1
|
Lin CC, Wu JY, Huang PY, Sung HL, Tung YC, Lai CC, Wei YF, Fu PK. Comparing prolonged infusion to intermittent infusion strategies for beta-lactam antibiotics in patients with gram-negative bacterial infections: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024; 22:557-567. [PMID: 38441052 DOI: 10.1080/14787210.2024.2324940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Our objective is to determine whether prolonged infusion (PI) of beta-lactam antibiotics yields superior outcomes compared to intermittent infusion (II) in patients with Gram-Negative Bacterial (GNB) infections. METHODS We systematically searched papers from PubMed, the Cochrane Library, Embase, and Clinicaltrials.gov, targeting mortality as the primary outcome and looking at the clinical cure rate, hospital and intensive care unit (ICU) stay lengths, antibiotic treatment duration, and mechanical ventilation (MV) duration as secondary outcomes. RESULTS Our meta-analysis of 18 studies, including 5 randomized control trials and 13 observational studies, with a total of 3,035 patients-1,510 in the PI group and 1,525 in the II group, revealed significant findings. PI was associated with reduced mortality (RR, 0.67; 95% CI, 0.55-0.81; p = 0.001; I2 = 4.52%) and a shorter MV duration (SMD, -0.76; 95% CI, -1.37 to -0.16; p = 0.01; I2 = 87.81%) compared to II. However, no differences were found in clinical cure rates, antibiotic treatment duration, length of hospital stay, or length of ICU stay. CONCLUSIONS The PI approach for administering beta-lactam antibiotics in patients with suspected or confirmed GNB infections may be advantageous in reducing mortality rates and the duration of MV when compared to the II strategy.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Jheng-Yen Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hui-Lin Sung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Yu-Chun Tung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pin-Kuei Fu
- Division of Clinical Research, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Karaba SM, Cosgrove SE, Lee JH, Fiawoo S, Heil EL, Quartuccio KS, Shihadeh KC, Tamma PD. Extended-Infusion β-Lactam Therapy, Mortality, and Subsequent Antibiotic Resistance Among Hospitalized Adults With Gram-Negative Bloodstream Infections. JAMA Netw Open 2024; 7:e2418234. [PMID: 38954416 PMCID: PMC11220563 DOI: 10.1001/jamanetworkopen.2024.18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/21/2024] [Indexed: 07/04/2024] Open
Abstract
Importance Current evidence is conflicting for associations of extended-infusion β-lactam (EI-BL) therapy with clinical outcomes. Objective To investigate the association of EI-BL therapy with survival, adverse events, and emergence of antibiotic resistance in adults with gram-negative bloodstream infections (GN-BSI). Design, Setting, and Participants This cohort study of consecutive adults with GN-BSI admitted to 24 United States hospitals between January 1, 2019, and December 31, 2019, receiving EI-BL were compared with adults with GN-BSI receiving the same agents as intermittent infusion β-lactam (II-BL; ≤1-hour infusions). Statistical analysis was performed from January to October 2023. Exposures EI-BL (ie, ≥3-hour infusion). Main Outcomes and Measures EI-BL and II-BL groups underwent 1:3 nearest-neighbor propensity score matching (PSM) without replacement. Multivariable regression was applied to the PSM cohort to investigate outcomes, all censored at day 90. The primary outcome was mortality; secondary outcomes included antibiotic adverse events and emergence of resistance (≥4-fold increase in the minimum inhibitory concentration of the β-lactam used to treat the index GN-BSI). Results Among the 4861 patients included, 2547 (52.4%) were male; and the median (IQR) age was 67 (55-77) years. There were 352 patients in the EI-BL 1:3 PSM group, and 1056 patients in the II-BL 1:3 PSM group. Among 1408 PSM patients, 373 (26.5%) died by day 90. The odds of mortality were lower in the EI-BL group (adjusted odds ratio [aOR], 0.71 [95% CI, 0.52-0.97]). In a stratified analysis, a survival benefit was only identified in patients with severe illness or elevated minimum inhibitory concentrations (ie, in the intermediate range for the antibiotic administered). There were increased odds of catheter complications (aOR, 3.14 [95% CI, 1.66-5.96]) and antibiotic discontinuation because of adverse events (eg, acute kidney injury, cytopenias, seizures) in the EI-BL group (aOR, 3.66 [95% CI, 1.68-7.95]). Emergence of resistance was similar in the EI-BL and II-BL groups at 2.9% vs 7.2%, respectively (P = .35). Conclusions and Relevance In this cohort study of patients with GN-BSI, EI-BL therapy was associated with reduced mortality for patients with severe illness or those infected with nonsusceptible organisms; potential advantages in other groups remain unclear and need to be balanced with potential adverse events. The subsequent emergence of resistance warrants investigation in a larger cohort.
Collapse
Affiliation(s)
- Sara M. Karaba
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sara E. Cosgrove
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jae Hyoung Lee
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suiyini Fiawoo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily L. Heil
- Department of Practice, Sciences, and Health-Outcomes Research, University of Maryland School of Pharmacy, Baltimore, Maryland
| | | | | | - Pranita D. Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Sartelli M, Tascini C, Coccolini F, Dellai F, Ansaloni L, Antonelli M, Bartoletti M, Bassetti M, Boncagni F, Carlini M, Cattelan AM, Cavaliere A, Ceresoli M, Cipriano A, Cortegiani A, Cortese F, Cristini F, Cucinotta E, Dalfino L, De Pascale G, De Rosa FG, Falcone M, Forfori F, Fugazzola P, Gatti M, Gentile I, Ghiadoni L, Giannella M, Giarratano A, Giordano A, Girardis M, Mastroianni C, Monti G, Montori G, Palmieri M, Pani M, Paolillo C, Parini D, Parruti G, Pasero D, Pea F, Peghin M, Petrosillo N, Podda M, Rizzo C, Rossolini GM, Russo A, Scoccia L, Sganga G, Signorini L, Stefani S, Tumbarello M, Tumietto F, Valentino M, Venditti M, Viaggi B, Vivaldi F, Zaghi C, Labricciosa FM, Abu-Zidan F, Catena F, Viale P. Management of intra-abdominal infections: recommendations by the Italian council for the optimization of antimicrobial use. World J Emerg Surg 2024; 19:23. [PMID: 38851757 PMCID: PMC11162065 DOI: 10.1186/s13017-024-00551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
Intra-abdominal infections (IAIs) are common surgical emergencies and are an important cause of morbidity and mortality in hospital settings, particularly if poorly managed. The cornerstones of effective IAIs management include early diagnosis, adequate source control, appropriate antimicrobial therapy, and early physiologic stabilization using intravenous fluids and vasopressor agents in critically ill patients. Adequate empiric antimicrobial therapy in patients with IAIs is of paramount importance because inappropriate antimicrobial therapy is associated with poor outcomes. Optimizing antimicrobial prescriptions improves treatment effectiveness, increases patients' safety, and minimizes the risk of opportunistic infections (such as Clostridioides difficile) and antimicrobial resistance selection. The growing emergence of multi-drug resistant organisms has caused an impending crisis with alarming implications, especially regarding Gram-negative bacteria. The Multidisciplinary and Intersociety Italian Council for the Optimization of Antimicrobial Use promoted a consensus conference on the antimicrobial management of IAIs, including emergency medicine specialists, radiologists, surgeons, intensivists, infectious disease specialists, clinical pharmacologists, hospital pharmacists, microbiologists and public health specialists. Relevant clinical questions were constructed by the Organizational Committee in order to investigate the topic. The expert panel produced recommendation statements based on the best scientific evidence from PubMed and EMBASE Library and experts' opinions. The statements were planned and graded according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) hierarchy of evidence. On November 10, 2023, the experts met in Mestre (Italy) to debate the statements. After the approval of the statements, the expert panel met via email and virtual meetings to prepare and revise the definitive document. This document represents the executive summary of the consensus conference and comprises three sections. The first section focuses on the general principles of diagnosis and treatment of IAIs. The second section provides twenty-three evidence-based recommendations for the antimicrobial therapy of IAIs. The third section presents eight clinical diagnostic-therapeutic pathways for the most common IAIs. The document has been endorsed by the Italian Society of Surgery.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy.
| | - Carlo Tascini
- Infectious Diseases Clinic, Santa Maria Della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Federico Coccolini
- Department of General, Emergency and Trauma Surgery, Azienda Ospedaliero Universitaria Pisana, University Hospital, Pisa, Italy
| | - Fabiana Dellai
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Luca Ansaloni
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences, University of Genova, Genoa, Italy
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Boncagni
- Anesthesiology and Intensive Care Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Carlini
- Department of General Surgery, S. Eugenio Hospital, Rome, Italy
| | - Anna Maria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, Padua, Italy
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Arturo Cavaliere
- Unit of Hospital Pharmacy, Viterbo Local Health Authority, Viterbo, Italy
| | - Marco Ceresoli
- General and Emergency Surgery, Milano-Bicocca University, School of Medicine and Surgery, Monza, Italy
| | - Alessandro Cipriano
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | | | - Francesco Cristini
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Eugenio Cucinotta
- Department of Human Pathology of the Adult and Evolutive Age "Gaetano Barresi", Section of General Surgery, University of Messina, Messina, Italy
| | - Lidia Dalfino
- Anesthesia and Intensive Care Unit, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University of Bari, Bari, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Francesco Forfori
- Anesthesia and Intensive Care, Anesthesia and Resuscitation Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Paola Fugazzola
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ivan Gentile
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lorenzo Ghiadoni
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Department on Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonino Giarratano
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Alessio Giordano
- Unit of Emergency Surgery, Careggi University Hospital, Florence, Italy
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, AOU Policlinico Umberto 1, Sapienza University of Rome, Rome, Italy
| | - Gianpaola Monti
- Department of Anesthesia and Intensive Care, ASST GOM Niguarda Ca' Granda, Milan, Italy
| | - Giulia Montori
- Unit of General and Emergency Surgery, Vittorio Veneto Hospital, Vittorio Veneto, Italy
| | - Miriam Palmieri
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy
| | - Marcello Pani
- Hospital Pharmacy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ciro Paolillo
- Emergency Department, University of Verona, Verona, Italy
| | - Dario Parini
- General Surgery Department, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy
| | - Daniela Pasero
- Department of Emergency, Anaesthesia and Intensive Care Unit, ASL1 Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Nicola Petrosillo
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mauro Podda
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, "Renato Dulbecco" Teaching Hospital, Catanzaro, Italy
| | - Loredana Scoccia
- Hospital Pharmacy Unit, Macerata Hospital, AST Macerata, Macerata, Italy
| | - Gabriele Sganga
- Emergency and Trauma Surgery Unit, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liana Signorini
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Fabio Tumietto
- UO Antimicrobial Stewardship-AUSL Bologna, Bologna, Italy
| | | | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Bruno Viaggi
- Intensive Care Department, Careggi Hospital, Florence, Italy
| | | | - Claudia Zaghi
- General, Emergency and Trauma Surgery Department, Vicenza Hospital, Vicenza, Italy
| | | | - Fikri Abu-Zidan
- Statistics and Research Methodology, The Research Office, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fausto Catena
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Ooi H, Asai Y, Koriyama Y, Takahashi M. Decreased Hepatic Functional Reserve Increases the Risk of Piperacillin/Tazobactam-Induced Abnormal Liver Enzyme Levels: A Retrospective Case-Control Study. Ann Pharmacother 2024:10600280241255837. [PMID: 38840491 DOI: 10.1177/10600280241255837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Piperacillin/tazobactam (PIPC/TAZ), which is a combination of a beta-lactam/beta-lactamase inhibitor, often causes liver enzyme abnormalities. The albumin-bilirubin (ALBI) score is a simple index that uses the serum albumin and total bilirubin levels for estimating hepatic functional reserve. Although patients with low hepatic reserve may be at high risk for drug-induced liver enzyme abnormalities, the relationship between PIPC/TAZ-induced abnormal liver enzymes levels and the ALBI score remains unknown. OBJECTIVE This study aimed to elucidate the relationship between PIPC/TAZ-induced abnormal liver enzyme levels and the ALBI score. METHODS This single-center retrospective case-control study included 335 patients. The primary outcome was PIPC/TAZ-induced abnormal liver enzyme levels. We performed COX regression analysis with male gender, age (≥75 years), alanine aminotransferase level (≥20 IU/L), and ALBI score (≥-2.00) as explanatory factors. To investigate the influence of the ALBI score on the development of abnormal liver enzyme levels, 1:1 propensity score matching between the ≤-2.00 and ≥-2.00 ALBI score groups was performed using the risk factors for drug-induced abnormal liver enzyme levels. RESULTS The incidence of abnormal liver enzyme levels was 14.0% (47/335). COX regression analysis revealed that an ALBI score ≥-2.00 was an independent risk factor for PIPC/TAZ-induced abnormal liver enzyme levels (adjusted hazard ratio: 3.08, 95% coefficient interval: 1.207-7.835, P = 0.019). After 1:1 propensity score matching, the Kaplan-Meier curve revealed that the cumulative risk for PIPC/TAZ-induced abnormal liver enzyme levels was significantly higher in the ALBI score ≥-2.00 group (n = 76) than in the <-2.00 group (n = 76) (P = 0.033). CONCLUSION AND RELEVANCE An ALBI score ≥-2.00 may predict the development of PIPC/TAZ-induced abnormal liver enzyme levels. Therefore, frequent monitoring of liver enzymes should be conducted to minimize the risk of severe PIPC/TAZ-induced abnormal liver enzyme levels in patients with low hepatic functional reserve.
