1
|
Pyles GM, Huckaby AB, Gutierrez MDLP, Witt WT, Mateu-Borrás M, Dublin SR, Rocuskie-Marker C, Sesti BN, Peasak K, Bitzer GJ, Rader N, Weaver KL, Boehm DT, Fitzgerald N, Chapman J, Ulicny S, Damron FH, Barbier M. Virus-like particles displaying the mature C-terminal domain of filamentous hemagglutinin are immunogenic and protective against Bordetella pertussis respiratory infection in mice. Infect Immun 2024; 92:e0027024. [PMID: 39023271 PMCID: PMC11320929 DOI: 10.1128/iai.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Bordetella pertussis, the bacterium responsible for whooping cough, remains a significant public health challenge despite the existing licensed pertussis vaccines. Current acellular pertussis vaccines, though having favorable reactogenicity and efficacy profiles, involve complex and costly production processes. In addition, acellular vaccines have functional challenges such as short-lasting duration of immunity and limited antigen coverage. Filamentous hemagglutinin (FHA) is an adhesin of B. pertussis that is included in all multivalent pertussis vaccine formulations. Antibodies to FHA have been shown to prevent bacterial attachment to respiratory epithelial cells, and T cell responses to FHA facilitate cell-mediated immunity. In this study, FHA's mature C-terminal domain (MCD) was evaluated as a novel vaccine antigen. MCD was conjugated to virus-like particles via SpyTag-SpyCatcher technology. Prime-boost vaccine studies were performed in mice to characterize immunogenicity and protection against the intranasal B. pertussis challenge. MCD-SpyVLP was more immunogenic than SpyTag-MCD antigen alone, and in Tohama I strain challenge studies, improved protection against challenge was observed in the lungs at day 3 and in the trachea and nasal wash at day 7 post-challenge. Furthermore, a B. pertussis strain encoding genetically inactivated pertussis toxin was used to evaluate MCD-SpyVLP vaccine immunity. Mice vaccinated with MCD-SpyVLP had significantly lower respiratory bacterial burden at both days 3 and 7 post-challenge compared to mock-vaccinated animals. Overall, these data support the use of SpyTag-SpyCatcher VLPs as a platform for use in vaccine development against B. pertussis and other pathogens.
Collapse
Affiliation(s)
- Gage M. Pyles
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Maria de la Paz Gutierrez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - William T. Witt
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Margalida Mateu-Borrás
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Spencer R. Dublin
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Carleena Rocuskie-Marker
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Bethany N. Sesti
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Kerrington Peasak
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Nathaniel Rader
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Kelly L. Weaver
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Nicholas Fitzgerald
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Joshua Chapman
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Samuel Ulicny
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Kang KR, Kim JA, Cho GW, Kang HU, Kang HM, Kang JH, Seong BL, Lee SY. Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines (Basel) 2024; 12:108. [PMID: 38276680 PMCID: PMC10818713 DOI: 10.3390/vaccines12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Since the 2000s, sporadic outbreaks of whooping cough have been reported in advanced countries, where the acellular pertussis vaccination rate is relatively high, and in developing countries. Small-scale whooping cough has also continued in many countries, due in part to the waning of immune protection after childhood vaccination, necessitating the development of an improved pertussis vaccine and vaccination program. Currently, two different production platforms are being actively pursued in Korea; one is based on the aP (acellular pertussis) vaccine purified from B. pertussis containing pertussis toxoid (PT), filamentous hemagglutin (FHA) and pertactin (PRN), and the other is based on the recombinant aP (raP), containing genetically detoxified pertussis toxin ADP-ribosyltransferase subunit 1 (PtxS1), FHA, and PRN domain, expressed and purified from recombinant E. coli. aP components were further combined with diphtheria and tetanus vaccine components as a prototype DTaP vaccine by GC Pharma (GC DTaP vaccine). We evaluated and compared the immunogenicity and the protective efficacy of aP and raP vaccines in an experimental murine challenge model: humoral immunity in serum, IgA secretion in nasal lavage, bacterial clearance after challenge, PTx (pertussis toxin) CHO cell neutralization titer, cytokine secretion in spleen single cell, and tissue resident memory CD4+ T cell (CD4+ TRM cell) in lung tissues. In humoral immunogenicity, GC DTaP vaccines showed high titers for PT and PRN and showed similar patterns in nasal lavage and IL-5 cytokine secretions. The GC DTaP vaccine and the control vaccine showed equivalent results in bacterial clearance after challenge, PTx CHO cell neutralization assay, and CD4+ TRM cell. In contrast, the recombinant raP vaccine exhibited strong antibody responses for FHA and PRN, albeit with low antibody level of PT and low titer in PTx CHO neutralization assay, as compared to control and GC DTaP vaccines. The raP vaccine provided a sterile lung bacterial clearance comparable to a commercial control vaccine after the experimental challenge in murine model. Moreover, raP exhibited a strong cytokine response and CD4+ TRM cell in lung tissue, comparable or superior to the experimental and commercial DTaP vaccinated groups. Contingent on improving the biophysical stability and humoral response to PT, the raP vaccine warrants further development as an effective alternative to aP vaccines for the control of a pertussis outbreak.
