result of independent nonallelic homologous recombination events with a frequency of approximately 0.1%. We also show that pathogen diversity, in particular helminth diversity, has played a critical role in shaping the functional variation at these genes both between mammalian species and between human populations. Positively selected amino acids are involved in the interaction with IgG and include some amino acids that are known polymorphic alloantigens in humans. This supports a genetic contribution to the hygiene hypothesis, which states that past evolution in the context of helminth diversity has left humans with an array of susceptibility alleles for autoimmune disease in the context of a helminth-free environment. This approach shows the link between pathogens and autoimmune disease at the genetic level and provides a strategy for interrogating the genetic variation underlying autoimmune-disease risk and infectious-disease susceptibility.
Collapse
|
37
|
ElInati E, Kuentz P, Redin C, Jaber S, Vanden Meerschaut F, Makarian J, Koscinski I, Nasr-Esfahani MH, Demirol A, Gurgan T, Louanjli N, Iqbal N, Bisharah M, Pigeon FC, Gourabi H, De Briel D, Brugnon F, Gitlin SA, Grillo JM, Ghaedi K, Deemeh MR, Tanhaei S, Modarres P, Heindryckx B, Benkhalifa M, Nikiforaki D, Oehninger SC, De Sutter P, Muller J, Viville S. Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet 2012; 21:3695-702. [DOI: 10.1093/hmg/dds200] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Dharmadhikari AV, Kang SHL, Szafranski P, Person RE, Sampath S, Prakash SK, Bader PI, Phillips JA, Hannig V, Williams M, Vinson SS, Wilfong AA, Reimschisel TE, Craigen WJ, Patel A, Bi W, Lupski JR, Belmont J, Cheung SW, Stankiewicz P. Small rare recurrent deletions and reciprocal duplications in 2q21.1, including brain-specific ARHGEF4 and GPR148. Hum Mol Genet 2012; 21:3345-55. [PMID: 22543972 DOI: 10.1093/hmg/dds166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have identified a rare small (~450 kb unique sequence) recurrent deletion in a previously linked attention-deficit hyperactivity disorder (ADHD) locus at 2q21.1 in five unrelated families with developmental delay (DD)/intellectual disability (ID), ADHD, epilepsy and other neurobehavioral abnormalities from 17 035 samples referred for clinical chromosomal microarray analysis. Additionally, a DECIPHER (http://decipher.sanger.ac.uk) patient 2311 was found to have the same deletion and presented with aggressive behavior. The deletion was not found in either six control groups consisting of 13 999 healthy individuals or in the DGV database. We have also identified reciprocal duplications in five unrelated families with autism, developmental delay (DD), seizures and ADHD. This genomic region is flanked by large, complex low-copy repeats (LCRs) with directly oriented subunits of ~109 kb in size that have 97.7% DNA sequence identity. We sequenced the deletion breakpoints within the directly oriented paralogous subunits of the flanking LCR clusters, demonstrating non-allelic homologous recombination as a mechanism of formation. The rearranged segment harbors five genes: GPR148, FAM123C, ARHGEF4, FAM168B and PLEKHB2. Expression of ARHGEF4 (Rho guanine nucleotide exchange factor 4) is restricted to the brain and may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function. GPR148 encodes a G-protein-coupled receptor protein expressed in the brain and testes. We suggest that small rare recurrent deletion of 2q21.1 is pathogenic for DD/ID, ADHD, epilepsy and other neurobehavioral abnormalities and, because of its small size, low frequency and more severe phenotype might have been missed in other previous genome-wide screening studies using single-nucleotide polymorphism analyses.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room R809, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 2012; 22:211-20. [PMID: 22440479 DOI: 10.1016/j.gde.2012.02.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/07/2023]
Abstract
During the last two decades, the importance of human genome copy number variation (CNV) in disease has become widely recognized. However, much is not understood about underlying mechanisms. We show how, although model organism research guides molecular understanding, important insights are gained from study of the wealth of information available in the clinic. We describe progress in explaining nonallelic homologous recombination (NAHR), a major cause of copy number change occurring when control of allelic recombination fails, highlight the growing importance of replicative mechanisms to explain complex events, and describe progress in understanding extreme chromosome reorganization (chromothripsis). Both nonhomologous end-joining and aberrant replication have significant roles in chromothripsis. As we study CNV, the processes underlying human genome evolution are revealed.