Collapse
Affiliation(s)
- Hayahide Ooi
- Department of Pharmacy, National Hospital Organization Mie Chuo Medical Center, Tsu, Japan
| | - Yuki Asai
- Department of Pharmacy, Mie University Hospital, Faculty of Medicine, Mie University, Tsu, Japan
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Masaaki Takahashi
- Department of Pharmacy, National Hospital Organization Mie Chuo Medical Center, Tsu, Japan
| |
Collapse
|
5
|
Zhong LJ, Chen H, Shang X, Xiong BQ, Tang KW, Liu Y. Oxidant-Assisted Sulfonylation/Cyclization Cascade Synthesis of Alkylsulfonylated Oxindoles via the Insertion of SO 2. J Org Chem 2024; 89:5409-5422. [PMID: 38563439 DOI: 10.1021/acs.joc.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An oxidant-assisted tandem sulfonylation/cyclization of electron-deficient alkenes with 4-alkyl-substituted Hantzsch esters and Na2S2O5 for the preparation of 3-alkylsulfonylated oxindoles under mild conditions in the absence of a photocatalyst and transition metal catalyst is established. The mechanism studies show that the alkyl radicals, which come from the cleavage of the C-C bond in 4-substituted Hantzsch esters under oxidant conditions, subsequently undergo the in situ insertion of sulfur dioxide to generate the crucial alkylsulfonyl radical intermediates. This three-component reaction provides an efficient and facile route for the construction of alkylsulfonylated oxindoles and avoids the use of highly toxic alkylsulfonyl chlorides or alkylsulfonyl hydrazines as alkylsulfonyl sources.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
6
|
Cojutti PG, Pai MP, Tonetti T, Siniscalchi A, Viale P, Pea F. Balancing the scales: achieving the optimal beta-lactam to beta-lactamase inhibitor ratio with continuous infusion piperacillin/tazobactam against extended spectrum beta-lactamase producing Enterobacterales. Antimicrob Agents Chemother 2024; 68:e0140423. [PMID: 38411995 PMCID: PMC10994818 DOI: 10.1128/aac.01404-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Piperacillin/tazobactam (TZP) is administered intravenously in a fixed ratio (8:1) with the potential for inadequate tazobactam exposure to ensure piperacillin activity against Enterobacterales. Adult patients receiving continuous infusion (CI) of TZP and therapeutic drug monitoring (TDM) of both agents were evaluated. Demographic variables and other pertinent laboratory data were collected retrospectively. A population pharmacokinetic approach was used to select the best kidney function model predictive of TZP clearance (CL). The probability of target attainment (PTA), cumulative fraction of response (CFR) and the ratio between piperacillin and tazobactam were computed to identify optimal dosage regimens by continuous infusion across kidney function. This study included 257 critically ill patients (79.3% male) with intra-abdominal, bloodstream, and hospital-acquired pneumonia infections in 89.5% as the primary indication. The median (min-max range) age, body weight, and estimated glomerular filtration rate (eGFR) were 66 (23-93) years, 75 (39-310) kg, and 79.2 (6.4-234) mL/min, respectively. Doses of up to 22.5 g/day were used to optimize TZP based on TDM. The 2021 chronic kidney disease epidemiology equation in mL/min best modeled TZP CL. The ratio of piperacillin:tazobactam increased from 6:1 to 10:1 between an eGFR of <20 mL/min and >120 mL/min. At conventional doses, the PTA is below 90% when eGFR is ≥100 mL/min. Daily doses of 18 g/day and 22.5 g/day by CI are expected to achieve a >80% CFR when eGFR is 100-120 mL/min and >120-160 mL/min, respectively. Inadequate piperacillin and tazobactam exposure is likely in patients with eGFR ≥ 100 mL/min. Dose regimen adjustments informed by TDM should be evaluated in this specific population.
Collapse
Affiliation(s)
- Pier Giorgio Cojutti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
| | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Anesthesiology and Intensive Care Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
| | - Antonio Siniscalchi
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Álvarez-Moreno CA, Nocua-Báez LC, Ortiz G, Torres JC, Montenegro G, Cervera W, Zuluaga LF, Gómez A. Efficacy of Continuous vs. Intermittent Administration of Cefepime in Adult ICU Patients with Gram-Negative Bacilli Bacteremia: A Randomized Double-Blind Clinical Study. Antibiotics (Basel) 2024; 13:229. [PMID: 38534664 DOI: 10.3390/antibiotics13030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION The objective of this study was to compare the continuous infusion of cefepime with the intermittent infusion in patients with sepsis caused by Gram-negative bacilli (GNB). METHODS Randomized 1:1 multicenter double-blinded placebo-controlled study with allocation concealment; multicenter study in the intensive care units of Colombia. Patients with sepsis, severe sepsis or septic shock, and GNB-suspected bacteremia. Cefepime was administered for 7 to 14 days over 30 m intermittently every 8 h over 24 h plus continuous saline solution (0.9%) (G1) or 3 g administered continuously plus saline solution every 8 h (0.9%) (G2). The percentage of clinical response at 3, 7, and 14 days, relapse at 28 days, and mortality at discharge were measured. RESULTS The recruitment was stopped at the suggestion of the Institutional Review Board (IRB) following an FDA alert about cefepime. Thirty-two patients were randomized; 25 received the intervention, and GNB bacteremia was confirmed in 16 (9 G1 and 7 G2). Favorable clinical response in days 3, 7, and 14 was 88.8%, 88.8%, and 77.8% (G1) and was similar for G2 (85.7%). There were no relapses or deaths in G2, while in G1, one relapse and two deaths were observed. CONCLUSIONS The results of this study support the use of cefepime for the treatment of Gram-negative infections in critically ill patients, but we could not demonstrate differences between continuous or intermittent administration because of the small sample size, given the early suspension of the study.
Collapse
Affiliation(s)
| | - Laura Cristina Nocua-Báez
- Department of Internal Medicine, Infectious Diseases, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | | | | | | | | | | | | |
Collapse
|
8
|
Namiki T, Yokoyama Y, Hashi H, Oda R, Jibiki A, Kawazoe H, Matsumoto K, Suzuki S, Nakamura T. Pharmacokinetics/pharmacodynamics analysis and establishment of optimal dosing regimens using unbound cefmetazole concentration for patients infected with Extended-Spectrum β-lactamase producing Enterobacterales (ESBL-E). Pharmacotherapy 2024; 44:149-162. [PMID: 37984818 DOI: 10.1002/phar.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
STUDY OBJECTIVE Establish methods for measuring cefmetazole (CMZ) concentrations conduct a pharmacokinetic/pharmacodynamic (PK/PD) analysis using unbound CMZ concentrations for extended-spectrum β-lactamase producing enterobacterales (ESBL-E) and investigate optimal dosing regimens for not undergoing hemodialysis (non-HD) and undergoing hemodialysis (HD) patients. DESIGN Prospective observational study. PATIENTS Included patients treated with CMZ who provided written informed consent and were admitted to the Tokyo Bay Urayasu Ichikawa Medical Center between August 2021 and July 2022. MEASUREMENTS Total and Unbound CMZ concentration was measured by high-performance liquid chromatography (HPLC) with solid-phase extraction and ultrafiltration. SETTING Determining the CMZ dosing regimen involved modified creatinine clearance (CLCR ) with measured body weight (BW) using the Cockcroft-Gault equation. For non-HD patients, blood samples were collected during at least three points. For patients undergoing HD, 1 g was administered via intravenous infusion, or rapid intravenous injection after HD, or 30 min before the end of HD. Blood samples were collected before HD (pre-HD), and 1 and 3 h after starting HD and post-HD. All blood samples were collected at steady-state. Patient information was collected from electronic medical records. An unbound PK model was constructed for the non-HD patients. A nomogram was constructed using Monte Carlo simulations with a 90% probability of target attainment at 70% free time above the minimum inhibitory concentration (MIC). For the HD patients, a nomogram was used to determine the optimal dosing regimen for each HD schedule. MAIN RESULTS CMZ measurement methods were established. A model analysis of unbound PK in 37 non-HD patients incorporated creatinine clearance (CLCR ) using the Cockcroft-Gault equation, albumin (ALB) for clearance and body weight (BW) for the volume of distribution. In Monte Carlo simulations, nomograms corresponding to the MIC (known and unknown) were generated for each covariate. Using the nomogram, non-HD patients with an ESBL-E MIC of 8 mg/L, a BW of 60 kg, an ALB of 25 g/L, and a CLCR of 60 mL/min required administration of 2 g every 6 h (1- and 3-h infusions). Unbound PK model parameters were calculated for 7 HD patients, and the optimal dosing regimens following PK/PD were determined for each HD schedule. In HD patients, the regimen after and during HD was established using a treatment that was effective up to an ESBL-E MIC of 4 mg/L. CONCLUSIONS The nomogram for CMZ regimens established by PK/PD analysis of measured CMZ concentrations enables optimal CMZ dosing for ESBL-E-infected patients.
Collapse
Affiliation(s)
- Takaya Namiki
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Department of Pharmacy, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Yuta Yokoyama
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hideki Hashi
- Department of Pharmacy, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Rentaro Oda
- Department of Infectious Diseases, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Aya Jibiki
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hitoshi Kawazoe
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Sayo Suzuki
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Tomonori Nakamura
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
9
|
Alshaer MH, Williams R, Mousa MJ, Alexander KM, Maguigan KL, Manigaba K, Maranchick N, Shoulders BR, Felton TW, Mathew SK, Peloquin CA. Cefepime Daily Exposure and the Associated Impact on the Change in Sequential Organ Failure Assessment Scores and Vasopressors Requirement in Critically Ill Patients Using Repeated-Measures Mixed-Effect Modeling. Crit Care Explor 2023; 5:e0993. [PMID: 38304706 PMCID: PMC10833631 DOI: 10.1097/cce.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
IMPORTANCE Sepsis and septic shock are major healthcare problems that need early and appropriate management. OBJECTIVES To evaluate the association of daily cefepime pharmacokinetic/pharmacodynamic (PK/PD) parameters with change in Sequential Organ Failure Assessment (SOFA) score and vasopressors requirement. DESIGN SETTING AND PARTICIPANTS This is a retrospective study. Adult ICU patients who received cefepime for Gram-negative pneumonia or bloodstream infection (BSI) and had cefepime concentrations measured were included. Daily cefepime exposure was generated and PK/PD parameters calculated for patients. Repeated-measures mixed-effect modeling was used to evaluate the impact of PK/PD on the outcomes. MAIN OUTCOMES AND MEASURES Change in daily SOFA score and vasopressors requirement. RESULTS A total of 394 and 207 patients were included in the SOFA and vasopressors analyses, respectively. The mean (±sd) age was 55 years (19) and weight 81 kg (29). For the change in SOFA score, daily SOFA score, mechanical ventilation, renal replacement therapy, and number of vasopressors were included. In the vasopressors analysis, daily SOFA score, day of therapy, and hydrocortisone dose were significant covariates in the final model. Achieving cefepime concentrations above the minimum inhibitory concentration (MIC) (T>MIC) for 100% of the dosing interval was associated with 0.006 µg/kg/min decrease in norepinephrine-equivalent dose. Cefepime PK/PD did not have an impact on the daily change in SOFA score. CONCLUSIONS AND RELEVANCE Achieving 100% T>MIC was associated with negligible decrease in vasopressors requirement in ICU patients with Gram-negative pneumonia and BSI. There was no impact on the change in SOFA score.