Collapse
Affiliation(s)
- Kyu-Ri Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Ji-Ahn Kim
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Gyu-Won Cho
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Han-Ul Kang
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Hyun-Mi Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Han Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Young Lee
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon 14647, Republic of Korea
| |
Collapse
|
3
|
Lee SF, Hulbah M, Halperin SA. Development of a gene delivery system in Streptococcus gordonii using thymidylate synthase as a selection marker. J Microbiol Methods 2016; 125:43-8. [PMID: 27062990 DOI: 10.1016/j.mimet.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/26/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022]
Abstract
Streptococcus gordonii, a commensal bacterium of the human oral cavity, is a potential live vaccine vector. In this study, we have developed a system that delivers a vaccine antigen gene onto the chromosome of S. gordonii. The system consisted of a recipient strain, that is a thymidine auxotroph constructed by deletion of a portion of thyA gene, and a linear gene delivery construct, composed of the functional thyA gene, the vaccine antigen gene, and a DNA fragment immediately downstream of thyA. The construct is assembled by a ligation and polymerase chain reaction strategy. Upon introduction into the thyA mutant, the vaccine antigen gene integrated into the chromosome via a double crossing-over event. Using the above strategy, a test vaccine antigen gene coding for a fusion protein composed of the Bordetella pertussis filamentous hemagglutinin type I domain and the single chain antibody against complement receptor 1 was successfully delivered to S. gordonii. The resulting S. gordonii expressed the fusion protein and the delivered gene was stable in the bacterium in vitro and in a mouse colonization experiment. Mice colonized by the fusion protein-expressing S. gordonii developed antibodies that recognized the native filamentous hemagglutinin protein suggesting that an immune response was elicited.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Bacterial
- Chromosomes, Bacterial/genetics
- Gene Transfer Techniques
- Humans
- Immunogenicity, Vaccine
- Mice
- Mouth/microbiology
- Mutation
- Receptors, Complement/immunology
- Recombinant Fusion Proteins
- Single-Chain Antibodies/genetics
- Streptococcus gordonii/enzymology
- Streptococcus gordonii/genetics
- Streptococcus gordonii/immunology
- Streptococcus gordonii/physiology
- Thymidine/genetics
- Thymidylate Synthase/genetics
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/genetics
- Virulence Factors, Bordetella/genetics
- Virulence Factors, Bordetella/immunology
Collapse
Affiliation(s)
- Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Maram Hulbah
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS B3K 6R8, Canada
| |
Collapse
|
4
|
Asgarian-Omran H, Golara M, Abdolmaleki S, Navabi SS, Alipour H, Khoshnoodi J, Hemmati A, Zarei S, Jeddi-Tehrani M, Shokri F. Restricted antibody response to Bordetella pertussis filamentous hemagglutinin induced by whole-cell and acellular pertussis vaccines. Infect Dis (Lond) 2015; 48:127-32. [PMID: 26439274 DOI: 10.3109/23744235.2015.1093655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Filamentous hemagglutinin (FHA) is a principal virulence factor, an important immunogenic antigen of Bordetella pertussis, and a major component of many acellular pertussis vaccines. In the present study, the human antibody response to different regions of FHA was determined in healthy children and adults vaccinated with either whole-cell or acellular pertussis vaccines. METHODS To define the immunodominant regions of FHA, four overlapping recombinant fragments were expressed and produced in Escherichia coli and then purified by His-tagged based affinity chromatography. Two groups comprising healthy preschool children (n = 50) and adults (n = 26) were vaccinated with a single dose of commercial whole-cell and acellular DTaP vaccines, respectively. An antigen-based ELISA was applied to measure serum levels of anti-FHA antibody to both native and recombinant proteins in vaccinated volunteers. RESULTS In both groups of vaccinated individuals, the anti-FHA antibody response was mainly directed against epitopes located within a fragment of FHA spanning amino acid residues 1877-2250 of the mature FHA molecule (p < 0.001). No or little antibody was detected against the other recombinant segments of FHA. CONCLUSION Our results suggest that the human antibody response to FHA is directed to an immunodominant region located within residues 1877-2250 of the FHA molecule. Characterization and epitope mapping of the major components of acellular pertussis vaccine and future modifications in vaccine formulation may improve its efficacy and protectivity.
Collapse
Affiliation(s)
- Hossein Asgarian-Omran
- a Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran .,b Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Maryam Golara
- a Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Sara Abdolmaleki
- a Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Shadi Sadat Navabi
- a Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Hadi Alipour
- c Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resource , Tehran University , Karaj , and
| | - Jalal Khoshnoodi
- a Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Azam Hemmati
- d Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR , Tehran , Iran
| | - Saeed Zarei
- d Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR , Tehran , Iran
| | - Mahmood Jeddi-Tehrani
- d Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR , Tehran , Iran
| | - Fazel Shokri
- a Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran .,d Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR , Tehran , Iran
| |
Collapse
|
5
|
Asgarian-Omran H, Amirzargar AA, Zeerleder S, Mahdavi M, van Mierlo G, Solati S, Jeddi-Tehrani M, Rabbani H, Aarden L, Shokri F. Interaction of Bordetella pertussis filamentous hemagglutinin with human TLR2: identification of the TLR2-binding domain. APMIS 2014; 123:156-62. [PMID: 25353353 DOI: 10.1111/apm.12332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023]
Abstract
Filamentous hemagglutinin (FHA) is a major adhesion and virulence factor of Bordetella pertussis and also a main component of acellular pertussis vaccines. Interaction of FHA with different receptors on human epithelial and immune cells facilitates entrance and colonization of bacteria as well as immunomodulation of the host immune response. Three overlapping segments of the FHA gene were cloned in a prokaryotic expression vector and the recombinant proteins were purified. These recombinant fragments along with the native FHA protein were employed to assess their potential Toll-like receptor (TLR) stimulatory effects and to localize the TLR binding region. TLR stimulation was monitored by applying HEK293-Blue cell lines cotransfected with TLR2, 4, or 5 and a NF-κB reporter gene. Culture supernatants were checked for secretion of the reporter gene product and IL-8 as indicators of TLR stimulation. Native FHA was found to strongly stimulate TLR2, but not TLR4 or TLR5 transfected cells. Among recombinant FHA fragments only the fragment spanning amino acid residues 1544-1917 was able to exhibit the TLR2 stimulating property of FHA. Interaction of FHA with TLR2 suggests its involvement in induction of the innate immune system against Bordetella pertussis. The TLR2-binding domain of FHA may contribute to immunoprotection against pertussis infection.
