1
|
MacMillan AC, Karki B, Yang J, Gertz KR, Zumwalde S, Patel JG, Czyzyk-Krzeska MF, Meller J, Cunningham JT. PRPS activity tunes redox homeostasis in Myc-driven lymphoma. Redox Biol 2025; 84:103649. [PMID: 40446642 PMCID: PMC12166406 DOI: 10.1016/j.redox.2025.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 06/18/2025] Open
Abstract
Myc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state. We identify Myc-dependent hyperactivation of the phosphoribosyl pyrophosphate synthetase (PRPS) enzyme as a primary regulator of redox status in lymphoma cells. Mechanistically, we show that genetic inactivation of the PRPS2 isozyme, but not PRPS1, in Myc-driven lymphoma cells leads to elevated NADPH levels and reductive stress-mediated death. Employing a pharmacological screen, we demonstrate how targeting PRPS1 or PRPS2 elicits opposing sensitivity or resistance, respectively, to chemotherapeutic agents affecting the thioredoxin and glutathione network, thus providing a therapeutic blueprint for treating Myc-driven lymphomas.
Collapse
Affiliation(s)
- Austin C MacMillan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Bibek Karki
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Juechen Yang
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Karmela R Gertz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Samantha Zumwalde
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jay G Patel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Veteran Affairs Medical Center, Department of Veterans Affairs, Cincinnati, OH, 45220, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jarek Meller
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - John T Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
2
|
MacMillan AC, Karki B, Yang J, Gertz KR, Zumwalde S, Patel JG, Czyzyk-Krzeska MF, Meller J, Cunningham JT. PRPS activity tunes redox homeostasis in Myc-driven lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632009. [PMID: 39868212 PMCID: PMC11761749 DOI: 10.1101/2025.01.08.632009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Myc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state. We identify Myc-dependent hyperactivation of the phosphoribosyl pyrophosphate synthetase (PRPS) enzyme as a primary regulator of redox status in lymphoma cells. Mechanistically, we show that genetic inactivation of the PRPS2 isozyme, but not PRPS1, in MYC-driven lymphoma cells leads to elevated NADPH levels and reductive stress-mediated death. Employing a pharmacological screen, we demonstrate how targeting PRPS1 or PRPS2 elicits opposing sensitivity or resistance, respectively, to chemotherapeutic agents affecting the thioredoxin and glutathione network, thus providing a therapeutic blueprint for treating MYC-driven lymphomas.
Collapse
Affiliation(s)
- Austin C. MacMillan
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
| | - Bibek Karki
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
| | - Juechen Yang
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center; Cincinnati, OH 45229, USA
| | - Karmela R. Gertz
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
| | - Samantha Zumwalde
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
| | - Jay G. Patel
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
- Veteran Affairs Medical Center, Department of Veterans Affairs; Cincinnati, OH 45220, USA
- Department of Pharmacology and System Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
| | - Jarek Meller
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center; Cincinnati, OH 45229, USA
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University; Torun, 87-100, Poland
| | - John T. Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Sather RN, Brown C, Montezuma SR. Case report on a de novo variant in the X-linked PRPS1 gene presenting with retinal dystrophy, severe tremors, and ataxia in a female patient. Ophthalmic Genet 2024; 45:657-662. [PMID: 39148443 DOI: 10.1080/13816810.2024.2388598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Case Summary The patient is a 42-year-old female who presented with a de novo missense variant in the PRPS1 gene. Her phenotype includes asymmetric retinal dystrophy with sensory esotropia, congenital sensorineural hearing loss, neuropathy, and severe tremors with recent-onset ataxia. This contributes a new presentation of ophthalmic and neurological findings to the literature.
