1
|
Hall B, Alyafei S, Ramaswamy S, Sinha S, El Naofal M, Rabea F, Killinger BJ, Latham GJ, Abou Tayoun A. A Dual-Mode Targeted Nanopore Sequencing Assay for Comprehensive SMN1 and SMN2 Variant Analysis. J Mol Diagn 2025; 27:502-510. [PMID: 40158884 DOI: 10.1016/j.jmoldx.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common recessive disorders, for which several life-saving treatment options are available. It is therefore essential to establish universal SMA screening and diagnostic programs using scalable, cost-effective, and accessible platforms to accurately identify all variation types. This task is complicated by high sequence homology between the SMN1 and SMN2 genes. Toward this goal, a dual-mode PCR-based target-enrichment method was developed, optimized, and evaluated in an external laboratory as a proof-of-concept for scalable and deployable any-length nanopore sequencing. The assay generates 2.7- to 11.2-kb amplicons spanning exons 3 to 8 of the SMN1 and SMN2 genes, which are then analyzed using a variant calling model that reports sequence and copy number variants specific to each gene from paralog-specific sequences and read-depth data. Overall, the assay detected single-nucleotide variants, insertions/deletions, and copy number variants with >98% genotype agreement across >750 samples, including cell lines, residual presumed-normal whole-blood donors, and patients with known SMN1 and SMN2 genotypes. The assay also demonstrated a dynamic sample throughput, 9-hour turnaround time, and 4-hour hands-on time. Together with the modest capital investment and consumable costs per sample, this assay can help to increase access to SMA testing in low- and middle-income settings. As a result, this PCR/Nanopore sequencing assay and analysis pipeline has the potential for universal implementation in SMA carrier screening and diagnostic programs.
Collapse
Affiliation(s)
| | - Sawsan Alyafei
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | | | - Shruti Sinha
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Maha El Naofal
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Fatima Rabea
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates; Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | | | | | - Ahmad Abou Tayoun
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
| |
Collapse
|
2
|
Uguen M, Liu T, James LI, Frye SV. Tudor-Containing Methyl-Lysine and Methyl-Arginine Reader Proteins: Disease Implications and Chemical Tool Development. ACS Chem Biol 2025; 20:33-47. [PMID: 39718819 DOI: 10.1021/acschembio.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer. The development of chemical tools for this family will not only lead to a deeper understanding of the biological functions of Tudor domains but also lay the foundation for therapeutic discoveries. In this review, we discuss the role of several Tudor domain-containing proteins in a range of relevant diseases and progress toward the development of chemical tools such as peptides, peptidomimetics, or small-molecules that bind Tudor domains. Overall, we highlight how Tudor domains are promising targets for therapeutic development and would benefit from the development of novel chemical tools.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tongkun Liu
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Steyaert W, Haer-Wigman L, Pfundt R, Hellebrekers D, Steehouwer M, Hampstead J, de Boer E, Stegmann A, Yntema H, Kamsteeg EJ, Brunner H, Hoischen A, Gilissen C. Systematic analysis of paralogous regions in 41,755 exomes uncovers clinically relevant variation. Nat Commun 2023; 14:6845. [PMID: 37891200 PMCID: PMC10611741 DOI: 10.1038/s41467-023-42531-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The short lengths of short-read sequencing reads challenge the analysis of paralogous genomic regions in exome and genome sequencing data. Most genetic variants within these homologous regions therefore remain unidentified in standard analyses. Here, we present a method (Chameleolyser) that accurately identifies single nucleotide variants and small insertions/deletions (SNVs/Indels), copy number variants and ectopic gene conversion events in duplicated genomic regions using whole-exome sequencing data. Application to a cohort of 41,755 exome samples yields 20,432 rare homozygous deletions and 2,529,791 rare SNVs/Indels, of which we show that 338,084 are due to gene conversion events. None of the SNVs/Indels are detectable using regular analysis techniques. Validation by high-fidelity long-read sequencing in 20 samples confirms >88% of called variants. Focusing on variation in known disease genes leads to a direct molecular diagnosis in 25 previously undiagnosed patients. Our method can readily be applied to existing exome data.
Collapse
Affiliation(s)
- Wouter Steyaert
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Debby Hellebrekers
- Maastricht University Medical Center + , Department of Clinical Genetics, Maastricht, Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Juliet Hampstead
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Alexander Stegmann
- Maastricht University Medical Center + , Department of Clinical Genetics, Maastricht, Netherlands
| | - Helger Yntema
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Han Brunner
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Maastricht University Medical Center + , Department of Clinical Genetics, Maastricht, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud University Medical Center, Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.
| |
Collapse
|
5
|
Lapp HS, Freigang M, Hagenacker T, Weiler M, Wurster CD, Günther R. Biomarkers in 5q-associated spinal muscular atrophy-a narrative review. J Neurol 2023; 270:4157-4178. [PMID: 37289324 PMCID: PMC10421827 DOI: 10.1007/s00415-023-11787-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
5q-associated spinal muscular atrophy (SMA) is a rare genetic disease caused by mutations in the SMN1 gene, resulting in a loss of functional SMN protein and consecutive degeneration of motor neurons in the ventral horn. The disease is clinically characterized by proximal paralysis and secondary skeletal muscle atrophy. New disease-modifying drugs driving SMN gene expression have been developed in the past decade and have revolutionized SMA treatment. The rise of treatment options led to a concomitant need of biomarkers for therapeutic guidance and an improved disease monitoring. Intensive efforts have been undertaken to develop suitable markers, and numerous candidate biomarkers for diagnostic, prognostic, and predictive values have been identified. The most promising markers include appliance-based measures such as electrophysiological and imaging-based indices as well as molecular markers including SMN-related proteins and markers of neurodegeneration and skeletal muscle integrity. However, none of the proposed biomarkers have been validated for the clinical routine yet. In this narrative review, we discuss the most promising candidate biomarkers for SMA and expand the discussion by addressing the largely unfolded potential of muscle integrity markers, especially in the context of upcoming muscle-targeting therapies. While the discussed candidate biomarkers hold potential as either diagnostic (e.g., SMN-related biomarkers), prognostic (e.g., markers of neurodegeneration, imaging-based markers), predictive (e.g., electrophysiological markers) or response markers (e.g., muscle integrity markers), no single measure seems to be suitable to cover all biomarker categories. Hence, a combination of different biomarkers and clinical assessments appears to be the most expedient solution at the time.
Collapse
Affiliation(s)
- H S Lapp
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Freigang
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - T Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Science (C-TNBS), University Medicine Essen, Essen, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - C D Wurster
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
7
|
Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R, Ojcius DM. The role of NOD-like receptors in innate immunity. Front Immunol 2023; 14:1122586. [PMID: 37006312 PMCID: PMC10050748 DOI: 10.3389/fimmu.2023.1122586] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
The innate immune system in vertebrates and invertebrates relies on conserved receptors and ligands, and pathways that can rapidly initiate the host response against microbial infection and other sources of stress and danger. Research into the family of NOD-like receptors (NLRs) has blossomed over the past two decades, with much being learned about the ligands and conditions that stimulate the NLRs and the outcomes of NLR activation in cells and animals. The NLRs play key roles in diverse functions, ranging from transcription of MHC molecules to initiation of inflammation. Some NLRs are activated directly by their ligands, while other ligands may have indirect effects on the NLRs. New findings in coming years will undoubtedly shed more light on molecular details involved in NLR activation, as well as the physiological and immunological outcomes of NLR ligation.