Collapse
Affiliation(s)
- Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fusion expression and immunogenicity of Bordetella pertussis PTS1-FHA protein: implications for the vaccine development. Mol Biol Rep 2010; 38:1957-63. [PMID: 20878241 DOI: 10.1007/s11033-010-0317-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Mutants of pertussis toxin (PT) S1 subunit and filamentous hemagglutinin (FHA) type I immunodominant domain from Bordetella pertussis (B. pertussis) are considered to be effective candidate antigens for acellular pertussis vaccines; however, the substantial progress is hampered in part for the lack of a suitable in vitro expression system. In this paper, the gene sequences of a S1 mutant C180-R9K/E129G (mS1) and a truncated peptide named Fs from FHA type I immunodominant domain were linked together and constructed to pET22b expression vector as a fusion gene; after inducing with IPTG, it was highly expressed in E. coli BL21 (DE3) as inclusion body. The fusion protein FsmS1 was purified from cell lysates and refolded successfully. The result of Western blotting indicate that it was able to react with both anti-S1 and anti-FHA McAbs; antiserum produced from New Zealand white rabbits immunized with this protein was able to recognize both native PT and FHA antigens as determined by western blotting. These data have provided a novel feasible method to produce PT S1 subunit and FHA type I immunodominant domain in large scale in vitro, which is implicated for the development of multivalent subunit vaccines candidate against B. pertussis infection.
Collapse
|
7
|
Julio SM, Inatsuka CS, Mazar J, Dieterich C, Relman DA, Cotter PA. Natural-host animal models indicate functional interchangeability between the filamentous haemagglutinins of Bordetella pertussis and Bordetella bronchiseptica and reveal a role for the mature C-terminal domain, but not the RGD motif, during infection. Mol Microbiol 2009; 71:1574-90. [PMID: 19220744 DOI: 10.1111/j.1365-2958.2009.06623.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria of the Bordetella genus cause respiratory tract infections. Both broad host range (e.g. Bordetella bronchiseptica) and human-adapted (e.g. Bordetella pertussis) strains produce a surface-exposed and secreted protein called filamentous haemagglutinin (FHA) that functions in adherence and immunomodulation. Previous studies using B. pertussis and cultured mammalian cells identified several FHA domains with potential roles in host cell interactions, including an Arg-Gly-Asp (RGD) triplet that was reported to bind integrins on epithelial cells and monocytes to activate host signalling pathways. We show here that, in contrast to our previous report, the fhaB genes of B. pertussis and B. bronchiseptica are functionally interchangeable, at least with regard to the various in vitro and in vivo assays investigated. This result is significant because it indicates that information obtained studying FHA using B. bronchiseptica and natural-host animal models should apply to B. pertussis FHA as well. We also show that the C-terminus of mature FHA, which we name the MCD, mediates adherence to epithelial and macrophage-like cells and is required for colonization of the rat respiratory tract and modulation of the inflammatory response in mouse lungs. We could not, however, detect a role for the RGD in any of these processes.
Collapse
Affiliation(s)
- Steven M Julio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zhao Z, Xue Y, Tang X, Wu B, Cheng X, He Q, Zhang C, Guo A, Jin M, Chen H. Immunogenicity of recombinant protective antigen and efficacy against intranasal challenge with Bordetella bronchiseptica. Vaccine 2008; 27:2523-8. [PMID: 18852008 DOI: 10.1016/j.vaccine.2008.09.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/13/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Bordetella bronchiseptica is a Gram-negative respiratory pathogen that causes substantial disease in a variety of animals. Filamentous hemagglutinin (FHA) and pertactin are important attachment factors and protective immunogens, which serve as protective antigens in several animal models of infection with B. bronchiseptica. Here, we showed the efficacy of subcutaneous immunization of mice with a recombinant protein rF1P2, which consisted of the important immunodominant protective type I domain (F1) of FHA and the highly immunogenic region II domain (P2) of pertactin. Groups of mice tested, when challenged with different strains of B. bronchiseptica were fully protected, with long-lasting immunity to lethal B.bronchiseptica challenge, whereas mice immunized with Freund's adjuvant alone or PBS were not. In rF1P2-immunized mice, specific antibodies lasted for more than 120 days, and the IgG1/IgG2a ratio remained at a constant level till the end of the study. This suggests that rF1P2-induced a long-lasting balanced humoral immune responses and immunological memory in mice. rF1P2-specific antisera inhibited hemagglutination associated with full-length mature FHA. Furthermore, passive antiserum transfer from immunized animals completely protected naive mice from subsequent B. bronchiseptica challenge. These data may have implications for the development of safe and efficacious subunit vaccines for the prevention of bordetellosis, and may contribute to future acellular whooping cough vaccines.
Collapse
Affiliation(s)
- Zhanqin Zhao
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Subcutaneous vaccination with attenuated Salmonella enterica serovar Choleraesuis C500 expressing recombinant filamentous hemagglutinin and pertactin antigens protects mice against fatal infections with both S. enterica serovar Choleraesuis and Bordetella bronchiseptica. Infect Immun 2008; 76:2157-63. [PMID: 18268026 DOI: 10.1128/iai.01495-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis strain C500 is a live, attenuated vaccine that has been used in China for over 40 years to prevent piglet paratyphoid. We compared the protective efficacies of subcutaneous (s.c.) and oral vaccination of BALB/c mice with C500 expressing the recombinant filamentous hemagglutinin type I domain and pertactin region 2 domain antigen (rF1P2) of Bordetella bronchiseptica. Protective efficacy against both S. enterica serovar Choleraesuis infection in an oral fatal challenge model and B. bronchiseptica infection in a model of fatal acute pneumonia was evaluated. Both the s.c. and oral vaccines conferred complete protection against fatal infection with the virulent parent S. enterica serovar Choleraesuis strain (C78-1). All 20 mice vaccinated s.c. survived intranasal challenge with four times the 50% lethal dose of virulent B. bronchiseptica (HH0809) compared with 4 of 20 vector-treated controls and 1 of 18 phosphate-buffered saline-treated controls that survived, but no significant protection against HH0809 was observed in orally vaccinated animals. Both the s.c. and oral vaccines elicited rF1P2-specific serum immunoglobulin G (IgG) and IgA antibodies. However, lung homogenates from s.c. vaccinated animals had detectably high levels of rF1P2-specific IgG and IgA; a much lower level of rF1P2-specific IgG was detected in samples from orally vaccinated mice, and the latter showed no evidence of local IgA. Furthermore, a more abundant and longer persistence of vaccine organisms was observed in the lungs of mice immunized s.c. than in those of mice immunized orally. Our results suggest that s.c. rather than oral vaccination is more efficacious in protecting mice from fatal challenge with B. bronchiseptica.