Collapse
Affiliation(s)
- Richard N Sather
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Caroline Brown
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Feng H, Huang S, Ma Y, Yang J, Chen Y, Wang G, Han M, Kang D, Zhang X, Dai P, Yuan Y. Genomic and phenotypic landscapes of X-linked hereditary hearing loss in the Chinese population. Orphanet J Rare Dis 2024; 19:342. [PMID: 39272213 PMCID: PMC11396341 DOI: 10.1186/s13023-024-03338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Hearing loss (HL) is the most common sensory birth deficit worldwide, with causative variants in more than 150 genes. However, the etiological contribution and clinical manifestations of X-linked inheritance in HL remain unclear within the Chinese HL population. In this study, we focused on X-linked hereditary HL and aimed to assess its contribution to hereditary HL and identify the genotype-phenotype relationship. METHODS We performed a molecular epidemiological investigation of X-linked hereditary HL based on next-generation sequencing and third-generation sequencing in 3646 unrelated patients with HL. We also discussed the clinical features associated with X-linked non-syndromic HL-related genes based on a review of the literature. RESULTS We obtained a diagnostic rate of 52.72% (1922/3646) among our patients; the aggregate contribution of HL caused by genes on the X chromosome in this cohort was ~ 1.14% (22/1922), and POU3F4 variants caused ~ 59% (13/22) of these cases. We found that X-linked HL was congenital or began during childhood in all cases, with representative audiological profiles or typical cochlear malformations in certain genes. Genotypic and phenotypic analyses showed that causative variants in PRPS1 and AIFM1 were mainly of the missense type, suggesting that phenotypic variability was correlated with the different effects that the replaced residues exert on structure and function. Variations in SMPX causing truncation of the protein product were associated with DFNX4, which resulted in typical audiological profiles before and after the age of 10 years, whereas nontruncated proteins typically led to distal myopathy. No phenotypic differences were identified in patients carrying POU3F4 or COL4A6 variants. CONCLUSIONS Our work constitutes a preliminary evaluation of the molecular contribution of X-linked genes in heritable HL (~ 1.14%). The 15 novel variants reported here expand the mutational spectrum of these genes. Analysis of the genotype-phenotype relationship is valuable for X-linked HL precise diagnostics and genetic counseling. Elucidation of the pathogenic mechanisms and audiological profiles of HL can also guide choices regarding treatment modalities.
Collapse
Affiliation(s)
- Haifeng Feng
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Shasha Huang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Ying Ma
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Jinyuan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Yijin Chen
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Guojian Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Mingyu Han
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Dongyang Kang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Xin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Pu Dai
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Yongyi Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| |
Collapse
|
5
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. EMBO Rep 2024; 25:3990-4012. [PMID: 39075237 PMCID: PMC11387764 DOI: 10.1038/s44319-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Alzahem TA, AlTheeb A, Ba-Abbad R. PRPS1-associated retinopathy: a diagnostic odyssey. Ophthalmic Genet 2024; 45:404-408. [PMID: 38619019 DOI: 10.1080/13816810.2024.2321871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE This study describes how the diagnosis of Usher syndrome was revised to PRPS1-associated retinopathy and Charcot-Marie-Tooth disease type 5. CASE REPORT A 38-year-old female with bilaterally subnormal vision and non-congenital hearing loss was initially diagnosed with Usher syndrome, based on finding variants in three genes (MYO7A, USH2A, and PCDH15), was re-evaluated at the inherited retinal disorders clinic. She had asymmetric retinopathy and right macular pseudocoloboma. She was also found to have myopathic facies, poor grip strength and atrophy of the calf muscles. Whole exome sequencing including variants in PRPS1 showed a variant (NM_002764.4:c.287 G > A; p.Arg96Gln), which was not detected by targeted Sanger sequencing of the DNA from her mother and sister. CONCLUSION The constellation of asymmetric retinopathy and non-congenital hearing impairment should prompt the clinician to search for other diagnoses that may not be covered by an Usher syndrome next generation sequencing panel. Interpretation of genetic testing results should be correlated with a detailed clinical phenotype.
Collapse
Affiliation(s)
- Tariq A Alzahem
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
- Ophthalmology Department, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdulwahab AlTheeb
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Rola Ba-Abbad
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576443. [PMID: 38328116 PMCID: PMC10849482 DOI: 10.1101/2024.01.20.576443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Maciel VAZ, Maximiano-Alves G, Frezatti RSS, Alves ALDM, Andrade BMA, Leal RDCC, Tomaselli PJ, Reilly MM, Marques W. Unveiling the clinical and electrophysiological profile of CMTX6: Insights from two Brazilian families. J Peripher Nerv Syst 2023; 28:614-619. [PMID: 37849068 DOI: 10.1111/jns.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND AIMS X-linked Charcot-Marie-Tooth disease type 6 (CMTX6) is an extremely rare condition associated with mutations in the PDK3 gene. To date, only three families from different countries have been reported (Australia, South Korea, and Germany). In this study, we sought to provide a comprehensive clinical and electrophysiological characterization of two Brazilian families. METHODS We conducted comprehensive clinical assessments, extensive electrophysiological evaluations, and performed whole-exome sequencing in the probands to investigate the genetic basis of the disease. RESULTS Males in the family carrying the Arg162His mutation displayed early-onset motor and/or sensory axonal neuropathy, absence of tendon jerks, pes cavus, and frequently reported pain. Females in the same family exhibited a milder phenotype of the disease with later onset and some remained asymptomatic into their 50s. In the unrelated family with a single affected male, the clinical presentation was characterized by severe progressive sensorimotor polyneuropathy accompanied by neuropathic pain. INTERPRETATION We report two Brazilian families with CMTX6 including one harboring a previously unpublished variant in the PDK3 gene, which co-segregates with the disease as expected in a X-linked disease. Notably, the clinical presentations across the five families with available descriptions, including our study, share striking similarities. Furthermore, the proximity of the three reported mutations suggests potential functional similarities and common underlying mechanisms. This study contributes to the growing knowledge of CMTX6 and underscores the importance of international collaborations in studying rare genetic disorders.