Collapse
Affiliation(s)
- Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
- *Correspondence: Cássio Luiz Coutinho Almeida-da-Silva, ; David M. Ojcius,
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
- *Correspondence: Cássio Luiz Coutinho Almeida-da-Silva, ; David M. Ojcius,
| |
Collapse
|
8
|
Aslesh T, Erkut E, Ren J, Lim KRQ, Woo S, Hatlevig S, Moulton HM, Gosgnach S, Greer J, Maruyama R, Yokota T. DG9-conjugated morpholino rescues phenotype in SMA mice by reaching the CNS via a subcutaneous administration. JCI Insight 2023; 8:160516. [PMID: 36719755 PMCID: PMC10077475 DOI: 10.1172/jci.insight.160516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Antisense oligonucleotide-mediated (AO-mediated) therapy is a promising strategy to treat several neurological diseases, including spinal muscular atrophy (SMA). However, limited delivery to the CNS with AOs administered intravenously or subcutaneously is a major challenge. Here, we demonstrate a single subcutaneous administration of cell-penetrating peptide DG9 conjugated to an AO called phosphorodiamidate morpholino oligomer (PMO) reached the CNS and significantly prolonged the median survival compared with unconjugated PMO and R6G-PMO in a severe SMA mouse model. Treated mice exhibited substantially higher expression of full-length survival of motor neuron 2 in both the CNS and systemic tissues compared with nontreated and unmodified AO-treated mice. The treatment ameliorated the atrophic musculature and improved breathing function accompanied by improved muscle strength and innervation at the neuromuscular junction with no signs of apparent toxicity. We also demonstrated DG9-conjugated PMO localized in nuclei in the spinal cord and brain after subcutaneous injections. Our data identify DG9 peptide conjugation as a powerful way to improve the efficacy of AO-mediated splice modulation. Finally, DG9-PMO is a promising therapeutic option to treat SMA and other neurological diseases, overcoming the necessity for intrathecal injections and treating body-wide tissues without apparent toxicity.
Collapse
Affiliation(s)
| | | | - Jun Ren
- Neuroscience and Mental Health Institute.,Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Susan Hatlevig
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Simon Gosgnach
- Neuroscience and Mental Health Institute.,Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John Greer
- Neuroscience and Mental Health Institute.,Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Toshifumi Yokota
- Neuroscience and Mental Health Institute.,Department of Medical Genetics, and
| |
Collapse
|
9
|
Bai J, Qu Y, OuYang S, Jiao H, Wang Y, Li J, Huang W, Zhao Y, Peng X, Wang D, Jin Y, Wang H, Song F. Novel Alu-mediated deletions of the SMN1 gene were identified by ultra-long read sequencing technology in patients with spinal muscular atrophy. Neuromuscul Disord 2023; 33:382-390. [PMID: 37023488 DOI: 10.1016/j.nmd.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by biallelic variants of the survival motor neuron 1 (SMN1) gene. In this study, our aim was to make a molecular diagnosis in two patients with SMA carrying only one SMN1 copy number. Using ultra-long read sequencing (Ultra-LRS), 1415 bp deletion and 3348 bp deletion of the SMN1 gene were identified in patient 1 and the father of patient 2, respectively. Ultra-LRS revealed two novel deletions, starting from the SMN1 promoter to intron 1. It also accurately provided the location of the deletion breakpoints in the SMN1 gene: chr5 g.70,924,798-70,926,212 for a 1415 bp deletion; chr5 g.70,922,695-70,926,042 for a 3348 bp deletion. By analyzing the breakpoint junctions, we identified that these genomic sequences were composed of Alu sequences, including AluJb, AluYm1, AluSq, and AluYm1, indicating that Alu-mediated rearrangements are a mechanism of SMN1 deletion events. In addition, full-length SMN1 transcripts and SMN protein in patient 1 were significantly decreased (p < 0.01), suggesting that a 1415 bp deletion that included the transcription and translation initiation sites of the SMN1 gene had severe consequences for SMN expression. Ultra-LRS can easily distinguish highly homozygous genes compared to other detection technologies, which is useful for detecting SMN1 intragenic mutations, to quickly discover structural rearrangements and to precisely present the breakpoint positions.
Collapse
|
10
|
Chen X, Harting J, Farrow E, Thiffault I, Kasperaviciute D, Hoischen A, Gilissen C, Pastinen T, Eberle MA. Comprehensive SMN1 and SMN2 profiling for spinal muscular atrophy analysis using long-read PacBio HiFi sequencing. Am J Hum Genet 2023; 110:240-250. [PMID: 36669496 PMCID: PMC9943720 DOI: 10.1016/j.ajhg.2023.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Spinal muscular atrophy, a leading cause of early infant death, is caused by bi-allelic mutations of SMN1. Sequence analysis of SMN1 is challenging due to high sequence similarity with its paralog SMN2. Both genes have variable copy numbers across populations. Furthermore, without pedigree information, it is currently not possible to identify silent carriers (2+0) with two copies of SMN1 on one chromosome and zero copies on the other. We developed Paraphase, an informatics method that identifies full-length SMN1 and SMN2 haplotypes, determines the gene copy numbers, and calls phased variants using long-read PacBio HiFi data. The SMN1 and SMN2 copy-number calls by Paraphase are highly concordant with orthogonal methods (99.2% for SMN1 and 100% for SMN2). We applied Paraphase to 438 samples across 5 ethnic populations to conduct a population-wide haplotype analysis of these highly homologous genes. We identified major SMN1 and SMN2 haplogroups and characterized their co-segregation through pedigree-based analyses. We identified two SMN1 haplotypes that form a common two-copy SMN1 allele in African populations. Testing positive for these two haplotypes in an individual with two copies of SMN1 gives a silent carrier risk of 88.5%, which is significantly higher than the currently used marker (1.7%-3.0%). Extending beyond simple copy-number testing, Paraphase can detect pathogenic variants and enable potential haplotype-based screening of silent carriers through statistical phasing of haplotypes into alleles. Future analysis of larger population data will allow identification of more diverse haplotypes and genetic markers for silent carriers.
Collapse
Affiliation(s)
| | | | - Emily Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA; UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA; Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA; UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA; UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | | |
Collapse
|
11
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
12
|
Ware G, Miller C, Jones D, Avenarius M. The clinical utility of a risk-modifying SNP to detect carriers for spinal muscular atrophy with increased sensitivity. Mol Genet Genomic Med 2022; 10:e1897. [PMID: 35289093 PMCID: PMC9000938 DOI: 10.1002/mgg3.1897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by biallelic inactivation of the survival motor neuron 1 (SMN1) gene. With a prevalence of ~1 in 11,000 live births (carrier frequency of ~1:50), SMA is one of the most common severe childhood-onset diseases; therefore, current guidelines recommend pan-ethnic carrier screening for SMA before or during pregnancy. Routine SMN1 copy number assessment detects ~96% of all SMA carriers, but not the remaining 4% who harbor two copies of SMN1 arrayed in -cis [2 + 0]. The c.*3+80T>G risk-modifying SNP positively correlates with this chromosomal configuration and may be used to modify the residual risk of being a carrier for SMA. METHODS One year after incorporating the detection of the c.*3+80>G risk-modifying SNP into our routine SMA carrier screen, we perform a retrospective chart review to evaluate its frequency and utilization in the prenatal clinic. RESULTS In comparison with classic carriers for SMA, study data show that individuals with two copies of SMN1 and the risk modifier were counseled less frequently about their increased risk of being a carrier for SMA. CONCLUSION Incorporating the c.*3+80T>G risk-modifying SNP is important for detecting carriers for SMA with a higher clinical sensitivity.