Collapse
|
40
|
Calvete O, González J, Betrán E, Ruiz A. Segmental duplication, microinversion, and gene loss associated with a complex inversion breakpoint region in Drosophila. Mol Biol Evol 2012; 29:1875-89. [PMID: 22328714 DOI: 10.1093/molbev/mss067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ~13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ~9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics.
Collapse
Affiliation(s)
- Oriol Calvete
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Zickler AM, Hampp S, Messiaen L, Bengesser K, Mussotter T, Roehl AC, Wimmer K, Mautner VF, Kluwe L, Upadhyaya M, Pasmant E, Chuzhanova N, Kestler HA, Högel J, Legius E, Claes K, Cooper DN, Kehrer-Sawatzki H. Characterization of the nonallelic homologous recombination hotspot PRS3 associated with type-3 NF1 deletions. Hum Mutat 2011; 33:372-83. [PMID: 22045503 DOI: 10.1002/humu.21644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/06/2011] [Indexed: 12/21/2022]
Abstract
Nonallelic homologous recombination (NAHR) is the major mechanism underlying recurrent genomic rearrangements, including the large deletions at 17q11.2 that cause neurofibromatosis type 1 (NF1). Here, we identify a novel NAHR hotspot, responsible for type-3 NF1 deletions that span 1.0 Mb. Breakpoint clustering within this 1-kb hotspot, termed PRS3, was noted in 10 of 11 known type-3 NF1 deletions. PRS3 is located within the LRRC37B pseudogene of the NF1-REPb and NF1-REPc low-copy repeats. In contrast to other previously characterized NAHR hotspots, PRS3 has not developed on a preexisting allelic homologous recombination hotspot. Furthermore, the variation pattern of PRS3 and its flanking regions is unusual since only NF1-REPc (and not NF1-REPb) is characterized by a high single nucleotide polymorphism (SNP) frequency, suggestive of unidirectional sequence transfer via nonallelic homologous gene conversion (NAHGC). By contrast, the previously described intense NAHR hotspots within the CMT1A-REPs, and the PRS1 and PRS2 hotspots underlying type-1 NF1 deletions, experience frequent bidirectional sequence transfer. PRS3 within NF1-REPc was also found to be involved in NAHGC with the LRRC37B gene, the progenitor locus of the LRRC37B-P duplicons, as indicated by the presence of shared SNPs between these loci. PRS3 therefore represents a weak (and probably evolutionarily rather young) NAHR hotspot with unique properties.
Collapse
Affiliation(s)
- Antje M Zickler
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Johansson ACV, Feuk L. Characterization of copy number-stable regions in the human genome. Hum Mutat 2011; 32:947-55. [PMID: 21542059 DOI: 10.1002/humu.21524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/20/2011] [Indexed: 01/25/2023]
Abstract
In the past few years the number of copy number variants (CNVs) identified in the human genome has increased significantly, but our understanding of the functional impact of CNVs is still limited. Clinically significant variations cannot easily be distinguished from benign, complicating interpretation of patient data. Multiple studies have focused on analysis of regions that vary in copy number in specific disorders. Here we use the opposite strategy and focus our analysis on regions that never seem to vary in the general population, hypothesizing that these are copy number stable because variations within them are deleterious. Our results show that copy number stable regions are characterized by correlation with a number of genomic features, allowing us to define a list of genomic regions that are dosage sensitive in humans. We find that these dosage-sensitive regions show significant overlap with de novo CNVs identified in patients with intellectual disability or autism. There is also a significant association between copy number stable regions and rare inherited variants in autism patients, but not in controls. Based on this predictive power, we propose that copy number stable regions can be used to complement maps of known CNVs to facilitate interpretation of patient data.