Collapse
Affiliation(s)
- Mohammad H Alshaer
- Infectious Disease Pharmacokinetics Laboratory, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Roy Williams
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Mays J Mousa
- Infectious Disease Pharmacokinetics Laboratory, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Kaitlin M Alexander
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
- Department of Pharmacy, UF Health Shands Hospital, Gainesville, FL
| | - Kelly L Maguigan
- Department of Pharmacy, UF Health Shands Hospital, Gainesville, FL
| | - Kayihura Manigaba
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Nicole Maranchick
- Infectious Disease Pharmacokinetics Laboratory, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Bethany R Shoulders
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
- Department of Pharmacy, UF Health Shands Hospital, Gainesville, FL
| | - Timothy W Felton
- North West Ventilation Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sumith K Mathew
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| |
Collapse
|
10
|
Lokhandwala A, Patel P, Isaak AK, Faizan Yousaf R, Maslamani ANJ, Khalil SK, Riaz E, Hirani S. Comparison of the Effectiveness of Prolonged Infusion and Intermittent Infusion of Meropenem in Patients With Sepsis: A Meta-Analysis. Cureus 2023; 15:e46990. [PMID: 38022273 PMCID: PMC10640903 DOI: 10.7759/cureus.46990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to compare the clinical effectiveness of prolonged infusion and intermittent infusion of meropenem in patients with sepsis. This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines. PubMed, Web of Science, Scopus, and the Cochrane Library were searched without any language or time restrictions, up to September 25, 2023. The primary outcomes assessed in this meta-analysis included clinical success and all-cause mortality. Other outcomes assessed in this study encompassed the mean length of ICU stay. Total eight studies met the eligibility criteria and were included in this meta-analysis. Pooled analysis showed that the clinical success rate was significantly higher in patients receiving prolonged infusion of meropenem compared to intermittent infusion (RR: 1.49, 95% CI: 1.30 to 1.70). All-cause mortality was 24% significantly lower in patients receiving prolonged infusion of meropenem compared to intermittent infusion (RR: 0.76, 95% CI: 0.60 to 0.96). The results suggest that prolonged infusion of meropenem could be a more effective and efficient treatment for sepsis patients. However, more randomized controlled trials are needed to confirm these findings and to establish the optimal dosing and administration schedule for prolonged infusion of meropenem.
Collapse
Affiliation(s)
| | | | - Abraham K Isaak
- Telemetry, Sharp Memorial Hospital, San Diego, USA
- Internal Medicine, Orotta School of Medicine and Dentistry, San Diego, ERI
| | | | | | | | - Eman Riaz
- Internal Medicine, Chiniot General Hospital, Karachi, PAK
| | | |
Collapse
|
11
|
Barker CIS, Kipper K, Lonsdale DO, Wright K, Thompson G, Kim M, Turner MA, Johnston A, Sharland M, Standing JF. The Neonatal and Paediatric Pharmacokinetics of Antimicrobials study (NAPPA): investigating amoxicillin, benzylpenicillin, flucloxacillin and piperacillin pharmacokinetics from birth to adolescence. J Antimicrob Chemother 2023; 78:2148-2161. [PMID: 37531085 PMCID: PMC10477139 DOI: 10.1093/jac/dkad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/09/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Pharmacokinetic (PK) data underlying paediatric penicillin dosing remain limited, especially in critical care. OBJECTIVES The primary objective of the Neonatal and Paediatric Pharmacokinetics of Antimicrobials study (NAPPA) was to characterize PK profiles of commonly used penicillins using data obtained during routine care, to further understanding of PK variability and inform future evidence-based dosing. METHODS NAPPA was a multicentre study of amoxicillin, co-amoxiclav, benzylpenicillin, flucloxacillin and piperacillin/tazobactam. Patients were recruited with informed consent. Antibiotic dosing followed standard of care. PK samples were obtained opportunistically or at optimal times, frozen and analysed using UPLC with tandem MS. Pharmacometric analysis was undertaken using NONMEM software (v7.3). Model-based simulations (n = 10 000) tested PTA with British National Formulary for Children (BNFC) and WHO dosing. The study had ethical approval. RESULTS For the combined IV PK model, 963 PK samples from 370 participants were analysed simultaneously incorporating amoxicillin, benzylpenicillin, flucloxacillin and piperacillin data. BNFC high-dose regimen simulations gave these PTA results (median fT>MIC at breakpoints of specified pathogens): amoxicillin 100% (Streptococcus pneumoniae); benzylpenicillin 100% (Group B Streptococcus); flucloxacillin 48% (MSSA); and piperacillin 100% (Pseudomonas aeruginosa). Oral population PK models for flucloxacillin and amoxicillin enabled estimation of first-order absorption rate constants (1.16 h-1 and 1.3 h-1) and bioavailability terms (62.7% and 58.7%, respectively). CONCLUSIONS NAPPA represents, to our knowledge, the largest prospective combined paediatric penicillin PK study undertaken to date, and the first paediatric flucloxacillin oral PK model. The PTA results provide evidence supportive of BNFC high-dose IV regimens for amoxicillin, benzylpenicillin and piperacillin.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
- Paediatric Infectious Diseases Department, St George’s University Hospitals NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Medical & Molecular Genetics, King’s College London, London, UK
| | - Karin Kipper
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
- Analytical Services International, St George’s, University of London, London, UK
- Analytical Chemistry Department, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire, UK
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Dagan O Lonsdale
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
- Paediatric Infectious Diseases Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Kirstie Wright
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
| | - Georgina Thompson
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
| | - Min Kim
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mark A Turner
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Atholl Johnston
- Analytical Services International, St George’s, University of London, London, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Mike Sharland
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
- Paediatric Infectious Diseases Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Centre for Neonatal and Paediatric Infection, Level 2 Jenner Wing, Institute for Infection and Immunity, St George’s, University of London SW17 0RE, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Pharmacy Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Hong LT, Downes KJ, FakhriRavari A, Abdul-Mutakabbir JC, Kuti JL, Jorgensen S, Young DC, Alshaer MH, Bassetti M, Bonomo RA, Gilchrist M, Jang SM, Lodise T, Roberts JA, Tängdén T, Zuppa A, Scheetz MH. International consensus recommendations for the use of prolonged-infusion beta-lactam antibiotics: Endorsed by the American College of Clinical Pharmacy, British Society for Antimicrobial Chemotherapy, Cystic Fibrosis Foundation, European Society of Clinical Microbiology and Infectious Diseases, Infectious Diseases Society of America, Society of Critical Care Medicine, and Society of Infectious Diseases Pharmacists. Pharmacotherapy 2023; 43:740-777. [PMID: 37615245 DOI: 10.1002/phar.2842] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 08/25/2023]
Abstract
Intravenous β-lactam antibiotics remain a cornerstone in the management of bacterial infections due to their broad spectrum of activity and excellent tolerability. β-lactams are well established to display time-dependent bactericidal activity, where reductions in bacterial burden are directly associated with the time that free drug concentrations remain above the minimum inhibitory concentration (MIC) of the pathogen during the dosing interval. In an effort to take advantage of these bactericidal characteristics, prolonged (extended and continuous) infusions (PIs) can be applied during the administration of intravenous β-lactams to increase time above the MIC. PI dosing regimens have been implemented worldwide, but implementation is inconsistent. We report consensus therapeutic recommendations for the use of PI β-lactams developed by an expert international panel with representation from clinical pharmacy and medicine. This consensus guideline provides recommendations regarding pharmacokinetic and pharmacodynamic targets, therapeutic drug-monitoring considerations, and the use of PI β-lactam therapy in the following patient populations: severely ill and nonseverely ill adult patients, pediatric patients, and obese patients. These recommendations provide the first consensus guidance for the use of β-lactam therapy administered as PIs and have been reviewed and endorsed by the American College of Clinical Pharmacy (ACCP), the British Society for Antimicrobial Chemotherapy (BSAC), the Cystic Fibrosis Foundation (CFF), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), the Infectious Diseases Society of America (IDSA), the Society of Critical Care Medicine (SCCM), and the Society of Infectious Diseases Pharmacists (SIDP).
Collapse
Affiliation(s)
- Lisa T Hong
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Kevin J Downes
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Jacinda C Abdul-Mutakabbir
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
- Divisions of Clinical Pharmacy and Black Diaspora and African American Studies, University of California San Diego, La Jolla, California, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | | | - David C Young
- University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | | | | | - Robert A Bonomo
- Cleveland Veteran Affairs Medical Center, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Gilchrist
- Imperial College Healthcare National Health Services Trust, London, UK
| | - Soo Min Jang
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Center for Clinical Research, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland, Australia
- Departments of Pharmacy and Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Athena Zuppa
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marc H Scheetz
- College of Pharmacy, Pharmacometric Center of Excellence, Midwestern University, Downers Grove, Illinois, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
13
|
Shi AX, Qu Q, Zhuang HH, Teng XQ, Xu WX, Liu YP, Xiao YW, Qu J. Individualized antibiotic dosage regimens for patients with augmented renal clearance. Front Pharmacol 2023; 14:1137975. [PMID: 37564179 PMCID: PMC10410082 DOI: 10.3389/fphar.2023.1137975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Objectives: Augmented renal clearance (ARC) is a state of enhanced renal function commonly observed in 30%-65% of critically ill patients despite normal serum creatinine levels. Using unadjusted standard dosing regimens of renally eliminated drugs in ARC patients often leads to subtherapeutic concentrations, poor clinical outcomes, and the emergence of multidrug-resistant bacteria. We summarized pharmaceutical, pharmacokinetic, and pharmacodynamic research on the definition, underlying mechanisms, and risk factors of ARC to guide individualized dosing of antibiotics and various strategies for optimizing outcomes. Methods: We searched for articles between 2010 and 2022 in the MEDLINE database about ARC patients and antibiotics and further provided individualized antibiotic dosage regimens for patients with ARC. Results: 25 antibiotic dosage regimens for patients with ARC and various strategies for optimization of outcomes, such as extended infusion time, continuous infusion, increased dosage, and combination regimens, were summarized according to previous research. Conclusion: ARC patients, especially critically ill patients, need to make individualized adjustments to antibiotics, including dose, frequency, and method of administration. Further comprehensive research is required to determine ARC staging, expand the range of recommended antibiotics, and establish individualized dosing guidelines for ARC patients.
Collapse
Affiliation(s)
- A-Xi Shi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
14
|
Khole AV, Dionne E, Zitek-Morrison E, Campion M. Cefepime extended infusion versus intermittent infusion: Clinical and cost evaluation. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e119. [PMID: 37502254 PMCID: PMC10369431 DOI: 10.1017/ash.2023.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/29/2023]
Abstract
Background Extended infusion cefepime (1 gram every 6 hours administered over 3 hours) achieves pharmacodynamic efficacy against bacteria with a MIC of ≤8 mg/L in Monte Carlo simulations. This regimen has not been evaluated in clinical practice. Objective Compare clinical and economic outcomes for cefepime by intermittent infusion and by extended infusion in the acute-care setting. Design Single-center, retrospective cohort study. Setting Tertiary-care academic medical center. Patients Hospitalized adults who received cefepime between August 2016 and July 2018 with a diagnosis of sepsis or pneumonia. Methods Clinical and economic outcomes were compared for patients who received empiric cefepime via intermittent infusion (30-minute infusion of 2 g every 8 hours) or extended infusion (3-hour infusion of 1 g every 6 hours). Clinical outcomes analyses were carried out using appropriate statistical methods. Results Overall, 111 patients received intermittent infusion and 93 patients received extended infusion. Approximately half of the included patients had a positive culture for a bacterial pathogen (intermittent infusion 45.9% vs extended infusion 47.3%). Median hospital length of stay (intermittent infusion 6 days vs extended infusion 6 days; P = .67) and 90-day readmission rates (intermittent infusion 61.3% vs extended infusion 67.7%; P = .34) did not differ between the groups. Mortality was infrequent in both groups (intermittent infusion 2.9% vs extended infusion 1.5%; P = .45). Cefepime cost per patient was lower with cefepime by extended infusion: average total daily cost $86.06 for intermittent infusion versus $43.39 for extended infusion. Conclusions Cefepime via extended infusion (4 grams/day) did not differ in clinical outcomes compared to intermittent infusion (6 grams/day) but reduced drug expenditure. Prospective, multicenter, high-quality studies should be conducted to evaluate a mortality difference between these regimens.