Collapse
Affiliation(s)
- Gardenier Ware
- James Molecular LaboratoryThe Ohio State University James Cancer CenterColumbusOhioUSA
| | - Cecelia Miller
- James Molecular LaboratoryThe Ohio State University James Cancer CenterColumbusOhioUSA
- Department of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- The James Comprehensive Cancer CenterThe Ohio State Wexner Medical CenterColumbusOhioUSA
| | - Dan Jones
- James Molecular LaboratoryThe Ohio State University James Cancer CenterColumbusOhioUSA
- Department of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- The James Comprehensive Cancer CenterThe Ohio State Wexner Medical CenterColumbusOhioUSA
| | - Matthew Avenarius
- James Molecular LaboratoryThe Ohio State University James Cancer CenterColumbusOhioUSA
- Department of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- The James Comprehensive Cancer CenterThe Ohio State Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
13
|
Kubinski S, Claus P. Protein Network Analysis Reveals a Functional Connectivity of Dysregulated Processes in ALS and SMA. Neurosci Insights 2022; 17:26331055221087740. [PMID: 35372839 PMCID: PMC8966079 DOI: 10.1177/26331055221087740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) are neurodegenerative diseases which are characterized by the loss of motoneurons within the central nervous system. SMA is a monogenic disease caused by reduced levels of the Survival of motoneuron protein, whereas ALS is a multi-genic disease with over 50 identified disease-causing genes and involvement of environmental risk factors. Although these diseases have different causes, they partially share identical phenotypes and pathomechanisms. To analyze and identify functional connections and to get a global overview of altered pathways in both diseases, protein network analyses are commonly used. Here, we used an in silico tool to test for functional associations between proteins that are involved in actin cytoskeleton dynamics, fatty acid metabolism, skeletal muscle metabolism, stress granule dynamics as well as SMA or ALS risk factors, respectively. In network biology, interactions are represented by edges which connect proteins (nodes). Our approach showed that only a few edges are necessary to present a complex protein network of different biological processes. Moreover, Superoxide dismutase 1, which is mutated in ALS, and the actin-binding protein profilin1 play a central role in the connectivity of the aforementioned pathways. Our network indicates functional links between altered processes that are described in either ALS or SMA. These links may not have been considered in the past but represent putative targets to restore altered processes and reveal overlapping pathomechanisms in both diseases.
Collapse
Affiliation(s)
- Sabrina Kubinski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
| |
Collapse
|
14
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
15
|
Hensel N, Brickwedde H, Tsaknakis K, Grages A, Braunschweig L, Lüders KA, Lorenz HM, Lippross S, Walter LM, Tavassol F, Lienenklaus S, Neunaber C, Claus P, Hell AK. Altered bone development with impaired cartilage formation precedes neuromuscular symptoms in spinal muscular atrophy. Hum Mol Genet 2021; 29:2662-2673. [PMID: 32644125 DOI: 10.1093/hmg/ddaa145] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a fatal neurodegenerative disease of newborns and children caused by mutations or deletions of the survival of motoneuron gene 1 resulting in low levels of the SMN protein. While neuromuscular degeneration is the cardinal symptom of the disease, the reduction of the ubiquitously expressed SMN additionally elicits non-motoneuron symptoms. Impaired bone development is a key feature of SMA, but it is yet unknown whether this is an indirect functional consequence of muscle weakness or caused by bone-intrinsic mechanisms. Therefore, we radiologically examined SMA patients in a prospective, non-randomized cohort study characterizing bone size and bone mineral density (BMD) and performed equivalent measurements in pre-symptomatic SMA mice. BMD as well as lumbar vertebral body size were significantly reduced in SMA patients. This growth defect but not BMD reduction was confirmed in SMA mice by μCT before the onset of neuromuscular symptoms indicating that it is at least partially independent of neuromuscular degeneration. Interestingly, the number of chondroblasts in the hypertrophic zone of the growth plate was significantly reduced. This was underlined by RNAseq and expression data from developing SMA mice vertebral bodies, which revealed molecular changes related to cell division and cartilage remodeling. Together, these findings suggest a bone intrinsic defect in SMA. This phenotype may not be rescued by novel drugs that enhance SMN levels in the central nervous system only.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Hermann Brickwedde
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Konstantinos Tsaknakis
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Antonia Grages
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Lena Braunschweig
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Katja A Lüders
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Heiko M Lorenz
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Lippross
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Frank Tavassol
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | | | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Anna K Hell
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
16
|
Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB. Drug Discovery of Spinal Muscular Atrophy (SMA) from the Computational Perspective: A Comprehensive Review. Int J Mol Sci 2021; 22:8962. [PMID: 34445667 PMCID: PMC8396480 DOI: 10.3390/ijms22168962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
Collapse
Affiliation(s)
- Li Chuin Chong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Jian Ming Lee
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Sy-Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| |
Collapse
|
17
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
18
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Fulceri F, Biagioni F, Limanaqi F, Busceti CL, Ryskalin L, Lenzi P, Fornai F. Ultrastructural characterization of peripheral denervation in a mouse model of Type III spinal muscular atrophy. J Neural Transm (Vienna) 2021; 128:771-791. [PMID: 33999256 PMCID: PMC8205903 DOI: 10.1007/s00702-021-02353-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Spinal muscular atrophy (SMA) is a heritable, autosomal recessive neuromuscular disorder characterized by a loss of the survival of motor neurons (SMN) protein, which leads to degeneration of lower motor neurons, and muscle atrophy. Despite SMA being nosographically classified as a motor neuron disease, recent advances indicate that peripheral alterations at the level of the neuromuscular junction (NMJ), involving the muscle, and axons of the sensory-motor system, occur early, and may even precede motor neuron loss. In the present study, we used a mouse model of slow progressive (type III) SMA, whereby the absence of the mouse SMN protein is compensated by the expression of two human genes (heterozygous SMN1A2G, and SMN2). This leads to late disease onset and prolonged survival, which allows for dissecting slow degenerative steps operating early in SMA pathogenesis. In this purely morphological study carried out at transmission electron microscopy, we extend the examination of motor neurons and proximal axons towards peripheral components, including distal axons, muscle fibers, and also muscle spindles. We document remarkable ultrastructural alterations being consistent with early peripheral denervation in SMA, which may shift the ultimate anatomical target in neuromuscular disease from the spinal cord towards the muscle. This concerns mostly mitochondrial alterations within distal axons and muscle, which are quantified here through ultrastructural morphometry. The present study is expected to provide a deeper knowledge of early pathogenic mechanisms in SMA.