Collapse
Affiliation(s)
- Victor Augusto Zanesi Maciel
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Gustavo Maximiano-Alves
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Rodrigo Siqueira Soares Frezatti
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Anna Letícia De Moraes Alves
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Bianca Mara Alves Andrade
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Rita De Cassia Carvalho Leal
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Pedro José Tomaselli
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP (HCRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Štajer K, Kovač N, Šikonja J, Mlinarič M, Bertok S, Brecelj J, Debeljak M, Kovač J, Markelj G, Neubauer D, Rus R, Žerjav Tanšek M, Drole Torkar A, Zver A, Battelino T, Jiménez Torres R, Grošelj U. Clinical and genetic characteristics of a patient with phosphoribosyl pyrophosphate synthetase 1 deficiency and a systematic literature review. Mol Genet Metab Rep 2023; 36:100986. [PMID: 37670898 PMCID: PMC10475845 DOI: 10.1016/j.ymgmr.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 09/07/2023] Open
Abstract
Phosphoribosylpyrophosphate synthetase 1 (PRS-I) is an enzyme involved in nucleotide metabolism. Pathogenic variants in the PRPS1 are rare and PRS-I deficiency can manifest as three clinical syndromes: X-linked non-syndromic sensorineural deafness (DFN2), X-linked Charcot-Marie-Tooth neuropathy type 5 (CMTX5) and Arts syndrome. We present a Slovenian patient with PRS-I enzyme deficiency due to a novel pathogenic variant - c.424G > A (p.Val142Ile) in the PRPS1 gene, who presented with gross motor impairment, severe sensorineural deafness, balance issues, ataxia, and frequent respiratory infections. In addition, we report the findings of a systemic literature review of all described male cases of Arts syndrome and CMTX5 as well as intermediate phenotypes. As already proposed by other authors, our results confirm PRS-I deficiency should be viewed as a phenotypic continuum rather than three separate syndromes because there are multiple reports of patients with an intermediary clinical presentation.
Collapse
Affiliation(s)
- Katarina Štajer
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Neja Kovač
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jaka Šikonja
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Mlinarič
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sara Bertok
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Brecelj
- Department of Gastroenterology, Hepatology and Nutrition, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maruša Debeljak
- Laboratory of Genetics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Laboratory of Genetics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - David Neubauer
- Department of Child, Adolescent and Developmental Neurologyx, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Nephrology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Žerjav Tanšek
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Drole Torkar
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleksandra Zver
- Unit for Pulmonary Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rosa Jiménez Torres
- La Paz University Hospital Health Research Institute (FIBHULP), IdiPaz, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Urh Grošelj
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
11
|
Lu GM, Hu HH, Chang CC, Zhong J, Zhou X, Guo CJ, Zhang T, Li YL, Yin B, Liu JL. Structural basis of human PRPS2 filaments. Cell Biosci 2023; 13:100. [PMID: 37248548 DOI: 10.1186/s13578-023-01037-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND PRPP synthase (PRPS) transfers the pyrophosphate groups from ATP to ribose-5-phosphate to produce 5-phosphate ribose-1-pyrophosphate (PRPP), a key intermediate in the biosynthesis of several metabolites including nucleotides, dinucleotides and some amino acids. There are three PRPS isoforms encoded in human genome. While human PRPS1 (hPRPS1) and human PRPS2 (hPRPS2) are expressed in most tissues, human PRPS3 (hPRPS3) is exclusively expressed in testis. Although hPRPS1 and hPRPS2 share 95% sequence identity, hPRPS2 has been shown to be less sensitive to allosteric inhibition and specifically upregulated in certain cancers in the translational level. Recent studies demonstrate that PRPS can form a subcellular compartment termed the cytoophidium in multiple organisms across prokaryotes and eukaryotes. Forming filaments and cytoophidia is considered as a distinctive mechanism involving the polymerization of the protein. Previously we solved the filament structures of Escherichia coli PRPS (ecPRPS) using cryo-electron microscopy (cryo-EM) 1. RESULTS Order to investigate the function and molecular mechanism of hPRPS2 polymerization, here we solve the polymer structure of hPRPS2 at 3.08 Å resolution. hPRPS2 hexamers stack into polymers in the conditions with the allosteric/competitive inhibitor ADP. The binding modes of ADP at the canonical allosteric site and at the catalytic active site are clearly determined. A point mutation disrupting the inter-hexamer interaction prevents hPRPS2 polymerization and results in significantly reduced catalytic activity. CONCLUSION Findings suggest that the regulation of hPRPS2 polymer is distinct from ecPRPS polymer and provide new insights to the regulation of hPRPS2 with structural basis.