Collapse
Affiliation(s)
- Anna C V Johansson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
44
|
Torgyekes E, Shanske AL, Anyane-Yeboa K, Nahum O, Pirzadeh S, Blumfield E, Jobanputra V, Warburton D, Levy B. The proximal chromosome 14q microdeletion syndrome: Delineation of the phenotype using high resolution SNP oligonucleotide microarray analysis (SOMA) and review of the literature. Am J Med Genet A 2011; 155A:1884-96. [DOI: 10.1002/ajmg.a.34090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/04/2011] [Indexed: 01/20/2023]
|
45
|
Liu P, Erez A, Nagamani SCS, Bi W, Carvalho CMB, Simmons AD, Wiszniewska J, Fang P, Eng PA, Cooper ML, Sutton VR, Roeder ER, Bodensteiner JB, Delgado MR, Prakash SK, Belmont JW, Stankiewicz P, Berg JS, Shinawi M, Patel A, Cheung SW, Lupski JR. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications. Hum Mol Genet 2011; 20:1975-88. [PMID: 21355048 DOI: 10.1093/hmg/ddr078] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a feature of the human Xp22.31 region wherein deletions are associated with X-linked ichthyosis, mental retardation and attention deficit hyperactivity disorder. A putative homologous recombination hotspot motif is enriched in low copy repeats that mediate recurrent deletion at this locus. To date, few efforts have focused on copy number gain at Xp22.31. However, clinical testing revealed a high incidence of duplication of Xp22.31 in subjects ascertained and referred with neurobehavioral phenotypes. We systematically studied 61 unrelated subjects with rearrangements revealing gain in copy number, using multiple molecular assays. We detected not only the anticipated recurrent and simple nonrecurrent duplications, but also unexpectedly identified recurrent triplications and other complex rearrangements. Breakpoint analyses enabled us to surmise the mechanisms for many of these rearrangements. The clinical significance of the recurrent duplications and triplications were assessed using different approaches. We cannot find any evidence to support pathogenicity of the Xp22.31 duplication. However, our data suggest that the Xp22.31 duplication may serve as a risk factor for abnormal phenotypes. Our findings highlight the need for more robust Xp22.31 triplication detection in that such further gain may be more penetrant than the duplications. Our findings reveal the distribution of different mechanisms for genomic duplication rearrangements at a given locus, and provide insights into aspects of strand exchange events between paralogous sequences in the human genome.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Roehl AC, Vogt J, Mussotter T, Zickler AN, Spöti H, Högel J, Chuzhanova NA, Wimmer K, Kluwe L, Mautner VF, Cooper DN, Kehrer-Sawatzki H. Intrachromosomal mitotic nonallelic homologous recombination is the major molecular mechanism underlying type-2 NF1 deletions. Hum Mutat 2011; 31:1163-73. [PMID: 20725927 DOI: 10.1002/humu.21340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nonallelic homologous recombination (NAHR) is responsible for the recurrent rearrangements that give rise to genomic disorders. Although meiotic NAHR has been investigated in multiple contexts, much less is known about mitotic NAHR despite its importance for tumorigenesis. Because type-2 NF1 microdeletions frequently result from mitotic NAHR, they represent a good model in which to investigate the features of mitotic NAHR. We have used microsatellite analysis and SNP arrays to distinguish between the various alternative recombinational possibilities, thereby ascertaining that 17 of 18 type-2 NF1 deletions, with breakpoints in the SUZ12 gene and its highly homologous pseudogene, originated via intrachromosomal recombination. This high proportion of intrachromosomal NAHR causing somatic type-2 NF1 deletions contrasts with the interchromosomal origin of germline type-1 NF1 microdeletions, whose breakpoints are located within the NF1-REPs (low-copy repeats located adjacent to the SUZ12 sequences). Further, meiotic NAHR causing type-1 NF1 deletions occurs within recombination hotspots characterized by high GC-content and DNA duplex stability, whereas the type-2 breakpoints associated with the mitotic NAHR events investigated here do not cluster within hotspots and are located within regions of significantly lower GC-content and DNA stability. Our findings therefore point to fundamental mechanistic differences between the determinants of mitotic and meiotic NAHR.