Collapse
Affiliation(s)
- Federica Fulceri
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Carla L Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy. .,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
20
|
Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy. Proc Natl Acad Sci U S A 2021; 118:2007785118. [PMID: 33931501 DOI: 10.1073/pnas.2007785118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.
Collapse
|
21
|
Spinal Muscular Atrophy: Inheritance, Screening, and Counseling for the Obstetric Provider. Obstet Gynecol Surv 2021; 76:166-169. [PMID: 33783545 DOI: 10.1097/ogx.0000000000000870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Importance Spinal muscular atrophy (SMA) confers significant risk of neonatal and infant morbidity and mortality. Screening women during or before pregnancy for carrier status of SMA presents an opportunity to identify pregnancies at risk for this potentially devastating condition. Objective The objective of this review is to describe the different forms of SMA and their inheritance. In addition, this review guides obstetric providers in interpreting results of carrier screening. Evidence Acquisition A MEDLINE search of "prenatal genetic testing," "spinal muscular atrophy," and "inheritance of spinal muscular atrophy" in the review was performed. Results The evidence cited in this review includes 4 medical society committee opinions and 14 additional peer-reviewed journal articles that were original research or expert opinion summaries. Conclusions and Relevance Spinal muscular atrophy is a severe, heterogeneous neurodegenerative disorder. The American College of Obstetricians and Gynecologists recommends that obstetricians offer carrier screening for SMA to all pregnant women. Given the different types and inheritance of SMA, understanding of the disease and interpreting carrier screening results is of paramount importance to the prenatal care provider.
Collapse
|
22
|
Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 2021; 22:53-64. [PMID: 33415588 DOI: 10.1007/s10048-020-00630-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1-SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.
Collapse
|
23
|
Vu-Han TL, Weiß C, Pumberger M. Novel therapies for spinal muscular atrophy are likely changing the patient phenotype. Spine J 2020; 20:1893-1898. [PMID: 32858169 DOI: 10.1016/j.spinee.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Tu-Lan Vu-Han
- Center for Musculoskeletal Surgery Berlin Mitte; Charité University Medicine Berlin, Charitéplatz 1, Berlin 10117, Germany.
| | - Claudia Weiß
- Center for chronically sick children, Department of Neuropediatrics; Charité University, Medicine Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery Berlin Mitte; Charité University Medicine Berlin, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
24
|
Characterization of Reference Materials for Spinal Muscular Atrophy Genetic Testing: A Genetic Testing Reference Materials Coordination Program Collaborative Project. J Mol Diagn 2020; 23:103-110. [PMID: 33197628 DOI: 10.1016/j.jmoldx.2020.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.
Collapse
|
25
|
Rademacher S, Detering NT, Schüning T, Lindner R, Santonicola P, Wefel IM, Dehus J, Walter LM, Brinkmann H, Niewienda A, Janek K, Varela MA, Bowerman M, Di Schiavi E, Claus P. A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells 2020; 9:cells9112405. [PMID: 33153033 PMCID: PMC7692393 DOI: 10.3390/cells9112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Nora T. Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Pamela Santonicola
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Inga-Maria Wefel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Janina Dehus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Lisa M. Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Agathe Niewienda
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Katharina Janek
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
26
|
Resolving misalignment interference for NGS-based clinical diagnostics. Hum Genet 2020; 140:477-492. [PMID: 32915251 DOI: 10.1007/s00439-020-02216-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/31/2020] [Indexed: 01/18/2023]
Abstract
Next-generation sequencing (NGS) is an incredibly useful tool for genetic disease diagnosis. However, the most commonly used bioinformatics methods for analyzing sequence reads insufficiently discriminate genomic regions with extensive sequence identity, such as gene families and pseudogenes, complicating diagnostics. This problem has been recognized for specific genes, including many involved in human disease, and diagnostic labs must perform additional costly steps to guarantee accurate diagnosis in these cases. Here we report a new data analysis method based on the comparison of read depth between highly homologous regions to identify misalignment. Analyzing six clinically important genes-CYP21A2, GBA, HBA1/2, PMS2, and SMN1-each exhibiting misalignment issues related to homology, we show that our technique can correctly identify potential misalignment events and be used to make appropriate calls. Combined with long-range PCR and/or MLPA orthogonal testing, our clinical laboratory can improve variant calling with minimal additional cost. We propose an accurate and cost-efficient NGS testing procedure that will benefit disease diagnostics, carrier screening, and research-based population studies.
Collapse
|
27
|
Fang YL, Li N, Zhi XF, Zheng J, Liu Y, Pu LJ, Gu CY, Shu JB, Cai CQ. Discovery of specific mutations in spinal muscular atrophy patients by next-generation sequencing. Neurol Sci 2020; 42:1827-1833. [PMID: 32895776 DOI: 10.1007/s10072-020-04697-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Spinal muscular atrophy (SMA) is a type of autosomal recessive genetic disease, which seriously threatens the health and lives of children and adolescents. We attempted to find some genes and mutations related to the onset of SMA. Eighty-three whole-blood samples were collected from 28 core families, including 28 probands with clinically suspected SMA (20 SMA patients, 5 non-SMA children, and 3 patients with unknown etiology) and their parents. The multiplex ligation probe amplification (MLPA) was performed for preliminary diagnosis. The high-throughput sequencing technology was used to conduct the whole-exome sequencing analysis. We analyzed the mutations in adjacent genes of SMN1 gene and the unique mutations that only occurred in SMA patients. According to the MLPA results, 20 probands were regarded as experimental group and 5 non-SMA children as control group. A total of 10 mutations were identified in the adjacent genes of SMN1 gene. GUSBP1 g.[69515863G>A], GUSBP1 g.[69515870C>T], and SMA4 g.[69515738C>A] were the top three most frequent sites. SMA4 g.[69515726A>G] and OCLN c.[818G>T] have not been reported in the existing relevant researches. Seventeen point mutations in the DYNC1H1 gene were only recognized in SMA children, and the top two most common mutations were c.[2869-34A>T] and c.[345-89A>G]; c.[7473+105C>T] was the splicing mutation that might change the mRNA splicing site. The mutations of SMA4 g.[69515726A>G], OCLN c.[818G>T], DYNC1H1 c.[2869-34A>T], DYNC1H1 c.[345-89A>G], and DYNC1H1 c.[7473+105C>T] in the adjacent genes of SMN1 gene and other genes might be related to the onset of SMA.
Collapse
Affiliation(s)
- Yu-Lian Fang
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Na Li
- Department of Neonatology, The Pediatric Clinical College, Tianjin Medical University, Tianjin, 300134, China.,Department of Neonatology, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Xiu-Fang Zhi
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Zheng
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Neonatology, The Pediatric Clinical College, Tianjin Medical University, Tianjin, 300134, China.,Department of Neonatology, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Lin-Jie Pu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Chun-Yu Gu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Jian-Bo Shu
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| | - Chun-Quan Cai
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China. .,Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
28
|
Transmission characteristics of SMN from 227 spinal muscular atrophy core families in China. J Hum Genet 2020; 65:469-473. [PMID: 32051521 DOI: 10.1038/s10038-020-0730-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/05/2020] [Accepted: 01/26/2020] [Indexed: 11/09/2022]
Abstract
To define the relationship between the survival motor neuron 1 gene (SMN1) and SMN2, and explore the variability of these two genes within the generations, SMN1 and SMN2 copy numbers were determined for 227 SMA families. The association analysis indicated that there was a negative correlation between the copy number of SMN1 and SMN2 (Spearman = -0.472, P < 0.001) in 227 SMA children and 454 of their parents. The average SMN copies from father and mother in each SMA family were used to represent the copy number in the parent's generation. Subsequently, SMN transmission analysis showed that the similar distribution trend of SMN1 and SMN2 copy number was not only in the SMA children and their parents' generation but also in the non-SMA families. Moreover, when the SMN2 copy number was one in the parent's generation, 75% of their SMA children had type I and 25% of them had type II/III. However, when the SMN2 copies were three in the parent's generation, all of their SMA children were type II/III. Therefore, the diversity of SMN copies was mostly inherited and the SMN2 copy number in the parent's generation could predict the disease severity of SMA children to some extent.