Collapse
Affiliation(s)
- Guang-Ming Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tianyi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Boqi Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
12
|
Kwan JT, Ramsey DJ. Multimodal image alignment aids in the evaluation and monitoring of sector retinitis pigmentosa. Ophthalmic Genet 2023; 44:93-102. [PMID: 35769018 DOI: 10.1080/13816810.2022.2092755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/05/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE To present a semi-automated method of image alignment to aid in monitoring the progression of inherited retinal degenerations (IRDs). RESULTS A 22-year-old woman presented with nyctalopia and a family history of retinitis pigmentosa (RP), but with no prior genetic testing. Fundus examination showed a sectoral retinal degeneration involving the inferior and nasal retina with rare, pigmented deposits. Goldmann kinetic perimetry demonstrated corresponding superotemporal visual field defects. The best-corrected visual acuity was 20/20 in both eyes. Multimodal imaging delineated geographically restricted peripheral retinal degeneration extending to the inferior edge of the macula. Central visual function remained intact with normal multifocal electroretinography findings. Optical coherence tomography (OCT) through the leading edge of the retinal degeneration confirmed loss of the photoreceptor layer and associated retinal pigment epithelium. In the region of retinal degeneration, loss of vascular flow density was noted on optical coherence tomography angiography (OCTA). Genetic testing identified a pathologic sequence variant in RHO (c.68C>A, p.Pro23His), confirming autosomal dominant sector retinitis pigmentosa (SRP). Image alignment allowed for precise measurement of the progression of SRP over a period of 18 months. CONCLUSION SRP is a rare subtype of RP characterized by focal, typically inferior and nasal, retinal degeneration of the peripheral retina. Although the onset and extent of peripheral retinal degeneration varies, compared with RP, SRP typically progresses more slowly to involve the macula. In this report, we highlight the utility of image registration and alignment to aid in monitoring disease progression in IRDs by means of multimodal imaging.
Collapse
Affiliation(s)
- James T Kwan
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Surgery, Division of Ophthalmology, Lahey Hospital & Medical Center, Burlington, Massachusetts, USA
| | - David J Ramsey
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Surgery, Division of Ophthalmology, Lahey Hospital & Medical Center, Burlington, Massachusetts, USA
| |
Collapse
|
13
|
Wu X, Yang H, Lin H, Suo A, Wu S, Xie W, Zhou N, Guo S, Ding H, Zhou G, Qiu Z, Shi H, Yang J, Zheng Y. Characterizing microRNA editing and mutation sites in Autism Spectrum Disorder. Front Mol Neurosci 2023; 15:1105278. [PMID: 36743290 PMCID: PMC9895120 DOI: 10.3389/fnmol.2022.1105278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder whose pathogenesis is still unclear. MicroRNAs (miRNAs) are a kind of endogenous small non-coding RNAs that play important roles in the post-transcriptional regulation of genes. Recent researches show that miRNAs are edited in multiple ways especially in central nervous systems. A-to-I editing of RNA catalyzed by Adenosine deaminases acting on RNA (ADARs) happens intensively in brain and is also noticed in other organs and tissues. Although miRNAs are widely edited in human brain, miRNA editing in ASD is still largely unexplored. In order to reveal the editing events of miRNAs in ASD, we analyzed 131 miRNA-seq samples from 8 different brain regions of ASD patients and normal controls. We identified 834 editing sites with significant editing levels, of which 70 sites showed significantly different editing levels in the superior frontal gyrus samples of ASD patients (ASD-SFG) when compared with those of control samples. The editing level of an A-to-I editing site in hsa-mir-376a-1 (hsa-mir-376a-1_9_A_g) in ASD-SFG is higher than that of normal controls, and the difference is exaggerated in individuals under 10 years. The increased expression of ADAR1 is consistent with the increased editing level of hsa-mir-376a-1_9_A_g in ASD-SFG samples compared to normal SFG samples. Furthermore, we verify that A-to-I edited hsa-mir-376a-5p directly represses GPR85 and NAPB, which may contribute to the abnormal neuronal development of ASD patients. These results provide new insights into the mechanism of ASD.