Collapse
Affiliation(s)
- Aalok V. Khole
- Division of Infectious Diseases and International Health, Cheshire Medical Center/Dartmouth Health, Keene, New Hampshire
| | - Emily Dionne
- Department of Pharmacy, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Emily Zitek-Morrison
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Maureen Campion
- Department of Pharmacy, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
15
|
Dequin PF, Aubron C, Faure H, Garot D, Guillot M, Hamzaoui O, Lemiale V, Maizel J, Mootien JY, Osman D, Simon M, Thille AW, Vinsonneau C, Kuteifan K. The place of new antibiotics for Gram-negative bacterial infections in intensive care: report of a consensus conference. Ann Intensive Care 2023; 13:59. [PMID: 37400647 DOI: 10.1186/s13613-023-01155-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION New beta-lactams, associated or not with beta-lactamase inhibitors (NBs/BIs), can respond to the spread of carbapenemase-producing enterobacteriales and nonfermenting carbapenem-resistant bacteria. The risk of emergence of resistance to these NBs/BIs makes guidelines necessary. The SRLF organized a consensus conference in December 2022. METHODS An ad hoc committee without any conflict of interest (CoI) with the subject identified the molecules (ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam, meropenem-vaborbactam and cefiderocol); defined 6 generic questions; drew up a list of subquestions according to the population, intervention, comparison and outcomes (PICO) model; and reviewed the literature using predefined keywords. The quality of the data was assessed using the GRADE methodology. Seven experts in the field proposed their own answers to the questions in a public session and answered questions from the jury (a panel of 10 critical-care physicians without any CoI) and the public. The jury then met alone for 48 h to write its recommendations. Due to the frequent lack of powerful studies that have used clinically important criteria of judgment, the recommendations were formulated as expert opinions as often as necessary. RESULTS The jury provided 17 statements answering 6 questions: (1) Is there a place in the ICU for the probabilistic use of new NBs/IBs active against Gram-negative bacteria? (2) In the context of documented infections with sensitivity to several of these molecules, are there pharmacokinetic, pharmacodynamic, ecological or medico-economic elements for prioritization? (3) What are the possible combinations with these molecules and in what context? (4) Should we integrate these new molecules into a carbapenem-sparing strategy? (5) What pharmacokinetic and pharmacodynamic data are available to optimize their mode of administration in critically ill patients? (6) What are the dosage adaptations in cases of renal insufficiency, hepatocellular insufficiency or obesity? CONCLUSION These recommendations should optimize the use of NBs/BIs in ICU patients.
Collapse
Affiliation(s)
- Pierre-François Dequin
- Inserm UMR 1100, Centre d'Etudes des Pathologies Respiratoires, Université, Tours, France.
- Médecine Intensive Réanimation, Hôpital Bretonneau, 37044 Tours cedex 9, Tours, CHU, France.
| | - Cécile Aubron
- Médecine Intensive Réanimation CHU de Brest, Université de Bretagne Occidentale, Brest, France
| | - Henri Faure
- Médecine Intensive Réanimation, Centre Hospitalier Intercommunal Robert Ballanger, Aulnay Sous-Bois, France
| | - Denis Garot
- Médecine Intensive Réanimation, Hôpital Bretonneau, 37044 Tours cedex 9, Tours, CHU, France
| | - Max Guillot
- Médecine Intensive Réanimation CHU, Hôpital de Hautepierre, Strasbourg, France
| | - Olfa Hamzaoui
- Médecine Intensive Réanimation CHU de Reims, Reims, France
| | - Virginie Lemiale
- Medical ICU, Saint Louis Hospital, APHP, 1 Avenue Claude Vellefaux, Paris, France
| | - Julien Maizel
- Medical Intensive Care Unit, Amiens University Hospital, Amiens, France
| | - Joy Y Mootien
- Medical Intensive Care Unit, GHRMSA, Mulhouse, France
| | - David Osman
- Service de Médecine Intensive-Réanimation, AP-HP, Hôpital de Bicêtre, DMU CORREVE, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marie Simon
- Maladies Infectieuses Et Tropicales, Hospices Civils de Lyon, Lyon, France
| | - Arnaud W Thille
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Poitiers, Université de Poitiers, Poitiers, France
| | - Christophe Vinsonneau
- Service de Médecine Intensive Réanimation Centre Hospitalier de Bethune, Bethune, France
| | | |
Collapse
|
16
|
Ishikawa K, Shibutani K, Kawai F, Ota E, Takahashi O, Mori N. Effectiveness of Extended or Continuous vs. Bolus Infusion of Broad-Spectrum Beta-Lactam Antibiotics for Febrile Neutropenia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2023; 12:1024. [PMID: 37370343 DOI: 10.3390/antibiotics12061024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
This systematic review aimed to compare extended infusion or continuous infusion with bolus infusion for febrile neutropenia (FN). We included clinical trials comparing extended or continuous infusion with bolus infusion of beta-lactam antibiotics as empirical treatment for FN and evaluated the clinical failure, all-cause mortality, and adverse event rates. Five articles (three randomized controlled trials (RCTs) and two retrospective studies) from 2014 to 2022 were included. Clinical failure was assessed with a risk ratio (RR) (95% coincident interval (CI)) of 0.74 (0.53, 1.05) and odds ratio (OR) (95% CI) of 0.14 (0.02, 1.17) in the 2 RCTs and retrospective studies, respectively. All-cause mortality was assessed with an RR (95% CI) of 1.25 (0.44, 3.54) and OR (95% CI) of 1.00 (0.44, 2.23) in the RCTs and retrospective studies, respectively. Only 1 RCT evaluated adverse events (with an RR (95% CI) of 0.46 (0.13, 1.65)). The quality of evidence was "low" for clinical failure and all-cause mortality in the RCTs. In the retrospective studies, the clinical failure and all-cause mortality evidence qualities were considered "very low" due to the study design. Extended or continuous infusion of beta-lactam antibiotics did not reduce mortality better than bolus infusion but was associated with shorter fever durations and fewer adverse events.
Collapse
Affiliation(s)
- Kazuhiro Ishikawa
- Department of Infectious Diseases, St. Luke's International Hospital, Tokyo 104-8560, Japan
| | - Koko Shibutani
- Department of Infectious Diseases, St. Luke's International Hospital, Tokyo 104-8560, Japan
| | - Fujimi Kawai
- Library, Center for Academic Resources, St. Luke's International University, Tokyo 104-0044, Japan
| | - Erika Ota
- Global Health Nursing, Graduate School of Nursing Sciences, St. Luke's International University, Tokyo 104-0044, Japan
- Tokyo Foundation for Policy Research, Tokyo 106-0032, Japan
| | - Osamu Takahashi
- Graduate School of Public Health, St. Luke's International University, Tokyo 104-0045, Japan
| | - Nobuyoshi Mori
- Department of Infectious Diseases, St. Luke's International Hospital, Tokyo 104-8560, Japan
| |
Collapse
|
17
|
Smith SE, Halbig Z, Fox NR, Bland CM, Branan TN. Outcomes of Intravenous Push versus Intermittent Infusion Administration of Cefepime in Critically Ill Patients. Antibiotics (Basel) 2023; 12:996. [PMID: 37370315 DOI: 10.3390/antibiotics12060996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The equivalence of intravenous push (IVP) and piggyback (IVPB) administration has not been evaluated in the critically ill population for most medications, but it is especially relevant for antibiotics, such as cefepime, that exhibit time-dependent bactericidal activity. A single center, retrospective, observational pre/post-protocol change study included critically ill adults who received cefepime as empiric therapy between August 2015 and 2021. The primary outcome was treatment failure, which was defined as a composite of escalation of antibiotic regimen or all-cause mortality. Secondary outcomes included adverse drug events, days of cefepime therapy, total days of antibiotic therapy, and ICU and hospital length of stay. Outcomes were compared using Chi-squared, Mann Whitney U, and binary logistic regression as appropriate. A total of 285 patients were included: 87 IVPB and 198 IVP. Treatment failure occurred in 18% (n = 16) of the IVPB group and 27% (n = 54) of the IVP group (p = 0.109). There were no significant differences in secondary outcomes. Longer duration of antibiotics (odds ratio [OR] 1.057, 95% confidence interval [CI] 1.013-1.103), SOFA score (OR 1.269, 95% CI 1.154-1.397) and IVP administration of cefepime (OR 2.370, 95% CI 1.143-4.914) were independently associated with treatment failure. Critically ill patients who received IVP cefepime were more likely to experience treatment failure in an adjusted analysis. The current practice of IVP cefepime should be reevaluated, as it may not provide similar clinical outcomes in the critically ill population.
Collapse
Affiliation(s)
- Susan E Smith
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - Zachary Halbig
- Department of Pharmacy, Piedmont Athens Regional, Athens, GA 30606, USA
| | - Nicholas R Fox
- Athens Pulmonary, Piedmont Athens Regional, Athens, GA 30606, USA
| | - Christopher M Bland
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Savannah, GA 31405, USA
| | - Trisha N Branan
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA 30602, USA
| |
Collapse
|
18
|
Huang HW, Liu HY, Chuang HC, Chen BL, Wang EY, Tsao LH, Ai MY, Lee YJ. Correlation between antibiotic consumption and resistance of Pseudomonas aeruginosa in a teaching hospital implementing an antimicrobial stewardship program: A longitudinal observational study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:337-343. [PMID: 36210318 DOI: 10.1016/j.jmii.2022.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND/PURPOSE The rapid emergence of Pseudomonas aeruginosa resistance made selecting antibiotics more challenge. Antimicrobial stewardship programs (ASPs) are urging to implant to control the P. aeruginosa resistance. The purpose of this study is to evaluate the relationship between antimicrobial consumption and P. aeruginosa resistance, the impact of ASPs implemented during the 14-year study period. METHODS A total 14,852 P. aeruginosa isolates were included in our study. The resistant rate and antimicrobial consumption were investigated every six months. Linear regression analysis was conducted to examine the trends in antibiotics consumption and antimicrobial resistance over time. The relationship between P. aeruginosa resistance and antimicrobial consumption were using Pearson correlation coefficient to analysis. The trend of resistance before and after ASPs implanted is evaluated by segment regression analysis. RESULTS P. aeruginosa resistance to ceftazidime, gentamicin, amikacin, ciprofloxacin and levofloxacin significantly decreased during the study period; piperacillin/tazobactam (PTZ), cefepime, imipenem/cilastatin and meropenem remained stable. The P. aeruginosa resistance to ciprofloxacin and levofloxacin increasing initial then decreased after strictly controlled the use of levofloxacin since 2007. As the first choice antibiotic to treat P. aeruginosa, the consumption and resistance to PTZ increase yearly and resistance became stable since extended-infusion therapy policy implant in 2009. CONCLUSION Our ASP intervention strategy, which included extended infusion of PTZ and restrict use of levofloxacin, may be used to control antimicrobial resistance of P. aeruginosa in medical practice.
Collapse
Affiliation(s)
- Hsiao-Wen Huang
- Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsin-Yi Liu
- Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Infection Control, Taipei Medical University Hospital, Taipei, Taiwan
| | - Han-Chuan Chuang
- Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Infection Control, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bi-Li Chen
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Er-Ying Wang
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Tsao
- Division of Infectious Diseases, Department of Internal Medicine, Lienchiang County Hospital, Matsu, Taiwan
| | - Ming-Ying Ai
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Pharmacy, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Yuarn-Jang Lee
- Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan.
| |
Collapse
|
19
|
Lu WH, Yang D, Wang GQ, Wang T, Zhou YX, Jing LH. Photocatalytic synthesis of alkyl-alkyl sulfones via direct C(sp 3)-H bond functionalization. Org Biomol Chem 2023; 21:2822-2827. [PMID: 36928523 DOI: 10.1039/d3ob00276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We report a highly efficient one-pot, three-component strategy for the construction of alkyl-alkyl sulfones through a photoinduced TBADT-catalyzed C(sp3)-H sulfonylation of unactivated hydrocarbon compounds. A wide range of commercially available hydrocarbon compounds and bioactive molecules can be successfully applied to the catalytic system, affording the corresponding alkyl-alkyl sulfones in good to excellent yields (>50 examples, up to 87% yield).
Collapse
Affiliation(s)
- Wen-Hua Lu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
20
|
Chan AJ, Lebovic G, Wan M, Chen Y, Leung E, Langford BJ, Seah J, Taggart LR, Downing M. Impact of extended-infusion piperacillin-tazobactam in a Canadian community hospital. INFECTIOUS MEDICINE 2023; 2:31-35. [PMID: 38076404 PMCID: PMC10699660 DOI: 10.1016/j.imj.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 03/30/2024]
Abstract
BACKGROUND Studies have demonstrated improved clinical outcomes with extended infusion (EI) piperacillin/tazobactam (TZP) compared to standard infusion (SI). However, there is less evidence on its benefits in noncritically-ill patients. Hospital-wide EI TZP was implemented at our site on February 21, 2012. Our objectives were to compare clinical, safety and economic outcomes between EI and SI TZP. METHODS A retrospective cohort study of all adult patients who received EI TZP (3.375 g IV q8h infused over 4 hours and SI TZP for ≥ 48 hours during 3 years pre-and postimplementation was conducted. The primary study outcome was 14-day mortality while secondary outcomes included length of hospital stay (LOS), nursing plus pharmacy cost, occurrence of Clostridioides difficile infection, readmission within 30 days and change in Pseudomonas aeruginosa minimum inhibitory concentration (MIC) distribution for TZP. The primary outcome and binary secondary outcomes were analyzed using a logistic regression model. LOS was examined using time to event analysis. Cost was examined using linear regression modelling. RESULTS Overall, 2034 patients received EI TZP and 1364 patients received SI TZP. EI TZP was associated with lower odds of mortality (OR 0.76, 95% CI 0.63-0.91), lower odds of C. difficile infection (OR 0.59, 95% CI 0.41-0.84) and 8% lower cost (estimate 0.92, 95% CI 0.87-0.98) compared to SI TZP. CONCLUSIONS Hospital-wide implementation of EI TZP was associated with lower odds of 14-day mortality and incidence of C. difficile infection with cost savings at our institution.