Collapse
|
29
|
Vorster E, Essop FB, Rodda JL, Krause A. Spinal Muscular Atrophy in the Black South African Population: A Matter of Rearrangement? Front Genet 2020; 11:54. [PMID: 32117462 PMCID: PMC7033609 DOI: 10.3389/fgene.2020.00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder, characterized by muscle atrophy and impaired mobility. A homozygous deletion of survival motor neuron 1 (SMN1), exon 7 is the main cause of SMA in ~94% of patients worldwide, but only accounts for 51% of South African (SA) black patients. SMN1 and its highly homologous centromeric copy, survival motor neuron 2 (SMN2), are located in a complex duplicated region. Unusual copy number variations (CNVs) have been reported in black patients, suggesting the presence of complex pathogenic rearrangements. The aim of this study was to further investigate the genetic cause of SMA in the black SA population. Multiplex ligation-dependent probe amplification (MLPA) testing was performed on 197 unrelated black patients referred for SMA testing (75 with a homozygous deletion of SMN1, exon 7; 50 with a homozygous deletion of SMN2, exon 7; and 72 clinically suggestive patients with no homozygous deletions). Furthermore, 122 black negative controls were tested. For comparison, 68 white individuals (30 with a homozygous deletion of SMN1, exon 7; 8 with a homozygous deletion of SMN2, exon 7 and 30 negative controls) were tested. Multiple copies (>2) of SMN1, exon 7 were observed in 50.8% (62/122) of black negative controls which could mask heterozygous SMN1 deletions and potential pathogenic CNVs. MLPA is not a reliable technique for detecting carriers in the black SA population. Large deletions extending into the rest of SMN1 and neighboring genes were more frequently observed in black patients with homozygous SMN1, exon 7 deletions when compared to white patients. Homozygous SMN2, exon 7 deletions were commonly observed in black individuals. No clear pathogenic CNVs were identified in black patients but discordant copy numbers of exons suggest complex rearrangements, which may potentially interrupt the SMN1 gene. Only 8.3% (6/72) of clinically suggestive patients had heterozygous deletions of SMN1, exon 7 (1:0) which is lower than previous SA reports of 69.5%. This study emphasizes the lack of understanding of the architecture of the SMN region as well as the cause of SMA in the black SA population. These factors need to be taken into account when counseling and performing diagnostic testing in black populations.
Collapse
Affiliation(s)
- Elana Vorster
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fahmida B Essop
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - John L Rodda
- Department of Paediatrics, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Hensel N, Kubinski S, Claus P. The Need for SMN-Independent Treatments of Spinal Muscular Atrophy (SMA) to Complement SMN-Enhancing Drugs. Front Neurol 2020; 11:45. [PMID: 32117013 PMCID: PMC7009174 DOI: 10.3389/fneur.2020.00045] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is monogenic motoneuron disease caused by low levels of the Survival of Motoneuron protein (SMN). Recently, two different drugs were approved for the treatment of the disease. The antisense oligonucleotide Nusinersen/Spinraza® and the gene replacement therapy Onasemnogene Abeparvovec/Zolgensma® both enhance SMN levels. These treatments result in impressive benefits for the patients. However, there is a significant number of non-responders and an intervention delay has a strong negative impact on the efficacy. Obviously, later stages of motoneuron degeneration cannot be reversed by SMN-restoration. Therefore, complementary, SMN-independent strategies are needed which are able to address such SMN-irreversible degenerative processes. Those are defined as pathological alterations which are not reversed by SMN-restoration for a given dose and intervention delay. It is crucial to tailor SMN-independent approaches to the novel clinical situation with SMN-restoring treatments. On the molecular level, such SMN-irreversible changes become manifest in altered signaling modules as described by molecular systems biology. Based on our current knowledge about altered signaling, we introduce a network approach for an informed decision for the most potent SMN-independent treatment targets. Finally, we present recommendations for the identification of novel treatments which can be combined with SMN-restoring drugs.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN), Hannover, Germany
| | - Sabrina Kubinski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
31
|
Vijzelaar R, Snetselaar R, Clausen M, Mason AG, Rinsma M, Zegers M, Molleman N, Boschloo R, Yilmaz R, Kuilboer R, Lens S, Sulchan S, Schouten J. The frequency of SMN gene variants lacking exon 7 and 8 is highly population dependent. PLoS One 2019; 14:e0220211. [PMID: 31339938 PMCID: PMC6655720 DOI: 10.1371/journal.pone.0220211] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/10/2019] [Indexed: 01/30/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a disorder characterized by the degeneration of motor neurons in the spinal cord, leading to muscular atrophy. In the majority of cases, SMA is caused by the homozygous absence of the SMN1 gene. The disease severity of SMA is strongly influenced by the copy number of the closely related SMN2 gene. In addition, an SMN variant lacking exons 7 and 8 has been reported in 8% and 23% of healthy Swedish and Spanish individuals respectively. We tested 1255 samples from the 1000 Genomes Project using a new version of the multiplex ligation-dependent probe amplification (MLPA) P021 probemix that covers each SMN exon. The SMN variant lacking exons 7 and 8 was present in up to 20% of individuals in several Caucasian populations, while being almost completely absent in various Asian and African populations. This SMN1/2Δ7-8 variant appears to be derived from an ancient deletion event as the deletion size is identical in 99% of samples tested. The average total copy number of SMN1, SMN2 and the SMN1/2Δ7-8 variant combined was remarkably comparable in all populations tested, ranging from 3.64 in Asian to 3.75 in African samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sylvia Lens
- MRC Holland B.V., Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Bozorg Qomi S, Asghari A, Salmaninejad A, Mojarrad M. Spinal Muscular Atrophy and Common Therapeutic Advances. Fetal Pediatr Pathol 2019; 38:226-238. [PMID: 31060440 DOI: 10.1080/15513815.2018.1520374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive destructive motor neuron disease which is characterized primarily by the degeneration of α-motor neurons in the ventral gray horn of the spinal cord. It mainly affects children and represents the most common reason of inherited infant mortality. MATERIAL AND METHODS We provide an overview of the recent therapeutic strategies for the treatment of SMA together with available and developing therapeutic strategies. For this purpose, Google Scholar and PubMed databases were searched for literature on SMA, therapy and treatment. Titles were reviewed and 96 were selected and assessed in this paper. RESULT Over the last two decades, different therapeutic strategies have been proposed for SMA. Some methods are in the pre-clinical, others the clinical phase. CONCLUSION By emergence of the new approaches, especially in gene therapy, effective treatment in the close future is probable.