Collapse
Affiliation(s)
- Xingwang Wu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huaide Yang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Han Lin
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Angbaji Suo
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shuai Wu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenping Xie
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Nan Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guangchen Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhichao Qiu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, Yunnan, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
14
|
Meziane H, Birling MC, Wendling O, Leblanc S, Dubos A, Selloum M, Pavlovic G, Sorg T, Kalscheuer VM, Billuart P, Laumonnier F, Chelly J, van Bokhoven H, Herault Y. Large-Scale Functional Assessment of Genes Involved in Rare Diseases with Intellectual Disabilities Unravels Unique Developmental and Behaviour Profiles in Mouse Models. Biomedicines 2022; 10:biomedicines10123148. [PMID: 36551904 PMCID: PMC9775489 DOI: 10.3390/biomedicines10123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Major progress has been made over the last decade in identifying novel genes involved in neurodevelopmental disorders, although the task of elucidating their corresponding molecular and pathophysiological mechanisms, which are an essential prerequisite for developing therapies, has fallen far behind. We selected 45 genes for intellectual disabilities to generate and characterize mouse models. Thirty-nine of them were based on the frequency of pathogenic variants in patients and literature reports, with several corresponding to de novo variants, and six other candidate genes. We used an extensive screen covering the development and adult stages, focusing specifically on behaviour and cognition to assess a wide range of functions and their pathologies, ranging from basic neurological reflexes to cognitive abilities. A heatmap of behaviour phenotypes was established, together with the results of selected mutants. Overall, three main classes of mutant lines were identified based on activity phenotypes, with which other motor or cognitive deficits were associated. These data showed the heterogeneity of phenotypes between mutation types, recapitulating several human features, and emphasizing the importance of such systematic approaches for both deciphering genetic etiological causes of ID and autism spectrum disorders, and for building appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Sophie Leblanc
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Aline Dubos
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Vera M. Kalscheuer
- Max Planck Institute for Molecular Genetics, Research Group Development and Disease, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Pierre Billuart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, “Genetic and Development of Cerebral Cortex”, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014 Paris, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, University of Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Jamel Chelly
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, The Netherlands
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
- Correspondence: ; Tel.: +33-388-65-5715
| |
Collapse
|
15
|
Dewulf JP, Marie S, Nassogne MC. Disorders of purine biosynthesis metabolism. Mol Genet Metab 2022; 136:190-198. [PMID: 34998670 DOI: 10.1016/j.ymgme.2021.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.
Collapse
Affiliation(s)
- Joseph P Dewulf
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium.
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium.
| | - Marie-Cécile Nassogne
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium.
| |
Collapse
|
16
|
Ugbogu EA, Schweizer LM, Schweizer M. Contribution of Model Organisms to Investigating the Far-Reaching Consequences of PRPP Metabolism on Human Health and Well-Being. Cells 2022; 11:1909. [PMID: 35741038 PMCID: PMC9221600 DOI: 10.3390/cells11121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.
Collapse
Affiliation(s)
- Eziuche A. Ugbogu
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Lilian M. Schweizer
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Michael Schweizer
- Institute of Biological Chemistry, Biophysics & Engineering (IB3), School of Engineering &Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
17
|
Shirakawa S, Murakami T, Hashiguchi A, Takashima H, Hasegawa H, Ichida K, Sunada Y. A Novel PRPS1 Mutation in a Japanese Patient with CMTX5. Intern Med 2022; 61:1749-1751. [PMID: 34803094 PMCID: PMC9259300 DOI: 10.2169/internalmedicine.8029-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PRPS1 gene encodes phosphoribosyl pyrophosphate synthetase 1 (PRS-1). The phenotypes associated with PRPS1 mutations include DFN2 (mild PRS-1 deficiency), X-linked Charcot-Marie-Tooth disease type 5 (CMTX5) (moderate PRS-1 deficiency), Arts syndrome (severe PRS-1 deficiency), and PRS-1 superactivity1. CMTX5 is a very rare hereditary neuropathy characterized by deafness, optic atrophy, and polyneuropathy. We herein report a Japanese patient with CMTX5 who had a novel hemizygous mutation c.82 G>C in PRPS1. Despite showing a typical clinical picture, the decrease in enzyme activity measured in the patient's erythrocytes was milder than in previously reported cases.