Collapse
|
10
|
Hussein AH, Davis EM, Halperin SA, Lee SF. Construction and characterization of single-chain variable fragment antibodies directed against the Bordetella pertussis surface adhesins filamentous hemagglutinin and pertactin. Infect Immun 2007; 75:5476-82. [PMID: 17724067 PMCID: PMC2168280 DOI: 10.1128/iai.00494-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single-chain variable fragment (scFv) antibody library against Bordetella pertussis was constructed using M13 phage display. The library was enriched for phages surface displaying functional scFv by biopanning against B. pertussis immobilized on polystyrene plates. Two hundred eighty-eight individual clones from the enriched library were screened for binding to B. pertussis cells, filamentous hemagglutinin (FHA), and pertactin (PRN) in enzyme-linked immunosorbent assays (ELISAs). Based on the binding ability, the clones were put into eight groups. The scFv DNA inserts from the 288 clones were digested with BstOI, and 18 unique restriction patterns, named types 1 to 18, were found. Eight clones (types 1 to 7 and 18) were selected for further testing against FHA, PRN, and B. pertussis by ELISA. The results showed that types 1, 5, 7, and 18 bound strongly to B. pertussis cells as well as FHA and PRN. Type 3 bound strongly to the cells and FHA but weakly to PRN. Types 4 and 6 bound FHA only, and type 2 did not bind to the cells or antigens. The ability of the eight clones to inhibit B. pertussis from binding to HEp-2 cells was assayed. Types 1, 5, and 7, but not the remaining clones, inhibited the adherence of B. pertussis to HEp-2 cells. The scFvs were sequenced, and the deduced amino acid sequence showed that the scFvs were different antibodies. Maltose-binding protein (MBP) fusion proteins composed of three different regions of FHA (heparin-binding domain, carbohydrate recognition domain, and the RGD triplet motif) were constructed. The three fusion proteins and Mal85 (MBP-FHA type I domain) were used to map the binding sites for scFvs of types 1, 5, and 7 by ELISA. The results showed that all three scFvs bound to the heparin-binding domain fusion protein but not the other fusion proteins. BALB/c mice who received recombinant phage-treated B. pertussis had reduced bacterial counts in the nasal cavity, trachea, and lungs compared to the control groups.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/chemistry
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/therapeutic use
- Bacterial Adhesion/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacteriophage M13
- Bordetella pertussis/immunology
- Cell Line
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Enzyme-Linked Immunosorbent Assay
- Epitope Mapping
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Library
- Protein Binding
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Virulence Factors, Bordetella/genetics
- Virulence Factors, Bordetella/immunology
- Whooping Cough/prevention & control
Collapse
Affiliation(s)
- Ahmad H Hussein
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University Halifax, Nova Scotia B3H 3J5, Canada
| | | | | | | |
Collapse
|
11
|
Vandebriel RJ, Gremmer ER, Vermeulen JP, Hellwig SMM, Dormans JAMA, Roholl PJM, Mooi FR. Lung pathology and immediate hypersensitivity in a mouse model after vaccination with pertussis vaccines and challenge with Bordetella pertussis. Vaccine 2007; 25:2346-60. [PMID: 17224216 DOI: 10.1016/j.vaccine.2005.09.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 07/19/2006] [Accepted: 09/05/2006] [Indexed: 11/23/2022]
Abstract
While evaluating vaccine efficacy against clinical Bordetella pertussis isolates in mice, after challenge vaccinated mice showed increased lung pathology with eosinophilia, compared to challenged, non-vaccinated animals. This led us to study bacterial clearance, lung pathology, lung TNF-alpha expression, and parameters of immediate hypersensitivity (IH), being serum IgE levels, eosinophil numbers in the bronchoalveolar lavage fluid, and ex vivo IL-4, IL-5, IL-10, IL-13, and IFN-gamma production by the bronchial lymph node cells. BALB/c mice received a combined Diphtheria (D), Tetanus (T), Poliomyelitis, and whole-cell Pertussis vaccine (WCV), a combined D, T, and three-component acellular Pertussis vaccine (ACV), aluminium hydroxide adjuvant, or PBS, 28 and 14 days before B. pertussis infection. Similarly treated non-infected mice were taken as a control. Infection induced pathology; this induction was stronger after (especially WCV) vaccination. WCV but not ACV vaccination induced TNF-alpha expression after challenge. After challenge, IH parameters were strongly increased by (especially ACV) vaccination. Vaccinated IL-4 KO mice showed similar clearance and pathology, in the absence of IgE and with reduced numbers of eosinophils. Vaccinated (Th1-deficient) T-bet KO mice showed reduced clearance and similar pathology. In summary, after challenge vaccination increased lung pathology, TNF-alpha expression (only WCV), and IH parameters. Th1 cells were critical for clearance.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Bordetella pertussis/growth & development
- Bordetella pertussis/immunology
- Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage
- Diphtheria-Tetanus-Pertussis Vaccine/immunology
- Diphtheria-Tetanus-Pertussis Vaccine/toxicity
- Female
- Hypersensitivity, Immediate/chemically induced
- Hypersensitivity, Immediate/metabolism
- Immunoglobulin E/blood
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Interleukin-13/metabolism
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Interleukin-5/metabolism
- Lung/immunology
- Lung/microbiology
- Lung/pathology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Pertussis Vaccine/administration & dosage
- Pertussis Vaccine/immunology
- Pertussis Vaccine/toxicity
- Tumor Necrosis Factor-alpha/metabolism
- Vaccines, Acellular/administration & dosage
- Vaccines, Acellular/immunology
- Vaccines, Acellular/toxicity
- Whooping Cough/immunology
- Whooping Cough/prevention & control
Collapse
Affiliation(s)
- Rob J Vandebriel
- Laboratory for Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mazar J, Cotter PA. Topology and maturation of filamentous haemagglutinin suggest a new model for two‐partner secretion. Mol Microbiol 2006; 62:641-54. [PMID: 16999837 DOI: 10.1111/j.1365-2958.2006.05392.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-partner secretion (TPS) is the most widely distributed secretion pathway known. These systems export large exoproteins through highly conserved channel-forming beta-barrel proteins. Filamentous haemagglutinin (FHA), expressed by Bordetella species, is the prototypical TPS family member. Here we show that the C-terminus of mature FHA, as opposed to the N-terminus as previously proposed, is exposed on the cell surface and is required for mediating adherence to cultured epithelial cells. We show that the C-terminus of the FHA pro-protein (FhaB) is required for FHA function in vitro and in vivo and we show that cleavage of FhaB to form FHA is not the mechanism by which FHA is released from the cell. Based on these data, we propose a new model for TPS. This model provides an explanation for the energetics of export of globular protein domains across membranes in the absence of ATP and it suggests a new mechanism for the control of protein folding.