Collapse
Affiliation(s)
- Saeed Bozorg Qomi
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Asghari
- c Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arash Salmaninejad
- d Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
33
|
Ruhno C, McGovern VL, Avenarius MR, Snyder PJ, Prior TW, Nery FC, Muhtaseb A, Roggenbuck JS, Kissel JT, Sansone VA, Siranosian JJ, Johnstone AJ, Nwe PH, Zhang RZ, Swoboda KJ, Burghes AHM. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Hum Genet 2019; 138:241-256. [PMID: 30788592 PMCID: PMC6503527 DOI: 10.1007/s00439-019-01983-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by loss or mutation of the survival motor neuron 1 (SMN1) gene and retention of SMN2. We performed targeted capture and sequencing of the SMN2, CFTR, and PLS3 genes in 217 SMA patients. We identified a 6.3 kilobase deletion that occurred in both SMN1 and SMN2 (SMN1/2) and removed exons 7 and 8. The deletion junction was flanked by a 21 bp repeat that occurred 15 times in the SMN1/2 gene. We screened for its presence in 466 individuals with the known SMN1 and SMN2 copy numbers. In individuals with 1 SMN1 and 0 SMN2 copies, the deletion occurred in 63% of cases. We modeled the deletion junction frequency and determined that the deletion occurred in both SMN1 and SMN2. We have identified the first deletion junction where the deletion removes exons 7 and 8 of SMN1/2. As it occurred in SMN1, it is a pathogenic mutation. We called variants in the PLS3 and SMN2 genes, and tested for association with mild or severe exception patients. The variants A-44G, A-549G, and C-1897T in intron 6 of SMN2 were significantly associated with mild exception patients, but no PLS3 variants correlated with severity. The variants occurred in 14 out of 58 of our mild exception patients, indicating that mild exception patients with an intact SMN2 gene and without modifying variants occur. This sample set can be used in the association analysis of candidate genes outside of SMN2 that modify the SMA phenotype.
Collapse
Affiliation(s)
- Corey Ruhno
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | | | - Pamela J Snyder
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Thomas W Prior
- Department of Pathology, Case Western Reserve Medical Center, Cleveland, OH, USA
| | - Flavia C Nery
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Abdurrahman Muhtaseb
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - John T Kissel
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer J Siranosian
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alec J Johnstone
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pann H Nwe
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ren Z Zhang
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
34
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
35
|
Thompson LW, Morrison KD, Shirran SL, Groen EJN, Gillingwater TH, Botting CH, Sleeman JE. Neurochondrin interacts with the SMN protein suggesting a novel mechanism for spinal muscular atrophy pathology. J Cell Sci 2018; 131:jcs.211482. [PMID: 29507115 PMCID: PMC5963842 DOI: 10.1242/jcs.211482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative condition caused by a reduction in the amount of functional survival motor neuron (SMN) protein. SMN has been implicated in transport of mRNA in neural cells for local translation. We previously identified microtubule-dependent mobile vesicles rich in SMN and SNRPB, a member of the Sm family of small nuclear ribonucleoprotein (snRNP)-associated proteins, in neural cells. By comparing the interactomes of SNRPB and SNRPN, a neural-specific Sm protein, we now show that the essential neural protein neurochondrin (NCDN) interacts with Sm proteins and SMN in the context of mobile vesicles in neurites. NCDN has roles in protein localisation in neural cells and in maintenance of cell polarity. NCDN is required for the correct localisation of SMN, suggesting they may both be required for formation and transport of trafficking vesicles. NCDN may have potential as a therapeutic target for SMA together with, or in place of the targeting of SMN expression. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The essential neural protein neurochondrin interacts with the spinal muscular atrophy (SMA) protein SMN in cell lines and in mice. This might be relevant to the molecular pathology of SMA.
Collapse
Affiliation(s)
- Luke W Thompson
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Kim D Morrison
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Sally L Shirran
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Catherine H Botting
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Judith E Sleeman
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| |
Collapse
|
36
|
Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet 2018; 26:2768-2780. [PMID: 28460014 DOI: 10.1093/hmg/ddx166] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by reduced expression of survival of motor neuron (SMN), a protein expressed in humans by two paralogous genes, SMN1 and SMN2. These genes are nearly identical, except for 10 single-nucleotide differences and a 5-nucleotide insertion in SMN2. SMA is subdivided into four main types, with type I being the most severe. SMN2 copy number is a key positive modifier of the disease, but it is not always inversely correlated with clinical severity. We previously reported the c.859G > C variant in SMN2 exon 7 as a positive modifier in several patients. We have now identified A-44G as an additional positive disease modifier, present in a group of patients carrying 3 SMN2 copies but displaying milder clinical phenotypes than other patients with the same SMN2 copy number. One of the three SMN2 copies appears to have been converted from SMN1, but except for the C6T transition, no other changes were detected. Analyzed with minigenes, SMN1C6T displayed a ∼20% increase in exon 7 inclusion, compared to SMN2. Through systematic mutagenesis, we found that the improvement in exon 7 splicing is mainly attributable to the A-44G transition in intron 6. Using RNA-affinity chromatography and mass spectrometry, we further uncovered binding of the RNA-binding protein HuR to the -44 region, where it acts as a splicing repressor. The A-44G change markedly decreases the binding affinity of HuR, resulting in a moderate increase in exon 7 inclusion.
Collapse
Affiliation(s)
- Xingxing Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Huei Wang
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Junjie Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Thomas W Prior
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations/deletions within the survival of motor neuron 1 (SMN1) gene that lead to a pathological reduction of SMN protein levels. SMN is part of a multiprotein complex, functioning as a molecular chaperone that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNP). In addition to its role in spliceosome formation, SMN has also been found to interact with mRNA-binding proteins (mRBPs), and facilitate their assembly into mRNP transport granules. The association of protein and RNA in RNP complexes plays an important role in an extensive and diverse set of cellular processes that regulate neuronal growth, differentiation, and the maturation and plasticity of synapses. This review discusses the role of SMN in RNP assembly and localization, focusing on molecular defects that affect mRNA processing and may contribute to SMA pathology.
Collapse
|
38
|
Spinal muscular atrophy carriers with two SMN1 copies. Brain Dev 2017; 39:851-860. [PMID: 28676237 DOI: 10.1016/j.braindev.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder. Over 95% of SMA patients have homozygous deletions of the SMA-causative gene, SMN1. Thus, SMA carriers are usually diagnosed based on SMN1 copy number, with one copy indicating SMA carrier status. However, two SMN1 copies do not always exclude carrier status. In this study, we identified SMA carriers with two SMN1 copies. SUBJECTS AND METHODS From 33 families, 65 parents of genetically confirmed SMA patients were tested to determine SMA carrier status. Molecular genetic analyses, including multiplex ligation-dependent probe amplification (MLPA) assay, were performed using blood samples from family members. RESULTS Of the 65 parents, three parents from three families had two SMN1 copies. Accordingly, the frequency of carriers with two SMN1 copies was 4.6%. Two of these families were further studied. Patient 1 was homozygous for SMN1 deletion. Patient 1's mother had two SMN1 copies on one chromosome, with deletion of SMN1 on the other chromosome ([2+0] genotype). Patient 1 inherited SMN1-deleted chromosomes from both parents. Patient 2 was compound heterozygous for two SMN1 mutations: whole-gene deletion and intragenic missense mutation, c.826T>C (p.Tyr276His). Patient 2's father had two SMN1 copies with the same intragenic mutation in one copy ([1+1d] genotype, d intragenic mutation). Patient 2 inherited the chromosome with an SMN1 mutation from the father and SMN1-deleted chromosome from the mother. CONCLUSION SMA carriers with two SMN1 copies may be rare, but its possibility should be taken into consideration in carrier testing and counseling for SMA families or population-based carrier screening.