Collapse
Affiliation(s)
| | | | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Hasegawa
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, Japan
| | | |
Collapse
|
18
|
Rezende Filho FM, Palma MM, Pedroso JL, Barsottini OG, Sallum JM. PRPS1 Gene Mutation Causes Complex X-Linked Adult-Onset Cerebellar Ataxia in Women. NEUROLOGY-GENETICS 2021; 7:e563. [PMID: 33898739 PMCID: PMC8063620 DOI: 10.1212/nxg.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Flávio M Rezende Filho
- Department of Neurology (F.M.R.F., J.L.P., O.G.B.), and Department of Ophthalmology (M.M.P., J.M.S.), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Mariana M Palma
- Department of Neurology (F.M.R.F., J.L.P., O.G.B.), and Department of Ophthalmology (M.M.P., J.M.S.), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - José Luiz Pedroso
- Department of Neurology (F.M.R.F., J.L.P., O.G.B.), and Department of Ophthalmology (M.M.P., J.M.S.), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Orlando G Barsottini
- Department of Neurology (F.M.R.F., J.L.P., O.G.B.), and Department of Ophthalmology (M.M.P., J.M.S.), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Juliana M Sallum
- Department of Neurology (F.M.R.F., J.L.P., O.G.B.), and Department of Ophthalmology (M.M.P., J.M.S.), Universidade Federal de São Paulo (UNIFESP), Brazil
| |
Collapse
|
19
|
Puusepp S, Reinson K, Pajusalu S, van Kuilenburg ABP, Dobritzsch D, Roelofsen J, Stenzel W, Õunap K. Atypical presentation of Arts syndrome due to a novel hemizygous loss-of-function variant in the PRPS1 gene. Mol Genet Metab Rep 2020; 25:100677. [PMID: 33294372 PMCID: PMC7689168 DOI: 10.1016/j.ymgmr.2020.100677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/30/2022] Open
Abstract
The PRPS1 gene, located on Xq22.3, encodes phosphoribosyl-pyrophosphate synthetase (PRPS), a key enzyme in de novo purine synthesis. Three clinical phenotypes are associated with loss-of-function PRPS1 variants and decreased PRPS activity: Arts syndrome (OMIM: 301835), Charcot–Marie–Tooth disease type 5 (CMTX5, OMIM: 311070), and nonsyndromic X-linked deafness (DFN2, OMIM: 304500). Hearing loss is present in all cases. CMTX5 patients also show peripheral neuropathy and optic atrophy. Arts syndrome includes developmental delay, intellectual disability, ataxia, and susceptibility to infections, in addition to the above three features. Gain-of-function PRPS1 variants result in PRPS superactivity (OMIM: 300661) with hyperuricemia and gout. We report a 6-year-old boy who presented with marked generalized muscular hypotonia, global developmental delay, lack of speech, trunk instability, exercise intolerance, hypomimic face with open mouth, oropharyngeal dysphagia, dysarthria, and frequent upper respiratory tract infections. However, his nerve conduction velocity, audiologic, and funduscopic investigations were normal. A novel hemizygous variant, c.130A > G p.(Ile44Val), was found in the PRPS1 gene by panel sequencing. PRPS activity in erythrocytes was markedly reduced, confirming the pathogenicity of the variant. Serum uric acid and urinary purine and pyrimidine metabolite levels were normal. In conclusion, we present a novel PRPS1 loss-of-function variant in a patient with some clinical features of Arts syndrome, but lacking a major attribute, hearing loss, which is congenital/early-onset in all other reported Arts syndrome patients. In addition, it is important to acknowledge that normal levels of serum and urinary purine and pyrimidine metabolites do not exclude PRPS1-related disorders. We describe a male patient with atypical presentation of Arts syndrome. Our patient harbors a novel loss-of-function variant in the PRPS1 gene. The purine and pyrimidine levels can be normal in patients with decreased PRPS activity.