Collapse
Affiliation(s)
- Joseph Mazar
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
13
|
Knight JB, Huang YY, Halperin SA, Anderson R, Morris A, Macmillan A, Jones T, Burt DS, Van Nest G, Lee SF. Immunogenicity and protective efficacy of a recombinant filamentous haemagglutinin from Bordetella pertussis. Clin Exp Immunol 2006; 144:543-51. [PMID: 16734625 PMCID: PMC1941966 DOI: 10.1111/j.1365-2249.2006.03097.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a major childhood pathogen; acellular vaccines consisting of purified B. pertussis antigens such as filamentous haemagglutinin (FHA) are commonly used to prevent pertussis. Despite the importance of FHA in B. pertussis pathogenesis and its inclusion in most acellular vaccines, the functional importance of individual domains in the induction of protective immunity is largely unknown. In this study, we have purified a recombinant FHA protein from Escherichia coli consisting of a 42 kDa maltose binding domain of E. coli and the 43 kDa type I immunodominant domain of FHA. The fusion protein (Mal85) was purified from E. coli cell lysates via affinity chromatography with an amylose column. Mal85 was then delivered to BALB/c mice intranasally encapsulated in liposomes, formulated with Protollin(TM) or in conjunction with an immunostimulatory CpG oligonucleotide. Mice were also vaccinated intraperitoneally with alum-adsorbed Mal85. Sera from all treatment groups showed strong IgG responses to Mal85 and recognized native FHA. Specific salivary IgA was induced in mice vaccinated with Mal85 in liposomes, Protollin(TM) and delivered with CpG. Vaccination with Mal85 encapsulated in liposomes or formulated with Protollin(TM) provided protection against aerosol challenge with B. pertussis in BALB/c mice. These data indicate that the type I domain of FHA is a protective antigen in mice and may serve as a candidate for inclusion in new acellular pertussis vaccines.
Collapse
MESH Headings
- Adhesins, Bacterial/immunology
- Adhesins, Bacterial/isolation & purification
- Adjuvants, Immunologic
- Animals
- Antibodies, Bacterial/biosynthesis
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bordetella pertussis/immunology
- CpG Islands/immunology
- Cysteine Endopeptidases
- Drug Combinations
- Female
- Hemagglutinins/immunology
- Hemagglutinins/isolation & purification
- Immunization/methods
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin G/biosynthesis
- Lipopolysaccharides
- Liposomes
- Mice
- Mice, Inbred BALB C
- Pertussis Vaccine/immunology
- Saliva/immunology
- Vaccines, Synthetic/immunology
- Virulence Factors, Bordetella/immunology
- Virulence Factors, Bordetella/isolation & purification
- Whooping Cough/prevention & control
Collapse
Affiliation(s)
- J B Knight
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tagawa Y, Sanders JD, Uchida I, Bastida-Corcuera FD, Kawashima K, Corbeil LB. Genetic and functional analysis of Haemophilus somnus high molecular weight-immunoglobulin binding proteins. Microb Pathog 2005; 39:159-70. [PMID: 16169703 DOI: 10.1016/j.micpath.2005.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 08/03/2005] [Indexed: 11/23/2022]
Abstract
Haemophilus somnus immunoglobulin binding proteins (IgBPs) are virulence associated but only one (p76) has been genetically defined. We determined the nucleotide sequence of the 5'-flanking region of the p76 gene. This region had been identified as the coding region for a series of high molecular weight (HMW)-IgBPs. Analysis of the nucleotide sequence indicated the gene (immunoglobulin binding protein A, ibpA) encoding the HMW and p76 IgBPs comprised a single open reading frame of 12,285 base pairs (bp). The ibpA gene is flanked by an upstream ORF of 1758bp, designated ibpB. The predicted amino acid sequences of these two genes demonstrate similarity to virulence exoproteins and their transporter proteins that comprise a two-partner secretion pathway in various Gram-negative bacteria. Motifs associated with binding to mammalian cells were also identified within the sequence. Competitive inhibition studies implicated a putative heparin-binding domain in adherence to bovine endothelial cells. Expression plasmids for glutathione S-transferase (GST)-fused recombinant fragments covered amino acid residues 972-3201. IgG2 Fc binding studies identified fragment 972-1515 (GST-IbpA3) as an Fc binding peptide. This peptide and GST-IbpA5 (aa 2071-2730) reacted strongly with convalescent phase serum. In a small preliminary study, calves immunized with the purified GST-IbpA3 peptide were protected against an intrabronchial H. somnus challenge.