Collapse
|
47
|
Carvalho CMB, Zhang F, Lupski JR. Structural variation of the human genome: mechanisms, assays, and role in male infertility. Syst Biol Reprod Med 2011; 57:3-16. [PMID: 21210740 DOI: 10.3109/19396368.2010.527427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Genomic disorders are defined as diseases caused by rearrangements of the genome incited by a genomic architecture that conveys instability. Y-chromosome related dysfunctions such as male infertility are frequently associated with gross DNA rearrangements resulting from its peculiar genomic architecture. The Y-chromosome has evolved into a highly specialized chromosome to perform male functions, mainly spermatogenesis. Direct and inverted repeats, some of them palindromes with highly identical nucleotide sequences that can form DNA cruciform structures, characterize the genomic structure of the Y-chromosome long arm. Some particular Y chromosome genomic deletions can cause spermatogenic failure likely because of removal of one or more transcriptional units with a potential role in spermatogenesis. We describe mechanisms underlying the formation of human genomic rearrangements on autosomes and review Y-chromosome deletions associated with male infertility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3498, USA
| | | | | |
Collapse
|
48
|
Ou Z, Stankiewicz P, Xia Z, Breman AM, Dawson B, Wiszniewska J, Szafranski P, Cooper ML, Rao M, Shao L, South ST, Coleman K, Fernhoff PM, Deray MJ, Rosengren S, Roeder ER, Enciso VB, Chinault AC, Patel A, Kang SHL, Shaw CA, Lupski JR, Cheung SW. Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res 2011; 21:33-46. [PMID: 21205869 PMCID: PMC3012924 DOI: 10.1101/gr.111609.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022]
Abstract
Four unrelated families with the same unbalanced translocation der(4)t(4;11)(p16.2;p15.4) were analyzed. Both of the breakpoint regions in 4p16.2 and 11p15.4 were narrowed to large ∼359-kb and ∼215-kb low-copy repeat (LCR) clusters, respectively, by aCGH and SNP array analyses. DNA sequencing enabled mapping the breakpoints of one translocation to 24 bp within interchromosomal paralogous LCRs of ∼130 kb in length and 94.7% DNA sequence identity located in olfactory receptor gene clusters, indicating nonallelic homologous recombination (NAHR) as the mechanism for translocation formation. To investigate the potential involvement of interchromosomal LCRs in recurrent chromosomal translocation formation, we performed computational genome-wide analyses and identified 1143 interchromosomal LCR substrate pairs, >5 kb in size and sharing >94% sequence identity that can potentially mediate chromosomal translocations. Additional evidence for interchromosomal NAHR mediated translocation formation was provided by sequencing the breakpoints of another recurrent translocation, der(8)t(8;12)(p23.1;p13.31). The NAHR sites were mapped within 55 bp in ∼7.8-kb paralogous subunits of 95.3% sequence identity located in the ∼579-kb (chr 8) and ∼287-kb (chr 12) LCR clusters. We demonstrate that NAHR mediates recurrent constitutional translocations t(4;11) and t(8;12) and potentially many other interchromosomal translocations throughout the human genome. Furthermore, we provide a computationally determined genome-wide "recurrent translocation map."
Collapse
Affiliation(s)
- Zhishuo Ou
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhilian Xia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M. Breman
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Brian Dawson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joanna Wiszniewska
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - M. Lance Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mitchell Rao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lina Shao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah T. South
- Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karlene Coleman
- Children's Healthcare of Atlanta, Atlanta, Georgia 30033, USA
| | | | - Marcel J. Deray
- Department of Neurology, Miami Children's Hospital, Miami, Florida 33155, USA
| | | | | | | | - A. Craig Chinault
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ankita Patel
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sung-Hae L. Kang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A. Shaw
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - James R. Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Sau W. Cheung
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
49
|
van Binsbergen E. Origins and Breakpoint Analyses of Copy Number Variations: Up Close and Personal. Cytogenet Genome Res 2011; 135:271-6. [DOI: 10.1159/000330267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
|