Collapse
Affiliation(s)
- Sanna Puusepp
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - André B P van Kuilenburg
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Jeroen Roelofsen
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Leibniz Science Campus Chronic Inflammation, Berlin, Germany
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
21
|
PRPS1 loss-of-function variants, from isolated hearing loss to severe congenital encephalopathy: New cases and literature review. Eur J Med Genet 2020; 63:104033. [PMID: 32781272 DOI: 10.1016/j.ejmg.2020.104033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 11/21/2022]
Abstract
We describe two sporadic and two familial cases with loss-of-function variants in PRPS1, which is located on the X chromosome and encodes phosphoribosyl pyrophosphate synthetase 1 (PRS-1). We illustrate the clinical variability associated with decreased PRS-1 activity, ranging from mild isolated hearing loss to severe encephalopathy. One of the variants we identified has already been reported with a phenotype similar to our patient's, whereas the other three were unknown. The clinical and biochemical information we provide will hopefully contribute to gain insight into the correlation between genotype and phenotype of this rare condition, both in females and in males. Moreover, our observation of a new family in which hemizygous males display hearing loss without any neurological or ophthalmological symptoms prompts us to suggest analysing PRPS1 in cases of isolated hearing loss. Eventually, PRPS1 variants should be considered as a differential diagnosis of mitochondrial disorders.
Collapse
|
22
|
PRPS-Associated Disorders and the Drosophila Model of Arts Syndrome. Int J Mol Sci 2020; 21:ijms21144824. [PMID: 32650483 PMCID: PMC7403961 DOI: 10.3390/ijms21144824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 11/18/2022] Open
Abstract
While a plethora of genetic techniques have been developed over the past century, modifying specific sequences of the fruit fly genome has been a difficult, if not impossible task. clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 truly redefined molecular genetics and provided new tools to model human diseases in Drosophila melanogaster. This is particularly true for genes whose protein sequences are highly conserved. Phosphoribosyl pyrophosphate synthetase (PRPS) is a rate-limiting enzyme in nucleotide metabolism whose missense mutations are found in several neurological disorders, including Arts syndrome. In addition, PRPS is deregulated in cancer, particularly those that become resistant to cancer therapy. Notably, DrosophilaPRPS shares about 90% protein sequence identity with its human orthologs, making it an ideal gene to study via CRISPR/Cas9. In this review, we will summarize recent findings on PRPS mutations in human diseases including cancer and on the molecular mechanisms by which PRPS activity is regulated. We will also discuss potential applications of Drosophila CRISPR/Cas9 to model PRPS-dependent disorders and other metabolic diseases that are associated with nucleotide metabolism.
Collapse
|
23
|
Begovich K, Yelon D, Wilhelm JE. PRPS polymerization influences lens fiber organization in zebrafish. Dev Dyn 2020; 249:1018-1031. [PMID: 32243675 DOI: 10.1002/dvdy.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The self-assembly of metabolic enzymes into filaments or foci highlights an intriguing mechanism for the regulation of metabolic activity. Recently, we identified the conserved polymerization of phosphoribosyl pyrophosphate synthetase (PRPS), which catalyzes the first step in purine nucleotide synthesis, in yeast and cultured mammalian cells. While previous work has revealed that loss of PRPS activity regulates retinal development in zebrafish, the extent to which PRPS filament formation affects tissue development remains unknown. RESULTS By generating novel alleles in the zebrafish PRPS paralogs, prps1a and prps1b, we gained new insight into the role of PRPS filaments during eye development. We found that mutations in prps1a alone are sufficient to generate abnormally small eyes along with defects in head size, pigmentation, and swim bladder inflation. Furthermore, a loss-of-function mutation that truncates the Prps1a protein resulted in the failure of PRPS filament assembly. Lastly, in mutants that fail to assemble PRPS filaments, we observed disorganization of the actin network in the lens fibers. CONCLUSIONS The truncation of Prps1a blocked PRPS filament formation and resulted in a disorganized lens fiber actin network. Altogether, these findings highlight a potential role for PRPS filaments during lens fiber organization in zebrafish.