Collapse
Affiliation(s)
- April J. Chan
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
| | | | - Michael Wan
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yan Chen
- University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| | - Elizabeth Leung
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Bradley J. Langford
- University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Hotel Dieu Shaver Health and Rehabilitation Centre, St. Catharines, Ontario, Canada
| | - Jenny Seah
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
| | - Linda R. Taggart
- University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark Downing
- University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Mieresova M, Balazova K, Kubele J, Cerny D, Halacova M. Piperacillin/Tazobactam in critically ill morbidly obese patients: A case series: The first One-Centre experience with TDM. Clin Case Rep 2023; 11:e7032. [PMID: 36919150 PMCID: PMC10008261 DOI: 10.1002/ccr3.7032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
The aim of this article is to demonstrate extreme interindividual variability of piperacilin/tazobactam (PIP/TAZO) pharmacokinetics in critically ill morbidly obese patients and to emphasize the need for the practice of routine PIP/TAZO plasma concentrations measurement in order to ensure optimal efficacy and safety of antibiotic therapy.
Collapse
Affiliation(s)
- M. Mieresova
- Department of Clinical PharmacyNa Homolce HospitalPragueCzech Republic
- Department of PharmacologyMotol University Hospital and 2nd Faculty of Medicine, Charles UniversityPragueCzech Republic
| | - K. Balazova
- Department of Clinical PharmacyNa Homolce HospitalPragueCzech Republic
| | - J. Kubele
- Department of Clinical Microbiology and Antibiotic SurveillanceNa Homolce HospitalPragueCzech Republic
| | - D. Cerny
- Department of Clinical PharmacyNa Homolce HospitalPragueCzech Republic
- Institute of Pharmacology, General University Hospital and 1st Faculty of Medicine, Charles UniversityPragueCzech Republic
| | - M. Halacova
- Department of Clinical PharmacyNa Homolce HospitalPragueCzech Republic
- Department of PharmacologyMotol University Hospital and 2nd Faculty of Medicine, Charles UniversityPragueCzech Republic
| |
Collapse
|
22
|
Karruli A, Catalini C, D’Amore C, Foglia F, Mari F, Harxhi A, Galdiero M, Durante-Mangoni E. Evidence-Based Treatment of Pseudomonas aeruginosa Infections: A Critical Reappraisal. Antibiotics (Basel) 2023; 12:antibiotics12020399. [PMID: 36830309 PMCID: PMC9952410 DOI: 10.3390/antibiotics12020399] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Multidrug-resistant (MDR)/extensively drug-resistant (XDR) Pseudomonas aeruginosa is emerging as a major threat related to adverse patient outcomes. The goal of this review is to describe evidence-based empiric and targeted treatment regimens that can be exploited when dealing with suspected or confirmed infections due to MDR/XDR P. aeruginosa. P. aeruginosa has inherent resistance to many drug classes, the capacity to form biofilms, and most importantly, the ability to quickly acquire resistance to ongoing treatments. Based on the presence of risk factors for MDR/XDR infections and local epidemiology, where large proportions of strains are resistant to classic beta-lactams, the recommended empirical treatment for suspected P. aeruginosa infections is based on ceftolozane-tazobactam or ceftazidime-avibactam. Where local epidemiology indicates low rates of MDR/XDR and there are no risk factors, a third or fourth generation cephalosporin can be used in the context of a "carbapenem-sparing" strategy. Whenever feasible, antibiotic de-escalation is recommended after antimicrobial susceptibility tests suggest that it is appropriate, and de-escalation is based on different resistance mechanisms. Cefiderocol and imipenem-cilastatin-relebactam withstand most resistance mechanisms and may remain active in cases with resistance to other new antibiotics. Confronting the growing threat of MDR/XDR P. aeruginosa, treatment choices should be wise, sparing newer antibiotics when dealing with a suspected/confirmed susceptible P. aeruginosa strain and choosing the right option for MDR/XDR P. aeruginosa based on specific types and resistance mechanisms.
Collapse
Affiliation(s)
- Arta Karruli
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Department of Infectious Diseases, University Hospital “Mother Teresa”, 10001 Tirana, Albania
- Correspondence: ; Tel.: +39-324-6222295
| | - Christian Catalini
- Department of Advanced Medical and Surgical Sciences, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Chiara D’Amore
- Infectious Diseases Unit, San Giovanni di Dio e Ruggi D’Aragona Hospital, 84131 Salerno, Italy
| | - Francesco Foglia
- Unit of Microbiology and Virology, Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Fabio Mari
- Department of Emergency Medicine, University “Federico II”, 80138 Naples, Italy
| | - Arjan Harxhi
- Department of Infectious Diseases, University Hospital “Mother Teresa”, 10001 Tirana, Albania
| | - Massimiliano Galdiero
- Unit of Microbiology and Virology, Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
23
|
Pereira JG, Fernandes J, Duarte AR, Fernandes SM. β-Lactam Dosing in Critical Patients: A Narrative Review of Optimal Efficacy and the Prevention of Resistance and Toxicity. Antibiotics (Basel) 2022; 11:antibiotics11121839. [PMID: 36551496 PMCID: PMC9774837 DOI: 10.3390/antibiotics11121839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial prescription in critically ill patients represents a complex challenge due to the difficult balance between infection treatment and toxicity prevention. Underexposure to antibiotics and therapeutic failure or, conversely, drug overexposure and toxicity may both contribute to a worse prognosis. Moreover, changes in organ perfusion and dysfunction often lead to unpredictable pharmacokinetics. In critically ill patients, interindividual and intraindividual real-time β-lactam antibiotic dose adjustments according to the patient's condition are critical. The continuous infusion of β-lactams and the therapeutic monitoring of their concentration have both been proposed to improve their efficacy, but strong data to support their use are still lacking. The knowledge of the pharmacokinetic/pharmacodynamic targets is poor and is mostly based on observational data. In patients with renal or hepatic failure, selecting the right dose is even more tricky due to changes in drug clearance, distribution, and the use of extracorporeal circuits. Intermittent usage may further increase the dosing conundrum. Recent data have emerged linking overexposure to β-lactams to central nervous system toxicity, mitochondrial recovery delay, and microbiome changes. In addition, it is well recognized that β-lactam exposure facilitates resistance selection and that correct dosing can help to overcome it. In this review, we discuss recent data regarding real-time β-lactam antibiotic dose adjustment, options in special populations, and the impacts on mitochondria and the microbiome.
Collapse
Affiliation(s)
- João Gonçalves Pereira
- Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, 4450-681 Matosinhos, Portugal
- Correspondence: ; Tel.: +351-96-244-1546
| | - Joana Fernandes
- Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal
| | - Ana Rita Duarte
- Nova Medical School, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Susana Mendes Fernandes
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, 4450-681 Matosinhos, Portugal
- Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| |
Collapse
|
24
|
Chua HC, Tam VH. Optimizing Clinical Outcomes Through Rational Dosing Strategies: Roles of Pharmacokinetic/Pharmacodynamic Modeling Tools. Open Forum Infect Dis 2022; 9:ofac626. [PMID: 36540388 PMCID: PMC9757694 DOI: 10.1093/ofid/ofac626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Significant progress in previous decades has led to several methodologies developed to facilitate the design of optimal antimicrobial dosing. In this review, we highlight common pharmacokinetic/pharmacodynamic (PKPD) modeling techniques and their roles in guiding rational dosing regimen design. In the early drug development phases, dose fractionation studies identify the PKPD index most closely associated with bacterial killing. Once discerned, this index is linked to clinical efficacy end points, and classification and regression tree analysis can be used to define the PKPD target goal. Monte Carlo simulations integrate PKPD and microbiological data to identify dosing strategies with a high probability of achieving the established PKPD target. Results then determine dosing regimens to investigate and/or validate the findings of randomized controlled trials. Further improvements in PKPD modeling could lead to an era of precision dosing and personalized therapeutics.
Collapse
Affiliation(s)
- Hubert C Chua
- Department of Pharmacy, CHI Baylor St. Luke’s Medical Center, Houston, Texas, USA
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| |
Collapse
|
25
|
Antimicrobial Treatment of Pseudomonas aeruginosa Severe Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11101432. [PMID: 36290092 PMCID: PMC9598900 DOI: 10.3390/antibiotics11101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogen often encountered in a healthcare setting. It has consistently ranked among the most frequent pathogens seen in nosocomial infections, particularly bloodstream and respiratory tract infections. Aside from having intrinsic resistance to many antibiotics, it rapidly acquires resistance to novel agents. Given the high mortality of pseudomonal infections generally, and pseudomonal sepsis particularly, and with the rise of resistant strains, treatment can be very challenging for the clinician. In this paper, we will review the latest evidence for the optimal treatment of P. aeruginosa sepsis caused by susceptible as well as multidrug-resistant strains including the difficult to treat pathogens. We will also discuss the mode of drug infusion, indications for combination therapy, along with the proper dosing and duration of treatment for various conditions with a brief discussion of the use of non-antimicrobial agents.
Collapse
|
26
|
Cebrero-Cangueiro T, Labrador-Herrera G, Carretero-Ledesma M, Herrera-Espejo S, Álvarez-Marín R, Pachón J, Cisneros JM, Pachón-Ibáñez ME. IgM-enriched immunoglobulin improves colistin efficacy in a pneumonia model by Pseudomonas aeruginosa. Life Sci Alliance 2022; 5:5/10/e202101349. [PMID: 35728946 PMCID: PMC9214247 DOI: 10.26508/lsa.202101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Using polyclonal IgM-enriched immunoglobulin (IgM-IG) as adjuvant therapy to colistin appears useful in the treatment of pneumonia caused by multidrug-resistant strains of P. aeruginosa. We evaluated the efficacy of ceftazidime or colistin in combination with polyclonal IgM-enriched immunoglobulin (IgM-IG), in an experimental pneumonia model (C57BL/6J male mice) using two multidrug-resistant Pseudomonas aeruginosa strains, both ceftazidime-susceptible and one colistin-resistant. Pharmacodynamically optimised antimicrobials were administered for 72 h, and intravenous IgM-IG was given as a single dose. Bacterial tissues count and the mortality were analysed. Ceftazidime was more effective than colistin for both strains. In mice infected with the colistin-susceptible strain, ceftazidime reduced the bacterial concentration in the lungs and blood (−2.42 and −3.87 log10 CFU/ml) compared with colistin (−0.55 and −1.23 log10 CFU/ml, respectively) and with the controls. Colistin plus IgM-IG reduced the bacterial lung concentrations of both colistin-susceptible and resistant strains (−2.91 and −1.73 log10 CFU/g, respectively) and the bacteraemia rate of the colistin-resistant strain (−44%). These results suggest that IgM-IG might be useful as an adjuvant to colistin in the treatment of pneumonia caused by multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Tania Cebrero-Cangueiro
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Gema Labrador-Herrera
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Soraya Herrera-Espejo
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Rocío Álvarez-Marín
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - José Miguel Cisneros
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain .,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
27
|
Bazaid AS, Punjabi AA, Aldarhami A, Qanash H, Alsaif G, Gattan H, Barnawi H, Alharbi B, Alrashidi A, Alqadi A. Bacterial Infections among Patients with Chronic Diseases at a Tertiary Care Hospital in Saudi Arabia. Microorganisms 2022; 10:microorganisms10101907. [PMID: 36296184 PMCID: PMC9609889 DOI: 10.3390/microorganisms10101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by multi-drug-resistant bacteria in patients with chronic diseases have been associated with high mortality and morbidity. While few reports have evaluated bacterial infections in multiple chronic disease patients, the focus of the current study was to investigate the prevalence of bacterial infections and the susceptibility profiles of causative strains among various groups of patients suffering from chronic diseases. Microbiological reports of patients suffering from cancer, diabetes mellitus, cardiovascular diseases, kidney diseases, and skin burns were retrospectively collected from a tertiary hospital in Saudi Arabia. Approximately 54.2% of recruited patients were males, and positive urine was the most prevalent specimen associated with kidney disease patients (25%). Escherichia coli isolates were predominant among cardiovascular, kidney, and cancer patients. Staphylococcus aureus was commonly detected in diabetics and those with burns. Although resistance patterns varied based on the type of specimens and underlying diseases, Escherichia coli showed limited resistance to colistin, carbapenems, and tigecycline, while S. aureus demonstrated susceptibility to ciprofloxacin, gentamicin, and rifampin. These observations are crucial for clinicians and policymakers to ensure effective treatment plans and improve outcomes in these patients with comorbidity.