Collapse
Affiliation(s)
- Yuichi Tagawa
- Department of Pathology, University of California, San Diego Medical Center, 200 West Arbor Drive, San Diego, CA 92103-8416, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Colombi D, Horton DSPQ, Oliveira MLS, Sakauchi MA, Ho PL. Antibodies produced against a fragment of filamentous haemagglutinin (FHA) of Bordetella pertussis are able to inhibit hemagglutination induced by the whole adhesin. FEMS Microbiol Lett 2004; 240:41-7. [PMID: 15500977 DOI: 10.1016/j.femsle.2004.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/26/2004] [Accepted: 09/10/2004] [Indexed: 11/17/2022] Open
Abstract
Filamentous hemagglutinin adhesin (FHA) is important for the adherence of Bordetella pertussis to the host ciliary epithelial cells of the respiratory tract. Several binding domains have been characterized in the FHA molecule. For example, an putative heparin-binding domain of FHA was previously located in the FHA(442-863) region. In this work, the HEP fragment, corresponding to FHA(430-873) was amplified by PCR and subcloned in an Escherichia coli expression plasmid. Purified recombinant HEP was used to produce polyclonal antibodies in mice that were able to recognize HEP and FHA in ELISA and in Western-blot assays. Although recombinant HEP displayed low ability to bind heparin and no hemagglutination activity, the anti-HEP antibodies were able to inhibit FHA mediated hemagglutination activity in goose erythrocytes. These results indicate that other amino acid residues that are not present in the FHA(430-873) fragment may be necessary for heparin binding. Further studies to address the immunogenic response against HEP are also required.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Bacterial/immunology
- Antibody Specificity
- Bordetella pertussis/immunology
- Cloning, Molecular
- Erythrocytes/immunology
- Erythrocytes/microbiology
- Female
- Hemagglutination/immunology
- Hemagglutinins/chemistry
- Hemagglutinins/genetics
- Hemagglutinins/immunology
- Heparin/metabolism
- Mice
- Mice, Inbred BALB C
- Protein Structure, Tertiary
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Virulence Factors, Bordetella/chemistry
- Virulence Factors, Bordetella/genetics
- Virulence Factors, Bordetella/immunology
- Whooping Cough/prevention & control
Collapse
Affiliation(s)
- Débora Colombi
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500 Butantan, CEP 05503-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
16
|
Poulain-Godefroy O, Menozzi FD, Alonso S, Vendeville C, Capron A, Locht C, Riveau G. Adjuvant activity of free Bordetella pertussis filamentous haemagglutinin delivered by mucosal routes. Scand J Immunol 2003; 58:503-10. [PMID: 14629622 DOI: 10.1046/j.1365-3083.2003.01336.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of safe and potent mucosal adjuvants remains a major objective in vaccinology. The potential usefulness of filamentous haemagglutinin (FHA) of Bordetella pertussis as an adjuvant was assessed in a mouse model. The glutathione-S-transferase of Schistosoma mansoni (Sm28GST) was used for intranasal administration, while the gut-resistant keyhole limpet haemocyanin (KLH) was administrated by the oral route. For both antigens, coadministration with FHA increased antigen-specific immunoglobulin titres. This adjuvant effect did not require chemical cross-linking or direct interaction between FHA and the antigen tested. FHA also behaved as an adjuvant by the subcutaneous route, indicating that its adjuvanticity is not restricted to binding to mucosal surfaces. The FHA-induced adjuvanticity was also observed in mice with high anti-FHA antibody titres as a result of antipertussis vaccination, indicating that pre-existing anti-FHA antibodies do not impair FHA adjuvanticity. No mRNA coding for proinflammatory cytokines was induced in the lungs after intranasal FHA administration. However, an increase in the levels of mRNAs coding for B7-1, transforming growth factor (TGF)-beta and major histocompatibility complex (MHC)-II was detected in the lungs after FHA administration. Although the molecular mechanisms of the FHA-induced adjuvanticity remain to be elucidated, the data presented here indicate that this adhesin, already assessed for human use as a pertussis vaccine constituent, represents a promising adjuvant to improve the humoral immune response when given by mucosal routes.
Collapse
|
17
|
Coutte L, Alonso S, Reveneau N, Willery E, Quatannens B, Locht C, Jacob-Dubuisson F. Role of adhesin release for mucosal colonization by a bacterial pathogen. J Exp Med 2003; 197:735-42. [PMID: 12629063 PMCID: PMC2193847 DOI: 10.1084/jem.20021153] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogen attachment is a crucial early step in mucosal infections. This step is mediated by important virulence factors called adhesins. To exert these functions, adhesins are typically surface-exposed, although, surprisingly, some are also released into the extracellular milieu, the relevance of which has previously not been studied. To address the role of adhesin release in pathogenesis, we used Bordetella pertussis as a model, since its major adhesin, filamentous hemagglutinin (FHA), partitions between the bacterial surface and the extracellular milieu. FHA release depends on its maturation by the specific B. pertussis protease SphB1. We constructed SphB1-deficient mutants and found that they were strongly affected in their ability to colonize the mouse respiratory tract, although they adhered even better to host cells in vitro than their wild-type parent strain. The defect in colonization could be overcome by prior nasal instillation of purified FHA or by coinfection with FHA-releasing B. pertussis strains, but not with SphB1-producing FHA-deficient strains, ruling out a nonspecific effect of SphB1. These results indicate that the release of FHA is important for colonization, as it may facilitate the dispersal of bacteria from microcolonies and the binding to new sites in the respiratory tract.
Collapse
Affiliation(s)
- Loic Coutte
- INSERM U447, Institut National de Sante et la Recherche Medical Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee SF, Halperin SA, Knight JB, Tait A. Purification and immunogenicity of a recombinant Bordetella pertussis S1S3FHA fusion protein expressed by Streptococcus gordonii. Appl Environ Microbiol 2002; 68:4253-8. [PMID: 12200273 PMCID: PMC124097 DOI: 10.1128/aem.68.9.4253-4258.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.