Collapse
|
39
|
Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, Allaire N, Bennett CF, Rigo F, Krainer AR, Hurt JA, Carulli JP, Staropoli JF. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc Natl Acad Sci U S A 2017; 114:E2347-E2356. [PMID: 28270613 PMCID: PMC5373344 DOI: 10.1073/pnas.1613181114] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death.
Collapse
Affiliation(s)
- Mohini Jangi
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Christina Fleet
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Patrick Cullen
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Shipra V Gupta
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | | | - Eric Chiao
- Stem Cell Research, Biogen, Cambridge, MA 02142
| | - Norm Allaire
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - C Frank Bennett
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92008
| | - Frank Rigo
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92008
| | | | - Jessica A Hurt
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - John P Carulli
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142;
| | | |
Collapse
|
40
|
Arnold WD, Duque S, Iyer CC, Zaworski P, McGovern VL, Taylor SJ, von Herrmann KM, Kobayashi DT, Chen KS, Kolb SJ, Paushkin SV, Burghes AHM. Normalization of Patient-Identified Plasma Biomarkers in SMNΔ7 Mice following Postnatal SMN Restoration. PLoS One 2016; 11:e0167077. [PMID: 27907033 PMCID: PMC5132001 DOI: 10.1371/journal.pone.0167077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. METHODS SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. RESULTS Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. CONCLUSION This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Brain/metabolism
- Brain/pathology
- Clinical Trials as Topic
- Disease Models, Animal
- Gene Expression Regulation
- Genetic Complementation Test
- Humans
- Injections, Intraventricular
- Liver/metabolism
- Liver/pathology
- Mice
- Mice, Transgenic
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Survival of Motor Neuron 1 Protein/genetics
- Survival of Motor Neuron 1 Protein/metabolism
- Survival of Motor Neuron 2 Protein/genetics
- Survival of Motor Neuron 2 Protein/metabolism
Collapse
Affiliation(s)
- W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
- Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
| | - Sandra Duque
- VIB Center for the Biology of Disease – KU Leuven Department of Human Genetics, Leuven Belgium, United States of America
| | - Chitra C. Iyer
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
| | | | - Vicki L. McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
| | | | | | | | - Karen S. Chen
- SMA Foundation, New York, New York, United States of America
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
| | | | - Arthur H. M. Burghes
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Medrano S, Monges S, Gravina LP, Alías L, Mozzoni J, Aráoz HV, Bernal S, Moresco A, Chertkoff L, Tizzano E. Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina. Eur J Paediatr Neurol 2016; 20:910-917. [PMID: 27510309 DOI: 10.1016/j.ejpn.2016.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND/PURPOSE Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder, considered one of the leading causes of infant mortality. It is caused by mutations in the SMN1 gene. A highly homologous copy of this gene named SMN2 and other neighbouring genes, SERF1A and NAIP, are considered phenotypic modifiers of the disease. In recent years, notable advances have been made in SMA research regarding evaluation, prognosis, and therapeutic options. Thus, genotype-phenotype studies in SMA are important to stratify patients for motor function tests and for envisaged clinical trials. The aim of this study was to provide clinical and molecular data of a series of Argentinean children with SMA to establish a comprehensive genotype-phenotype correlation. METHODS 144 Argentinean children with SMA (56 children with type I, 58 with type II, and 30 with type III) were evaluated. The copy number of SMN2, SERF1A, and NAIP genes was established using MLPA (Multiplex Ligation-dependent Probe Amplification) and then correlated with the patients clinical subtypes. To improve clinical characterization we considered the initial symptoms that prompted the consultation, age of acquisition of motor abilities to independent walking and age at loss of gait. We also evaluated clinical and molecular features of sibling pairs in seven families. RESULTS A strong correlation was observed between the SMN2 copy number and SMA phenotype while SERF1A and NAIP copy number showed a moderate correlation. We observed intra- and inter-family differences among the SMA types. CONCLUSION This first genotype-phenotype correlation study in Argentinean SMA children provides data to improve patient stratification and define more adequate follow-up parameters.
Collapse
Affiliation(s)
- Sofía Medrano
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Soledad Monges
- Servicio de Neurología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Luis Pablo Gravina
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Laura Alías
- Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER U-705, Barcelona, Spain
| | - Julieta Mozzoni
- Servicio de Kinesiología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Hilda Verónica Aráoz
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Sara Bernal
- Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER U-705, Barcelona, Spain
| | - Angélica Moresco
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Lilien Chertkoff
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics, Hospital Valle Hebron, Barcelona, Spain; CIBERER U-705, Barcelona, Spain.
| |
Collapse
|
42
|
|
43
|
Noguchi Y, Onishi A, Nakamachi Y, Hayashi N, Harahap NIF, Rochmah MA, Shima A, Yanagisawa S, Morisada N, Nakagawa T, Iijima K, Kasagi S, Saegusa J, Kawano S, Shinohara M, Tairaku S, Saito T, Kubo Y, Saito K, Nishio H. Telomeric Region of the Spinal Muscular Atrophy Locus Is Susceptible to Structural Variations. Pediatr Neurol 2016; 58:83-9. [PMID: 27268759 DOI: 10.1016/j.pediatrneurol.2016.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Most patients with spinal muscular atrophy lack the survival motor neuron 1 gene (SMN1) in the telomeric region of the spinal muscular atrophy locus on chromosome 5q13. On the other hand, the copy number of SMN2, a centromeric homolog of SMN1, is increased in many of these patients. This study aimed to clarify the mechanism underlying these structural variations. METHODS We determined the copy numbers of telomeric and centromeric genes in the spinal muscular atrophy locus of 86 patients and 22 control subjects using multiplex ligation-dependent probe amplification analysis. Then, we chose 74 patients lacking SMN1 exons 7 and 8, and compared their dataset with that of 22 control subjects retaining SMN1 exons 7 and 8. RESULTS The SMN2 copy number was shown to vary widely and to correlate with the disease severity of the patients. Interestingly, telomeric NAIP and telomeric GTF2H2 showed similar tendencies. We also noted positive correlations among the copy number of SMN2 and the telomeric genes of the spinal muscular atrophy locus. However, the copy numbers of centromeric NAIP and centromeric GTF2H2 were stable among the patients, with both approximating a value of two. CONCLUSION Our findings suggested that the telomeric region of the spinal muscular atrophy locus appears to be susceptible to structural variation, whereas the centromeric region is stable. Moreover, according to our results, new SMN2 copies may be generated in the telomeric region of the spinal muscular atrophy locus, supporting the SMN1-to-SMN2 gene conversion theory.