Collapse
Affiliation(s)
- Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
- Correspondence: (A.S.B.); (H.Q.); Tel.: +966-16-5358200 (ext. 1713) (A.S.B.); +966-16-5351752 (H.Q.)
| | - Ahmed A. Punjabi
- Microbiology Unit, Department of Laboratory Medicine and Pathology BB, International Medical Center, Jeddah 21451, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Hail 55476, Saudi Arabia
- Correspondence: (A.S.B.); (H.Q.); Tel.: +966-16-5358200 (ext. 1713) (A.S.B.); +966-16-5351752 (H.Q.)
| | - Ghaida Alsaif
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
| | - Hattan Gattan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, Jeddah 22252, Saudi Arabia
| | - Heba Barnawi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
| | - Abdulaziz Alrashidi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
| | | |
Collapse
|
28
|
Haseeb A, Faidah HS, Alghamdi S, Alotaibi AF, Elrggal ME, Mahrous AJ, Abuhussain SSA, Obaid NA, Algethamy M, AlQarni A, Khogeer AA, Saleem Z, Iqbal MS, Ashgar SS, Radwan RM, Mutlaq A, Fatani N, Sheikh A. Dose optimization of β-lactams antibiotics in pediatrics and adults: A systematic review. Front Pharmacol 2022; 13:964005. [PMID: 36210807 PMCID: PMC9532942 DOI: 10.3389/fphar.2022.964005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: β-lactams remain the cornerstone of the empirical therapy to treat various bacterial infections. This systematic review aimed to analyze the data describing the dosing regimen of β-lactams. Methods: Systematic scientific and grey literature was performed in accordance with Preferred Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The studies were retrieved and screened on the basis of pre-defined exclusion and inclusion criteria. The cohort studies, randomized controlled trials (RCT) and case reports that reported the dosing schedule of β-lactams are included in this study. Results: A total of 52 studies met the inclusion criteria, of which 40 were cohort studies, 2 were case reports and 10 were RCTs. The majority of the studies (34/52) studied the pharmacokinetic (PK) parameters of a drug. A total of 20 studies proposed dosing schedule in pediatrics while 32 studies proposed dosing regimen among adults. Piperacillin (12/52) and Meropenem (11/52) were the most commonly used β-lactams used in hospitalized patients. As per available evidence, continuous infusion is considered as the most appropriate mode of administration to optimize the safety and efficacy of the treatment and improve the clinical outcomes. Conclusion: Appropriate antibiotic therapy is challenging due to pathophysiological changes among different age groups. The optimization of pharmacokinetic/pharmacodynamic parameters is useful to support alternative dosing regimens such as an increase in dosing interval, continuous infusion, and increased bolus doses.
Collapse
Affiliation(s)
- Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Saleh Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Amal F. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Essam Elrggal
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad J. Mahrous
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Najla A. Obaid
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Manal Algethamy
- Department of Infection Prevention and Control Program, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | - Abdullmoin AlQarni
- Infectious Diseases Department, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | - Asim A. Khogeer
- Plan and Research Department, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah, Saudi Arabia
- Medical Genetics Unit, Maternity and Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah, Saudi Arabia
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya Univrsity, Multan, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sami S. Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rozan Mohammad Radwan
- Pharmaceutical Care Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| | - Alaa Mutlaq
- General Department of Pharmaceutical Care, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Sumi CD, Heffernan AJ, Naicker S, Cottrell K, Wallis SC, Lipman J, Harris PNA, Sime FB, Roberts JA. Pharmacodynamic evaluation of intermittent versus extended and continuous infusions of piperacillin/tazobactam in a hollow-fibre infection model against Escherichia coli clinical isolates. J Antimicrob Chemother 2022; 77:3026-3034. [PMID: 36031790 DOI: 10.1093/jac/dkac273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/15/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To compare the bacterial killing and emergence of resistance of intermittent versus prolonged (extended and continuous infusions) infusion dosing regimens of piperacillin/tazobactam against two Escherichia coli clinical isolates in a dynamic hollow-fibre infection model (HFIM). METHODS Three piperacillin/tazobactam dosing regimens (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion) against a ceftriaxone-susceptible, non-ESBL-producing E. coli 44 (Ec44, MIC 2 mg/L) and six piperacillin/tazobactam dosing regimens (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion; 4/0.5 g 6 hourly as 0.5 and 3 h infusions and 16/2 g/24 h continuous infusion) were simulated against a ceftriaxone-resistant, AmpC- and ESBL-producing E. coli 50 (Ec50, MIC 8 mg/L) in a HFIM over 7 days (initial inoculum ∼107 cfu/mL). Total and less-susceptible subpopulations and MICs were determined. RESULTS All simulated dosing regimens against Ec44 exhibited 4 log10 of bacterial killing over 8 h without regrowth and resistance emergence throughout the experiment. For Ec50, there was the initial bacterial killing of 4 log10 followed by regrowth to 1011 cfu/mL within 24 h against all simulated dosing regimens, and the MICs for resistant subpopulations exceeded 256 mg/L at 72 h. CONCLUSIONS Our study suggests that, for critically ill patients, conventional intermittent infusion, or prolonged infusions of piperacillin/tazobactam may suppress resistant subpopulations of non-ESBL-producing E. coli clinical isolates. However, intermittent, or prolonged infusions may not suppress the resistant subpopulations of AmpC- and ESBL-producing E. coli clinical isolates. More studies are required to confirm these findings.
Collapse
Affiliation(s)
- Chandra Datta Sumi
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Aaron J Heffernan
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Saiyuri Naicker
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kyra Cottrell
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Steven C Wallis
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jeffrey Lipman
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.,Jamieson Trauma Institute, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Patrick N A Harris
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Pathology Queensland, Central Laboratory, Brisbane, Queensland, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| | - Fekade B Sime
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| |
Collapse
|
30
|
Naiim CM, Elmazar MM, Sabri NA, Bazan NS. Extended infusion of piperacillin-tazobactam versus intermittent infusion in critically ill egyptian patients: a cost-effectiveness study. Sci Rep 2022; 12:10882. [PMID: 35760971 PMCID: PMC9237083 DOI: 10.1038/s41598-022-12861-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022] Open
Abstract
Extended infusion of piperacillin/tazobactam over 4 h has been proposed as an alternate mode of administration to the 30-min intermittent infusion to optimize treatment effects in patients with gram-negative bacterial infections. The study aimed to evaluate the extended infusion regimen of piperacillin/tazobactam in standings of efficacy, safety, and cost to the intermittent one in the treatment of gram-negative bacterial infections. A prospective randomized comparative study was performed on 53 patients, 27 in the intermittent infusion group and 26 in the extended infusion group. The primary outcome was the mean number of days to clinical success and the percentage of patients who were clinically cured after treatment. The secondary outcomes included mortality, readmission within 30-days, and cost-effectiveness analysis based on the mean number of days to clinical success. The clinical success rate was comparable in the two groups. Days on extended infusion were significantly lower than intermittent infusion (5.7 vs 8.9 days, respectively, p = 0.0001) as well as days to clinical success (4.6 vs 8.5 days, respectively, p = 0.026). The extended infusion was superior to the intermittent infusion regarding cost-effectiveness ratio ($1835.41 and $1914.09/expected success, respectively). The more cost-effective regimen was the extended infusion. Both regimens had comparable clinical and microbiological outcomes.
Collapse
Affiliation(s)
- Christina Medhat Naiim
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo, P.O.BOX 43, Cairo, 11837, Egypt.
| | - M M Elmazar
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo, P.O.BOX 43, Cairo, 11837, Egypt
| | - Nagwa A Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Naglaa S Bazan
- Critical Care Medicine Department, Cairo University Hospitals, Cairo University, Cairo, Egypt.,Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
31
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
32
|
Imburgia TA, Kussin ML. A Review of Extended and Continuous Infusion Beta-Lactams in Pediatric Patients. J Pediatr Pharmacol Ther 2022; 27:214-227. [PMID: 35350159 DOI: 10.5863/1551-6776-27.3.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Intravenous beta-lactam antibiotics are the most prescribed antibiotic class in US hospitalized patients of all ages; therefore, optimizing their dosing is crucial. Bactericidal killing is best predicted by the time in which beta-lactam drug concentrations are maintained above the organism's minimum inhibitory concentration (MIC), rather than achievement of a high peak concentration. As such, administration of beta-lactam antibiotics via extended or continuous infusions over a minimum of 3 hours, rather than standard infusions over approximately 30 minutes, has been associated with improved achievement of pharmacodynamic targets and improved clinical outcomes in adult medical literature. This review summarizes the pediatric medical literature. Applicable studies include pharmacodynamic models, case series, retrospective analyses, and prospective studies on the use of extended infusion and continuous infusion penicillins, cephalosporins, carbapenems, and monobactams in neonates, infants, children, and adolescents. Specialized patient populations with unique pharmacokinetics and high-risk infections (neonates, critically ill, febrile neutropenia, cystic fibrosis) are also reviewed. While more studies are needed to confirm prospective clinical outcomes, the current body of evidence suggests extended and continuous infusions of beta-lactam antibiotics are well tolerated in children and improve achievement of pharmacokineticpharmacodynamic targets with similar or superior clinical outcomes, particularly in infections associated with high MICs.
Collapse
Affiliation(s)
- Taylor A Imburgia
- Department of Pharmacy (TAI), WVU Medicine Children's, Morgantown, WV
| | - Michelle L Kussin
- Department of Pharmacy (MLK), Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
33
|
Deng R, Wu S, Mou C, Liu J, Zheng P, Zhang X, Chi YR. Carbene-Catalyzed Enantioselective Sulfonylation of Enone Aryl Aldehydes: A New Mode of Breslow Intermediate Oxidation. J Am Chem Soc 2022; 144:5441-5449. [PMID: 35274946 DOI: 10.1021/jacs.1c13384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A carbene-catalyzed sulfonylation reaction between enone aryl aldehydes and sulfonyl chlorides is disclosed. The reaction effectively installs sulfone moieties in a highly enantioselective manner to afford sulfone-containing bicyclic lactones. The sulfonyl chloride behaves both as an oxidant and a nucleophilic substrate (via its reduced form) in this N-heterocyclic carbene (NHC)-catalyzed process. The NHC catalyst provides both activation and stereoselectivity control on a very remote site of enone aryl aldehyde substrates. Water plays an important role in modulating catalyst deactivation and reactivation routes that involve reactions between NHC and sulfonyl chloride. Experimental studies and DFT calculations suggest that an unprecedented intermediate and a new oxidation mode of the NHC-derived Breslow intermediate are involved in the new asymmetric sulfonylation reaction.
Collapse
Affiliation(s)
- Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuquan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xinglong Zhang
- Institute of High-Performance Computing, A*STAR (Agency for Science, Technology and Research), Singapore 138632, Singapore
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
34
|
Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: a randomized controlled trial. Intensive Care Med 2022; 48:311-321. [PMID: 35106617 PMCID: PMC8866359 DOI: 10.1007/s00134-021-06609-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Insufficient antimicrobial exposure is associated with worse outcomes in sepsis. We evaluated whether therapeutic drug monitoring (TDM)-guided antibiotic therapy improves outcomes. METHODS Randomized, multicenter, controlled trial from January 2017 to December 2019. Adult patients (n = 254) with sepsis or septic shock were randomly assigned 1:1 to receive continuous infusion of piperacillin/tazobactam with dosing guided by daily TDM of piperacillin or continuous infusion with a fixed dose (13.5 g/24 h if eGFR ≥ 20 mL/min). Target plasma concentration was four times the minimal inhibitory concentration (range ± 20%) of the underlying pathogen, respectively, of Pseudomonas aeruginosa in empiric situation. Primary outcome was the mean of daily total Sequential Organ Failure Assessment (SOFA) score up to day 10. RESULTS Among 249 evaluable patients (66.3 ± 13.7 years; female, 30.9%), there was no significant difference in mean SOFA score between patients with TDM (7.9 points; 95% CI 7.1-8.7) and without TDM (8.2 points; 95% CI 7.5-9.0) (p = 0.39). Patients with TDM-guided therapy showed a lower 28-day mortality (21.6% vs. 25.8%, RR 0.8, 95% CI 0.5-1.3, p = 0.44) and a higher rate of clinical (OR 1.9; 95% CI 0.5-6.2, p = 0.30) and microbiological cure (OR 2.4; 95% CI 0.7-7.4, p = 0.12), but these differences did not reach statistical significance. Attainment of target concentration was more common in patients with TDM (37.3% vs. 14.6%, OR 4.5, CI 95%, 2.9-6.9, p < 0.001). CONCLUSION TDM-guided therapy showed no beneficial effect in patients with sepsis and continuous infusion of piperacillin/tazobactam with regard to the mean SOFA score. Larger studies with strategies to ensure optimization of antimicrobial exposure are needed to definitively answer the question.