Collapse
Affiliation(s)
- Song F Lee
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| | | | | | | |
Collapse
|
19
|
Alonso S, Reveneau N, Pethe K, Locht C. Eighty-kilodalton N-terminal moiety of Bordetella pertussis filamentous hemagglutinin: adherence, immunogenicity, and protective role. Infect Immun 2002; 70:4142-7. [PMID: 12117922 PMCID: PMC128203 DOI: 10.1128/iai.70.8.4142-4147.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis, the etiological agent of whooping cough, produces a number of factors, such as toxins and adhesins, that are required for full expression of virulence. Filamentous hemagglutinin (FHA) is the major adhesin of B. pertussis. It is a protein of approximately 220 kDa, found both associated at the bacterial cell surface and secreted into the extracellular milieu. Despite its importance in B. pertussis pathogenesis and its inclusion in most acellular pertussis vaccines, little is known about the functional importance of individual domains in infection and in the induction of protective immunity. In this study, we analyzed the role of the approximately 80-kDa N-terminal domain of FHA, designated Fha44, in B. pertussis adherence, colonization, and immunogenicity. Although Fha44 contains the complete heparan sulfate-binding domain, it is not sufficient for adherence to epithelial cells or macrophages. It also cannot replace FHA during colonization of the mouse respiratory tract. Infection with a B. pertussis strain producing Fha44 instead of FHA does not induce anti-FHA antibodies, whereas such antibodies can readily be induced by intranasal administration of purified Fha44. In addition, mice immunized with purified Fha44 were protected against challenge with wild-type B. pertussis, indicating that Fha44 contains protective epitopes. Compared to FHA, Fha44 is much smaller and much more soluble and is therefore easier to purify and to store. These advantages may perhaps warrant considering Fha44 for inclusion in acellular pertussis vaccines.
Collapse
|
20
|
Menozzi FD, Pethe K, Bifani P, Soncin F, Brennan MJ, Locht C. Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Mol Microbiol 2002; 43:1379-86. [PMID: 11971262 DOI: 10.1046/j.1365-2958.2002.02841.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Present in the extracellular matrix and membranes of virtually all animal cells, proteoglycans (PGs) are among the first host macromolecules encountered by infectious agents. Because of their wide distribution and direct accessibility, it is not surprising that pathogenic bacteria have evolved mechanisms to exploit PGs for their own purposes, including mediating attachment to target cells. This is achieved through the expression of adhesins that recognize glycosaminoglycans (GAGs) linked to the core protein of PGs. Some pathogens, such as Bordetella pertussis and Chlamydia trachomatis, may express more than one GAG-binding adhesin. Bacterial interactions with PGs may also facilitate cell invasion or systemic dissemination, as observed for Neisseria gonorrhoeae and Mycobacterium tuberculosis respectively. More-over, pathogenic bacteria can use PGs to enhance their virulence via a shedding of PGs that leads to there lease of effectors that weaken the host defences. The exploitation of PGs by pathogenic bacteria is thus a multifaceted mechanistic process directly related to the potential virulence of a number of microorganisms.
Collapse
|
21
|
Coutte L, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F. Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J 2001; 20:5040-8. [PMID: 11566869 PMCID: PMC125627 DOI: 10.1093/emboj/20.18.5040] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins of Gram-negative bacteria destined to the extracellular milieu must cross the two cellular membranes and then fold at the appropriate time and place. The synthesis of a precursor may be a strategy to maintain secretion competence while preventing aggregation or premature folding (especially for large proteins). The secretion of 230 kDa filamentous haemagglutinin (FHA) of Bordetella pertussis requires the synthesis and the maturation of a 367 kDa precursor that undergoes the proteolytic removal of its approximately 130 kDa C-terminal intramolecular chaperone domain. We have identified a specific protease, SphB1, responsible for the timely maturation of the precursor FhaB, which allows for extracellular release of FHA. SphB1 is a large exported protein with a subtilisin-like domain and a C-terminal domain typical of bacterial autotransporters. SphB1 is the first described subtilisin-like protein that serves as a specialized maturation protease in a secretion pathway of Gram-negative bacteria. This is reminiscent of pro-protein convertases of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Hervé Drobecq
- INSERM U447 and
CNRS UMR 8525, IBL, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille Cedex, France Corresponding author e-mail:
| | | | - Françoise Jacob-Dubuisson
- INSERM U447 and
CNRS UMR 8525, IBL, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille Cedex, France Corresponding author e-mail:
| |
Collapse
|
22
|
Pethe K, Puech V, Daffé M, Josenhans C, Drobecq H, Locht C, Menozzi FD. Mycobacterium smegmatis laminin-binding glycoprotein shares epitopes with Mycobacterium tuberculosis heparin-binding haemagglutinin. Mol Microbiol 2001; 39:89-99. [PMID: 11123691 DOI: 10.1046/j.1365-2958.2001.02206.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, produces a heparin-binding haemagglutinin adhesin (HBHA), which is involved in its epithelial adherence. To ascertain whether HBHA is also present in fast-growing mycobacteria, Mycobacterium smegmatis was studied using anti-HBHA monoclonal antibodies (mAbs). A cross-reactive protein was detected by immunoblotting of M. smegmatis whole-cell lysates. However, the M. tuberculosis HBHA-encoding gene failed to hybridize with M. smegmatis chromosomal DNA in Southern blot analyses. The M. smegmatis protein recognized by the anti-HBHA mAbs was purified by heparin-Sepharose chromatography, and its amino-terminal sequence was found to be identical to that of the previously described histone-like protein, indicating that M. smegmatis does not produce HBHA. Biochemical analysis of the M. smegmatis histone-like protein shows that it is glycosylated like HBHA. Immunoelectron microscopy demonstrated that the M. smegmatis protein is present on the mycobacterial surface, a cellular localization inconsistent with a histone-like function, but compatible with an adhesin activity. In vitro protein interaction assays showed that this glycoprotein binds to laminin, a major component of basement membranes. Therefore, the protein was called M. smegmatis laminin-binding protein (MS-LBP). MS-LBP does not appear to be involved in adherence in the absence of laminin but is responsible for the laminin-mediated mycobacterial adherence to human pneumocytes and macrophages. Homologous laminin-binding adhesins are also produced by virulent mycobacteria such as M. tuberculosis and Mycobacterium leprae, suggesting that this adherence mechanism may contribute to the pathogenesis of mycobacterial diseases.