Collapse
Affiliation(s)
- Yoriko Noguchi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Akira Onishi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuji Nakamachi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Nobuhide Hayashi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Nur Imma Fatimah Harahap
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mawaddah Ar Rochmah
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ai Shima
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Naoya Morisada
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taku Nakagawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shimpei Kasagi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Jun Saegusa
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan; Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seiji Kawano
- Department of Medical Education, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Tairaku
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshio Saito
- Division of Child Neurology, Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Japan
| | - Yuji Kubo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
44
|
Butchbach MER. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases. Front Mol Biosci 2016; 3:7. [PMID: 27014701 PMCID: PMC4785180 DOI: 10.3389/fmolb.2016.00007] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for ChildrenWilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for ChildrenWilmington, DE, USA; Department of Biological Sciences, University of DelawareNewark, DE, USA; Department of Pediatrics, Thomas Jefferson UniversityPhiladelphia, PA, USA
| |
Collapse
|
45
|
Prior TW, Nagan N. Spinal Muscular Atrophy: Overview of Molecular Diagnostic Approaches. ACTA ACUST UNITED AC 2016; 88:9.27.1-9.27.13. [PMID: 26724723 DOI: 10.1002/0471142905.hg0927s88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease and the most common genetic cause of infant mortality, affecting ∼1 in 10,000 live births. The disease is characterized by progressive symmetrical muscle weakness resulting from the degeneration and loss of anterior horn cells in the spinal cord and brain stem nuclei. The disease is classified on the basis of age of onset and clinical course. SMA is caused by mutations in the telomeric copy of the survival motor neuron 1 (SMN1) gene, but all patients retain a centromeric copy of the gene, SMN2. The homozygous absence of the SMN1 exon 7 has been observed in the majority of patients and is being utilized as a reliable and sensitive SMA diagnostic test. In the majority of cases, the disease severity correlates inversely with an increased SMN2 gene copy number. Carrier detection, in the deletion cases, relies on the accurate determination of the SMN1 gene copies. Since SMA is one of the most common lethal genetic disorders, with a carrier frequency of 1 in 40 to 1 in 60, direct carrier dosage testing has been beneficial to many families. This unit attempts to highlight the molecular genetics of SMA with a focus on the advantages and limitations of the current molecular technologies.
Collapse
Affiliation(s)
- Thomas W Prior
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Narasimhan Nagan
- Integrated Genetics, Laboratory Corporation of America Holdings, Westborough, Massachusetts
| |
Collapse
|
46
|
Cristina de Almagro M, Vucic D. Inhibitor of Apoptosis Proteins, the Sentinels of Cell Death and Signaling. ENCYCLOPEDIA OF CELL BIOLOGY 2016:390-398. [DOI: 10.1016/b978-0-12-394447-4.30052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
47
|
Carré A, Empey C. Review of Spinal Muscular Atrophy (SMA) for Prenatal and Pediatric Genetic Counselors. J Genet Couns 2015; 25:32-43. [DOI: 10.1007/s10897-015-9859-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/30/2015] [Indexed: 11/29/2022]
|
48
|
Locatelli D, Terao M, Kurosaki M, Zanellati MC, Pletto DR, Finardi A, Colciaghi F, Garattini E, Battaglia GS. Different Stability and Proteasome-Mediated Degradation Rate of SMN Protein Isoforms. PLoS One 2015. [PMID: 26214005 PMCID: PMC4516248 DOI: 10.1371/journal.pone.0134163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The key pathogenic steps leading to spinal muscular atrophy (SMA), a genetic disease characterized by selective motor neuron degeneration, are not fully clarified. The full-length SMN protein (FL-SMN), the main protein product of the disease gene SMN1, plays an established role in the cytoplasm in snRNP biogenesis ultimately leading to mRNA splicing within the nucleus. It is also involved in the mRNA axonal transport. However, to what extent the impairment of these two SMN functions contributes to SMA pathogenesis remains unknown. A shorter SMN isoform, axonal-SMN or a-SMN, with more specific axonal localization, has been discovered, but whether it might act in concert with FL-SMN in SMA pathogenesis is not known. As a first step in defining common or divergent intracellular roles of FL-SMN vs a-SMN proteins, we here characterized the turn-over of both proteins and investigated which pathway contributed to a-SMN degradation. We performed real time western blot and confocal immunofluorescence analysis in easily controllable in vitro settings. We analyzed co-transfected NSC34 and HeLa cells and cell clones stably expressing both a-SMN and FL-SMN proteins after specific blocking of transcript or protein synthesis and inhibition of known intracellular degradation pathways. Our data indicated that whereas the stability of both FL-SMN and a-SMN transcripts was comparable, the a-SMN protein was characterized by a much shorter half-life than FL-SMN. In addition, as already demonstrated for FL-SMN, the Ub/proteasome pathway played a major role in the a-SMN protein degradation. We hypothesize that the faster degradation rate of a-SMN vs FL-SMN is related to the protection provided by the protein complex in which FL-SMN is assembled. The diverse a-SMN vs FL-SMN C-terminus may dictate different protein interactions and complex formation explaining the different localization and role in the neuronal compartment, and the lower expression and stability of a-SMN.
Collapse
Affiliation(s)
- Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| | - Mineko Terao
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Maria Clara Zanellati
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Daniela Rita Pletto
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| |
Collapse
|
49
|
Farooq F, MacKenzie AE. Current and emerging treatment options for spinal muscular atrophy. Degener Neurol Neuromuscul Dis 2015; 5:75-81. [PMID: 32669914 PMCID: PMC7337203 DOI: 10.2147/dnnd.s48420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
Spinal muscular atrophy is one of the most common inherited neuromuscular conditions; our understanding of the genetic pathology and translational research coming from this insight has made significant progress over the past decade. This short review provides the background of the disease along with the bench to bedside progress of some promising treatment options to develop better understanding of the present state of the disease.
Collapse
Affiliation(s)
- Faraz Farooq
- Science Education Division, Emirates College for Advanced Education, Abu Dhabi, United Arab Emirates.,Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada.,University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
50
|
Phan HC, Taylor JL, Hannon H, Howell R. Newborn screening for spinal muscular atrophy: Anticipating an imminent need. Semin Perinatol 2015; 39:217-29. [PMID: 25979781 DOI: 10.1053/j.semperi.2015.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. Children with type I SMA typically die by the age of 2 years. Recent progress in gene modification and other innovative therapies suggest that improved outcomes may soon be forthcoming. In animal models, therapeutic intervention initiated before the loss of motor neurons alters SMA phenotype and increases lifespan. Presently, supportive care including respiratory, nutritional, physiatry, and orthopedic management can ameliorate clinical symptoms and improve survival rates if SMA is diagnosed early in life. Newborn screening could help optimize these potential benefits. A recent report demonstrated that SMA detection can be multiplexed at minimal additional cost with the assay for severe combined immunodeficiency, already implemented by many newborn screening programs. The public health community should remain alert to the rapidly changing developments in early detection and treatment of SMA.
Collapse
Affiliation(s)
- Han C Phan
- Department of Pediatrics, Emory University, Atlanta, GA.
| | | | - Harry Hannon
- Newborn Screening Consensus Committee, Clinical and Laboratory Standards Institute (CLSI), Wayne, PA
| | - Rodney Howell
- Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|