Collapse
|
35
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Therapeutic drug monitoring of meropenem and piperacillin-tazobactam in the Singapore critically ill population - A prospective, multi-center, observational study (BLAST 1). J Crit Care 2022; 68:107-113. [PMID: 34999376 DOI: 10.1016/j.jcrc.2021.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE To determine percentage of patients with sub-therapeutic beta-lactam exposure in our intensive care units (ICU) and to correlate target attainment with clinical outcomes. MATERIALS AND METHODS Multi-centre, prospective, observational study was conducted in ICUs from three hospitals in Singapore from July 2016 to May 2018. Adult patients (≥21 years) receiving meropenem or piperacillin-tazobactam were included. Four blood samples were obtained during a dosing interval to measure and determine attainment of therapeutic targets: unbound beta-lactam concentration above (i) minimum inhibitory concentration (MIC) at 40% (meropenem) or 50% (piperacillin) of dosing interval (40-50%fT > MIC) and (ii) 5 × MIC at 100% of dosing interval (100%fT > 5 × MIC). Correlation to clinical outcomes was evaluated using Cox regression. RESULTS Beta-lactam levels were highly variable among 61 patients, with trough meropenem and piperacillin levels at 21.5 ± 16.8 mg/L and 101.6 ± 81.1 mg/L respectively. Among 85 sets of blood samples, current dosing practices were able to achieve 94% success for 40-50%fT > MIC and 44% for 100%fT > 5 × MIC. Failure to achieve 40-50%fT > MIC within 48 h was significantly associated with all-cause mortality (HR: 9.0, 95% CI: 1.8-45.0), after adjustment for APACHE II score. Achievement of 100%fT > 5 × MIC within 48 h was significantly associated with shorter length of hospital stay. CONCLUSION Current dosing practices may be suboptimal for ICU patients. Beta-lactam TDM may be useful.
Collapse
|
37
|
How to Manage Pseudomonas aeruginosa Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:425-445. [DOI: 10.1007/978-3-031-08491-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Gatti M, Viaggi B, Rossolini GM, Pea F, Viale P. An Evidence-Based Multidisciplinary Approach Focused on Creating Algorithms for Targeted Therapy of Infection-Related Ventilator-Associated Complications (IVACs) Caused by Pseudomonas aeruginosa and Acinetobacter baumannii in Critically Ill Adult Patients. Antibiotics (Basel) 2021; 11:antibiotics11010033. [PMID: 35052910 PMCID: PMC8773303 DOI: 10.3390/antibiotics11010033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: To develop evidence-based algorithms for targeted antibiotic therapy of infection-related ventilator-associated complications (IVACs) caused by non-fermenting Gram-negative pathogens. (2) Methods: A multidisciplinary team of four experts had several rounds of assessments for developing algorithms devoted to targeted antimicrobial therapy of IVACs caused by two non-fermenting Gram-negative pathogens. A literature search was performed on PubMed-MEDLINE (until September 2021) to provide evidence for supporting therapeutic choices. Quality and strength of evidence was established according to a hierarchical scale of the study design. Six different algorithms with associated recommendations in terms of therapeutic choice and dosing optimization were suggested according to the susceptibility pattern of two non-fermenting Gram-negative pathogens: multi-susceptible Pseudomonas aeruginosa (PA), multidrug-resistant (MDR) metallo-beta-lactamase (MBL)-negative-PA, MBL-positive-PA, carbapenem-susceptible Acinetobacter baumannii (AB), and carbapenem-resistant AB. (3) Results: Piperacillin–tazobactam or fourth-generation cephalosporins represent the first therapeutic choice in IVACs caused by multi-susceptible PA. A carbapenem-sparing approach favouring the administration of novel beta-lactam/beta-lactamase inhibitors should be pursued in the management of MDR-MBL-negative PA infections. Cefiderocol should be used as first-line therapy for the management of IVACs caused by MBL-producing-PA or carbapenem-resistant AB. Fosfomycin-based combination therapy, as well as inhaled colistin, could be considered as a reasonable alternative for the management of IVACs due to MDR-PA and carbapenem-resistant AB. (4) Conclusions: The implementation of algorithms focused on prompt revision of antibiotic regimens guided by results of conventional and rapid diagnostic methodologies, appropriate place in therapy of novel beta-lactams, implementation of strategies for sparing the broadest-spectrum antibiotics, and pharmacokinetic/pharmacodynamic optimization of antibiotic dosing regimens is strongly suggested.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Bruno Viaggi
- Neurointensive Care Unit, Department of Anesthesiology, Careggi University Hospital, 50134 Florence, Italy;
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence:
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| |
Collapse
|
39
|
Antimicrobial Resistance and Inorganic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312890. [PMID: 34884695 PMCID: PMC8657868 DOI: 10.3390/ijms222312890] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.
Collapse
|
40
|
Tucker K, Benning M, Ryan K, Walraven C, Jakeman B. A Single-Center Evaluation of Extended Infusion Piperacillin/Tazobactam for Empiric Treatment in the Intensive Care Unit. J Pharm Technol 2021; 36:196-201. [PMID: 34752564 DOI: 10.1177/8755122520940710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Piperacillin/tazobactam (PTZ) extended infusion (EI) is often used empirically in the intensive care unit (ICU). Gram-negative (GN) organisms with PTZ minimum inhibitory concentrations (MICs) >16/4 µg/mL are considered intermediate or resistant. Objective: The objective of this study was to evaluate MICs of GN isolates from the ICU to determine whether the hospital protocol for PTZ 3.375 g EI over 4 hours administered every 8 hours is an appropriate empiric regimen for ICU patients and to evaluate patient-specific risk factors associated with elevated MICs. Methods: All ICU patients admitted during 2017 with a confirmed GN organism from a non-urinary source were included for retrospective chart review. Patients with cystic fibrosis or cultures obtained >48 hours prior to ICU admission were excluded. Demographics, GN organism, culture source, risk factors for resistance, susceptibility profile, comorbidities, and creatinine clearance were collected. Appropriateness was defined as PTZ MIC ≤16/4 µg/mL in >80% of isolates. Results: Two hundred and thirty-one patients were included. The average patient was 56 years old. The majority of patients were white (64.1%) and male (69.7%). Pseudomonas aeruginosa (41%) was the most common organism isolated. Overall, 28% of GN isolates had MICs >16/4 µg/mL. Dialysis (P = .01), intravenous antibiotics within 90 days (P < .001), and presence of wounds/trauma (P = .01) were associated with elevated MICs. Conclusion: Current PTZ EI 3.375 g dosing regimens may not provide adequate empiric coverage for some GN organisms in ICU patients, especially for those who have previously received intravenous antibiotics, are on dialysis, or have wounds/trauma.
Collapse
Affiliation(s)
- Kendall Tucker
- Oregon State University/Oregon Health & Science University, Portland, OR, USA
| | - Molly Benning
- University of New Mexico Hospitals, Albuquerque, NM, USA
| | - Keenan Ryan
- University of New Mexico Hospitals, Albuquerque, NM, USA
| | - Carla Walraven
- University of New Mexico Hospitals, Albuquerque, NM, USA
| | | |
Collapse
|
41
|
A personalised approach to antibiotic pharmacokinetics and pharmacodynamics in critically ill patients. Anaesth Crit Care Pain Med 2021; 40:100970. [PMID: 34728411 DOI: 10.1016/j.accpm.2021.100970] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 01/01/2023]
Abstract
Critically ill patients admitted to intensive care unit (ICU) with severe infections, or those who develop nosocomial infections, have poor outcomes with substantial morbidity and mortality. Such patients commonly have suboptimal antibiotic exposures at routinely used antibiotic doses related to an increased volume of distribution and altered clearance due to their underlying altered physiology. Furthermore, the use of extracorporeal devices such as renal replacement therapy and extracorporeal membrane oxygenation in these group of patients also has the potential to alter in vivo drug concentrations. Moreover, ICU patients are likely to be infected with less-susceptible pathogens. Therefore, one potential contributing cause to the poor outcomes observed in critically ill patients may be related to subtherapeutic antibiotic exposures. Newer concepts include the clinician considering optimised dosing based on a blood antibiotic exposure defined by pharmacokinetic modelling and therapeutic drug monitoring, combined with a knowledge of the antibiotic penetration into the site of infection, thereby achieving optimal bacterial killing. Such optimised dosing is likely to improve patient outcomes. The aim of this review is to highlight key aspects of antibiotic pharmacokinetics and pharmacodynamics (PK/PD) in critically ill patients and provide a PK/PD approach to tailor antibiotic dosing to the individual patient.
Collapse
|
42
|
Ecthyma gangrenosum as a serious complication of Pseudomonas aeruginosa infection in departments of paediatric oncology. Postepy Dermatol Alergol 2021; 38:537-543. [PMID: 34658690 PMCID: PMC8501443 DOI: 10.5114/ada.2020.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/11/2020] [Indexed: 11/17/2022] Open
Abstract
In most cases ecthyma gangrenosum is a consequence of Pseudomonas aeruginosa bloodstream infection in immunodeficient patients. This bacterium is characterized by multi-drug resistance and has a number of mechanisms that allow it to survive even in extreme conditions. The disease is characterized by an aggressive course involving the skin and mucous membranes, leading to ulceration with signs of necrosis within 12 to 24 h. Treatment includes targeted antibiotic therapy and surgical cleansing of the wound. If the perianal area is occupied, a colostomy may be performed. Prevention of bacterial infections involves taking special precautions when handling a patient with immunodeficiency.
Collapse
|
43
|
Pinner NA, Tapley NG, Barber KE, Stover KR, Wagner JL. Effect of Obesity on Clinical Failure of Patients Treated With β-Lactams. Open Forum Infect Dis 2021; 8:ofab212. [PMID: 34458387 PMCID: PMC8391092 DOI: 10.1093/ofid/ofab212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background Altered pharmacokinetics in obese patients raise concerns over worse clinical outcomes. This study assessed whether obese patients receiving a β-lactam have worse clinical outcomes compared to nonobese patients and to identify if therapeutic drug monitoring may be beneficial. Methods This multicenter, retrospective cohort included hospitalized adults admitted from July 2015 to July 2017 treated with a β-lactam as definitive monotherapy against a gram-negative bacilli for ≥72 hours. Patients were excluded if there was lack of source control or if polymicrobial infections required >1 antibiotic for definitive therapy. Patients were classified based on body mass index (BMI): nonobese (BMI ≤29.9 kg/m2) and obese (BMI ≥30.0 kg/m2). The primary outcome was clinical treatment failure, and secondary outcomes were hospital length of stay, inpatient all-cause mortality, and 30-day all-cause readmission. Results There were 257 (43.6%) obese patients and 332 (56.4%) nonobese patients included. The most common infections were urinary (50.9%) and respiratory (31.4%). Definitive treatment was driven by third-generation cephalosporins (46.9%) and cefepime (44.7%). Treatment failure occurred in 131 (51%) obese patients and 109 (32.8%) nonobese patients (P < .001). Obesity and respiratory source were independently associated with increased likelihood of treatment failure. Obese patients were hospitalized longer than nonobese patients (P = .002), but no differences were found for all-cause mortality (P = .117) or infection-related readmission (0 = 0.112). Conclusions Obese patients treated with β-lactams have higher rates of treatment failure and longer hospitalization periods than nonobese patients. Future studies are needed to assess the impact of therapeutic drug monitoring and specific dosing recommendations for targeted infection types.