Collapse
Affiliation(s)
- K Pethe
- INSERM U447, Mécanismes Moléculaires de la Pathogénie Microbienne, Institut Pasteur de Lille, 1 Rue A. Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Schleiss MR, Dahl K. Acellular pertussis vaccines. CURRENT PROBLEMS IN PEDIATRICS 2000; 30:181-201. [PMID: 10913982 DOI: 10.1067/mps.2000.107.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- M R Schleiss
- Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
24
|
Keil DJ, Burns EH, Kisker WR, Bemis D, Fenwick B. Cloning and immunologic characterization of a truncated Bordetella bronchiseptica filamentous hemagglutinin fusion protein. Vaccine 1999; 18:860-7. [PMID: 10580199 DOI: 10.1016/s0264-410x(99)00322-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Filamentous hemagglutinin (FHA) is an outer-membrane associated adhesin conserved within the genus Bordetella. FHA provides protection against B. pertussis infections in humans and is a component of acellular whooping cough vaccines. Furthermore, FHA serves as a protective antigen in several animal models of infection with B. bronchiseptica and may serve as a protective antigen of canine bordetellosis. In this study, polyclonal anti-B. pertussis FHA antiserum was used to identify an immunoreactive clone from the genomic DNA library of a canine B. bronchiseptica field isolate. The nucleotide and predicted amino acid sequences of the immunoreactive clone were compared to fhaB and FhaB from B. pertussis revealing 94% identity at the nucleic acid level, and 86% identity at the protein level. A truncated fusion protein (FHAt) was prepared which included a conserved domain homologous to the immunodominant region in the FHA of B. pertussis [Leininger E, Bowen S, Renauld-Mongen G, Rouse JH, Menozzi FD, Locht C, Heron I, Brennan MJ. Immunodominant domain present on the Bordetella pertussis vaccine component filamentous hemagglutinin. J. Infect. Dis. 1997;175:1423-1431; Wilson DR, Siebers A, Finlay BB. Antigenic analysis of Bordetella pertussis filamentous hemagglutinin with phage display libraries and rabbit anti-filamentous hemagglutinin polyclonal antibodies. Infect. Immun. 1998;66:4884-4894]. FHAt was shown to be safe and antigenic in rabbits. FHAt induced the formation of antibodies that inhibit the hemagglutination associated with full length B. pertussis FHA, and inhibit adherence of B. bronchisepitca to canine fibroblasts by as much as 65%. This information may have implications for the development of safe and efficacious subunit vaccines for the prevention of canine bordetellosis and may contribute to future acellular whooping cough vaccines.
Collapse
Affiliation(s)
- D J Keil
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506-5606, USA
| | | | | | | | | |
Collapse
|
25
|
Storsaeter J, Hallander HO, Gustafsson L, Olin P. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 1998; 16:1907-16. [PMID: 9796042 DOI: 10.1016/s0264-410x(98)00227-8] [Citation(s) in RCA: 341] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vaccine efficacies against typical pertussis after household exposure to Bordetella pertussis were estimated to be 75.4% for an acellular five-component vaccine, 42.4% for an acellular two-component vaccine, and 28.5%, for a licensed US whole cell vaccine, compared to placebo. Logistic regression analyses demonstrated statistically significant correlations between clinical protection and the presence of IgG antibodies against pertactin, fimbriae 2/3 and pertussis toxin in pre-exposure sera. Multicomponent pertussis vaccines of proven high efficacy in recent Swedish NIAID-sponsored efficacy trials induced higher antibody levels against pertactin and fimbriae 2/3 than less efficacious vaccines. Anti-pertactin, anti-fimbriae 2/3, and anti-PT may be used as surrogate markers of protection for multicomponent acellular and whole-cell vaccines against pertussis.
Collapse
|
26
|
Wilson DR, Siebers A, Finlay BB. Antigenic analysis of Bordetella pertussis filamentous hemagglutinin with phage display libraries and rabbit anti-filamentous hemagglutinin polyclonal antibodies. Infect Immun 1998; 66:4884-94. [PMID: 9746593 PMCID: PMC108604 DOI: 10.1128/iai.66.10.4884-4894.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/1998] [Accepted: 07/24/1998] [Indexed: 11/20/2022] Open
Abstract
Although substantial advancements have been made in the development of efficacious acellular vaccines against Bordetella pertussis, continued progress requires better understanding of the antigenic makeup of B. pertussis virulence factors, including filamentous hemagglutinin (FHA). To identify antigenic regions of FHA, phage display libraries constructed by using random fragments of the 10-kbp EcoRI fragment of B. pertussis fhaB were affinity selected with rabbit anti-FHA polyclonal antibodies. Characterization of antibody-reactive clones displaying FHA-derived peptides identified 14 antigenic regions, each containing one or more epitopes. A number of clones mapped within regions containing known or putative FHA adhesin domains and may be relevant for the generation of protective antibodies. The immunogenic potential of the phage-displayed peptides was assessed indirectly by comparing their recognition by antibodies elicited by sodium dodecyl sulfate (SDS)-denatured and native FHA and by measuring the inhibition of this recognition by purified FHA. FHA residues 1929 to 2019 may contain the most dominant linear epitope of FHA. Clones mapping to this region accounted for ca. 20% of clones recovered from the initial library selection and screening procedures. They are strongly recognized by sera against both SDS-denatured and native FHA, and this recognition is readily inhibited by purified FHA. Given also that this region includes a factor X homolog (J. Sandros and E. Tuomanen, Trends Microbiol. 1:192-196, 1993) and that the single FHA epitope (residues 2001 to 2015) was unequivocally defined in a comparable study by E. Leininger et al. (J. Infect. Dis. 175:1423-1431, 1997), peptides derived from residues of 1929 to 2019 of FHA are strong candidates for future protection studies.
Collapse
Affiliation(s)
- D R Wilson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|