Collapse
Affiliation(s)
- Nathan A Pinner
- Department of Pharmacy Practice, Auburn University Harrison School of Pharmacy, Birmingham, Alabama, USA
| | - Natalie G Tapley
- Department of Pharmacy Practice, Auburn University Harrison School of Pharmacy, Birmingham, Alabama, USA
| | - Katie E Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, Mississippi, USA
| | - Kayla R Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, Mississippi, USA.,Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jamie L Wagner
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, Mississippi, USA
| |
Collapse
|
44
|
Cojutti PG, Morandin E, Baraldo M, Pea F. Population pharmacokinetics of continuous infusion of piperacillin/tazobactam in very elderly hospitalized patients and considerations for target attainment against Enterobacterales and Pseudomonas aeruginosa. Int J Antimicrob Agents 2021; 58:106408. [PMID: 34314808 DOI: 10.1016/j.ijantimicag.2021.106408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/01/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Continuous infusion (CI) piperacillin/tazobactam is frequently used to treat infections in very elderly patients. This study aimed to conduct a population pharmacokinetic analysis of CI piperacillin/tazobactam, and to identify optimal dosages for safe and effective probability of target attainment (PTA) against Enterobacterales and Pseudomonas aeruginosa. Non-linear mixed-effects modelling was performed with Pmetrics. Monte Carlo simulations assessed the steady-state concentration (Css) of increasing piperacillin/tazobactam regimens (from 2.25 to 18 g daily by continuous infusion). Permissible doses were defined as those associated with <10% probability of Css >157.2 mg/L. PTA at the pharmacodynamic targets of free plasma steady-state concentration (fCss)/minimum inhibitory concentration (MIC) ≥1 and ≥4 and cumulative fraction of response (CFR) against EUCAST MIC distribution were also calculated. A total of 141 patients (median age 85 years) provided 217 plasma piperacillin Css. Most patients (55.2%) had hospital-acquired pneumonia and intra-abdominal infections. A one-compartment pharmacokinetic model with parallel linear and Michaelis-Menten elimination best described piperacillin data. Creatinine clearance (CLCR) was the covariate retained by the model. Pharmacokinetic estimates were 6.05 L/h for clearance and 3.39 mg/L for the Michaelis-Menten constant. Permissible doses were up to 4.5, 9, 11.25 and 13.5 g daily by continuous infusion for patients with CLCR of 0-19, 20-39, 40-59 and 60-79 mL/min/1.73 m2, respectively. At the clinical breakpoint of 8 mg/L, the permissible doses only achieved optimal PTA for fCss/MIC ≥1 in patients with CLCR 20-79 mL/min/1.73 m2. Optimal CFRs with the permissible doses were only attained against Escherichia coli and Proteus mirabilis. Permissible dosages and CLCR should be considered for prescribing CI piperacillin/tazobactam in very elderly patients.
Collapse
Affiliation(s)
- Pier Giorgio Cojutti
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University-Hospital of Udine, ASUFC, Udine, Italy; Department of Medicine, University of Udine, Udine, Italy; SSD Clinical Pharmacology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy.
| | - Elisa Morandin
- Department of Medicine, University of Udine, Udine, Italy
| | - Massimo Baraldo
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University-Hospital of Udine, ASUFC, Udine, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; SSD Clinical Pharmacology, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
45
|
Peyko V. An Unrecognized Problem in Optimizing Antimicrobial Therapy: Significant Residual Volume Remaining in Intravenous Tubing With Extended-Infusion Piperacillin-Tazobactam. J Pharm Pract 2021; 36:194-197. [PMID: 34269111 DOI: 10.1177/08971900211033462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fundamental process of medication therapy is that a medication is ordered, verified, and entirely administered to the patient. An unrecognized phenomenon across the antimicrobial landscape may be residual volume remaining within intravenous tubing, never getting to the patient. Evidence suggests that 40-60% of an antimicrobial may remain in the intravenous tubing. Across the globe, residual volume may be affecting thousands to millions of patients receiving antimicrobials each year. While residual volume may be profound for all antimicrobials, the challenges to remedy this problem are more imposing with extended-infusion administration techniques. The purpose of this article is to highlight residual volume as a potential problem in optimizing extended-infusion antimicrobial therapy with agents like piperacillin-tazobactam. Furthermore, to emphasize that recognizing this issue for antimicrobials and other medications is imperative for providers to assure every patient is receiving the medication ordered, in its entirety, to avert medication errors and optimize patient care.
Collapse
Affiliation(s)
- Vincent Peyko
- Department of Pharmacy, Mercy Health-St Elizabeth's Boardman Hospital, Boardman, OH, USA
| |
Collapse
|
46
|
Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9071401. [PMID: 34203510 PMCID: PMC8305961 DOI: 10.3390/microorganisms9071401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental step in the successful management of sepsis and septic shock is early empiric antimicrobial therapy. However, for this to be effective, several decisions must be addressed simultaneously: (1) antimicrobial choices should be adequate, covering the most probable pathogens; (2) they should be administered in the appropriate dose, (3) by the correct route, and (4) using the correct mode of administration to achieve successful concentration at the infection site. In critically ill patients, antimicrobial dosing is a common challenge and a frequent source of errors, since these patients present deranged pharmacokinetics, namely increased volume of distribution and altered drug clearance, which either increased or decreased. Moreover, the clinical condition of these patients changes markedly over time, either improving or deteriorating. The consequent impact on drug pharmacokinetics further complicates the selection of correct drug schedules and dosing during the course of therapy. In recent years, the knowledge of pharmacokinetics and pharmacodynamics, drug dosing, therapeutic drug monitoring, and antimicrobial resistance in the critically ill patients has greatly improved, fostering strategies to optimize therapeutic efficacy and to reduce toxicity and adverse events. Nonetheless, delivering adequate and appropriate antimicrobial therapy is still a challenge, since pathogen resistance continues to rise, and new therapeutic agents remain scarce. We aim to review the available literature to assess the challenges, impact, and tools to optimize individualization of antimicrobial dosing to maximize exposure and effectiveness in critically ill patients.
Collapse
|
47
|
Chongcharoenyanon T, Wacharachaisurapol N, Anugulruengkitt S, Maimongkol P, Anunsittichai O, Sophonphan J, Chatsuwan T, Puthanakit T. Comparison of piperacillin plasma concentrations in a prospective randomised trial of extended infusion versus intermittent bolus of piperacillin/tazobactam in paediatric patients. Int J Infect Dis 2021; 108:102-108. [PMID: 34029707 DOI: 10.1016/j.ijid.2021.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES To be effective, piperacillin/tazobactam (PTZ) unbound plasma levels need to be above the minimum inhibitory concentration (MIC) at least 50% of the time between dosing intervals (50% fT>MIC). This study aimed to compare the plasma piperacillin concentrations at the mid-dosing intervals (Cmid, 50% fT) and the proportion of patients achieving 50% fT>MIC between extended infusion (EI) and intermittent bolus (IB) methods in children. METHODS A prospective, randomised trial of EI versus IB of PTZ was conducted in children aged 1 month to 18 years. The PTZ dose was 100 mg/kg intravenously every 8 h. Patients were randomly assigned to receive EI (4-h infusion) or IB (30-min infusion). The primary outcome that was measured was plasma piperacillin Cmid. RESULTS Ninety patients with a median age (IQR) of 48 months (16-127) were enrolled. The most common indication for PTZ use was pneumonia (32.2%). Geometric mean (95% CI) plasma piperacillin Cmid of EI versus IB was 51.9 mg/L (40.6-66.6) versus 6.0 mg/L (4.2-8.6) (P < 0.01). The EI group had a trend of higher proportion of patients who achieved 50% fT>4xMIC (72.7% versus 30.0%; P = 0.06). CONCLUSIONS PTZ administration with EI resulted in a higher Cmid compared with IB. In settings with increased piperacillin MICs, this approach should be implemented, particularly during the empirical treatment period.
Collapse
Affiliation(s)
| | - Noppadol Wacharachaisurapol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Suvaporn Anugulruengkitt
- Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Paediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Passara Maimongkol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Orawan Anunsittichai
- Center of Excellence for Paediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Sophonphan
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanyawee Puthanakit
- Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Paediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
48
|
Wu CC, Su YC, Wu KS, Wu TH, Yang CS. Loading dose and efficacy of continuous or extended infusion of beta-lactams compared with intermittent administration in patients with critical illnesses: A subgroup meta-analysis and meta-regression analysis. J Clin Pharm Ther 2021; 46:424-432. [PMID: 33135261 DOI: 10.1111/jcpt.13301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The role of continuous/extended beta-lactam infusions (CEIs) in improving clinical outcomes among critically ill patients remains controversial. Therefore, we aimed to compare the clinical efficacy of CEI versus intermittent administration (IA) of beta-lactams by performing a systematic review and meta-analysis. METHODS PubMed, the Cochrane Library and Embase were searched from inception until December 2018 for studies comparing clinical outcomes of CEI versus IA in critically ill patients. The meta-analysis included 18 randomized controlled trials (RCTs) and 13 non-RCTs. RESULTS AND DISCUSSION For CEI versus IA, the summary relative risk (RR) for overall mortality and clinical cure was 0.82 (95% confidence interval [CI]: 0.72-0.94) and 1.31 (95% CI: 1.15-1.49), respectively. Subgroup and meta-regression analyses of the loading dose revealed a significantly increased clinical cure rate in the loading-dose group (RR: 1.44, 95% CI: 1.22-1.69), which remained significant after adjustments for beta-lactam type, and association between clinical cure and loading dose for clinical cure (RR: 1.47, 95% CI: 1.20-1.80; p = .001). Subgroup analysis of administration type indicated that both groups had low mortality and high clinical cure rates; however, the heterogeneity analysis did not support an association across continuous infusion and extended infusion groups. Subgroup analysis of the Acute Physiology and Chronic Health Evaluation (APACHE) score was conducted; according to APACHE scores ≥ 16, overall mortality and clinical cure significantly differed between CEI and IA. WHAT IS NEW AND CONCLUSION CEIs with loading-dose treatment may significantly improve the clinical outcomes in critically ill sepsis or septic shock patients.
Collapse
Affiliation(s)
- Chih-Chien Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chia Su
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Kuan-Sheng Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tung-Ho Wu
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Shiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Merino-Bohórquez V, Docobo-Pérez F, Valiente-Méndez A, Delgado-Valverde M, Cameán M, Hope WW, Pascual Á, Rodríguez-Baño J. Population Pharmacokinetics of Piperacillin in Non-Critically Ill Patients with Bacteremia Caused by Enterobacteriaceae. Antibiotics (Basel) 2021; 10:antibiotics10040348. [PMID: 33805895 PMCID: PMC8064303 DOI: 10.3390/antibiotics10040348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study analyzes the pharmacokinetic variability of piperacillin in non-critically ill patients with Enterobacteriaceae bloodstream infections (EBSI) and explores predicted clinical outcomes and piperacillin-related neurotoxicity under different renal conditions. Hospitalized, non-critically ill patients treated with piperacillin–tazobactam for EBSI were included. Four serum samples per patient were collected and analyzed. A population pharmacokinetic model was developed using the Pmetrics package for R. Monte Carlo simulations of various dosage regimens of 4 g piperacillin, administered q8 h or q12 h by short (0.5 h) or long (4 h) infusion, following the different glomerular filtration rate (GFR) categories used to classify chronic kidney disease (Kidney Disease: Improving Global Outcomes, KDIGO) to determine the probability of target attainment (PTA) using a free drug concentrations above the minimal inhibitory concentration (fT > MIC) of 50% for efficacy and targets for piperacillin-associated neurotoxicity. Twenty-seven patients (102 samples) were included. Extended piperacillin infusions reached a PTA > 90% (50%fT > MIC) within the susceptibility range, although a loading dose did not greatly improve the expected outcome. Long infusions reduced the expected toxicity in patients with severe renal impairment. The study supports the use of extended infusions of piperacillin in non-critically ill patients with EBSI. No benefits of a loading dose were expected in our population. Finally, extended infusions may reduce the risk of toxicity in patients with severe renal impairment.
Collapse
Affiliation(s)
- Vicente Merino-Bohórquez
- Unidad de Gestión de Farmacia Hospitalaria, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (V.M.-B.); (M.C.)
- Departamento de Farmacología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Fernando Docobo-Pérez
- Departamento de Microbiología, Universidad de Sevilla, 41009 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (A.V.-M.); (M.D.-V.); (J.R.-B.)
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Adoración Valiente-Méndez
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (A.V.-M.); (M.D.-V.); (J.R.-B.)
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
| | - Mercedes Delgado-Valverde
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (A.V.-M.); (M.D.-V.); (J.R.-B.)
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
| | - Manuel Cameán
- Unidad de Gestión de Farmacia Hospitalaria, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (V.M.-B.); (M.C.)
| | - William W. Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK;
- Royal Liverpool and Broadgreen University Hospital Trust, Liverpool L69 3GE, UK
| | - Álvaro Pascual
- Departamento de Microbiología, Universidad de Sevilla, 41009 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (A.V.-M.); (M.D.-V.); (J.R.-B.)
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
| | - Jesús Rodríguez-Baño
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (A.V.-M.); (M.D.-V.); (J.R.-B.)
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| |
Collapse
|
50
|
[S3 Guideline Sepsis-prevention, diagnosis, therapy, and aftercare : Long version]. Med Klin Intensivmed Notfmed 2021; 115:37-109. [PMID: 32356041 DOI: 10.1007/s00063-020-00685-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|