Collapse
Affiliation(s)
- Kyle Begovich
- Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Division of Biological Sciences, University of California, San Diego, California, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - James E Wilhelm
- Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Division of Biological Sciences, University of California, San Diego, California, USA
| |
Collapse
|
24
|
Wan JY, Cataby C, Liem A, Jeffrey E, Norden-Krichmar TM, Goodman D, Santorico SA, Edwards KL. Evidence for gene-smoking interactions for hearing loss and deafness in Japanese American families. Hear Res 2019; 387:107875. [PMID: 31896498 DOI: 10.1016/j.heares.2019.107875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND This study investigated the relationship between smoking and hearing loss and deafness (HLD) and whether the relationship is modified by genetic variation. Data for these analyses was from the subset of Japanese American families collected as part of the American Diabetes Association Genetics of Non-insulin Dependent Diabetes Mellitus study. Logistic regression with generalized estimating equations assessed the relationship between HLD and smoking. Nonparametric linkage analysis identified genetic regions harboring HLD susceptibility genes and ordered subset analysis was used to identify regions showing evidence for gene-smoking interactions. Genetic variants within these candidate regions were then each tested for interaction with smoking using logistic regression models. RESULTS After adjusting for age, sex, diabetes status and smoking duration, for each pack of cigarettes smoked per day, risk of HLD increased 4.58 times (odds ratio (OR) = 4.58; 95% Confidence Interval (CI): (1.40,15.03)), and ever smokers were over 5 times more likely than nonsmokers to report HLD (OR = 5.22; 95% CI: (1.24, 22.03)). Suggestive evidence for linkage for HLD was observed in multiple genomic regions (Chromosomes 5p15, 8p23 and 17q21), and additional suggestive regions were identified when considering interactions with smoking status (Chromosomes 7p21, 11q23, 12q32, 15q26, and 20q13) and packs-per-day (Chromosome 8q21). CONCLUSIONS To our knowledge this was the first report of possible gene-by-smoking interactions in HLD using family data. Additional work, including independent replication, is needed to understand the basis of these findings. HLD are important public health issues and understanding the contributions of genetic and environmental factors may inform public health messages and policies.
Collapse
Affiliation(s)
- Jia Y Wan
- Department of Epidemiology, University of California, Irvine, United States
| | - Christina Cataby
- Department of Population Health and Disease Prevention, University of California, Irvine, United States
| | - Andrew Liem
- Department of Epidemiology, University of California, Irvine, United States
| | - Emily Jeffrey
- Department of Epidemiology, University of California, Irvine, United States
| | | | - Deborah Goodman
- Department of Epidemiology, University of California, Irvine, United States
| | - Stephanie A Santorico
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, United States
| | - Karen L Edwards
- Department of Epidemiology, University of California, Irvine, United States; Department of Population Health and Disease Prevention, University of California, Irvine, United States.
| | | |
Collapse
|
25
|
A novel mutation in gene of PRPS1 in a young Chinese woman with X-linked gout: a case report and review of the literature. Clin Rheumatol 2019; 39:949-956. [PMID: 31773495 DOI: 10.1007/s10067-019-04801-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Pyrophosphate synthetase-1(PRS-1) is a crucial enzyme that catalyzes the synthesis of phosphoribosylpyrophosphate (PRPP) with substrate: adenosine triphosphate (ATP) and ribose-5-phophate(R5P) in the de novo pathways of purine and pyrimidine nucleotide synthesis. Mutation in PRPS1 can result in a series of diseases of purine metabolism, which includes PRS-1 superactivity. The common clinical phenotypes are hyperuricemia and hyperuricosuria. We identified a novel missense mutation in X-chromosomal gene PRPS1 in a young Chinese woman while her mother has heterogeneous genotype and phenotype. A 24-year-old Chinese female patient suffered hyperuricemia, gout, and recurrent hyperpyrexia for more than 6 years, and then was diagnosed with hyperandrogenism, insulin resistance (IR), and polycystic ovary syndrome (PCOS). A novel missense mutation, c.521(exon)G>T, p.(Gly174Val) was detected by next-generation sequencing (NGS) and confirmed by Sanger sequencing in the patient and her parents. Interestingly, her mother has the same heterozygous missense mutation but without uric acid overproduction which can be explained by the phenomenon of the skewed X-chromosome inactivation. The substituted amino acid Val for Gly174 is positioned in the pyrophosphate (PPi) binding loop, and this mutation impacts the binding rate of Mg2+-ATP complex to PRS-1, thus the assembling of homodimer is affected by changed Val174 leading to the instability of the allosteric site. Our report highlights the X-linked inheritance of gout in females caused by mutation in PRPS1 accompanied with severe metabolic disorders and recurrent hyperpyrexia.
Collapse
|
26
|
Lerat J, Magdelaine C, Derouault P, Beauvais-Dzugan H, Bieth E, Acket B, Arne-Bes MC, Sturtz F, Lia AS. New PRPS1 variant p.(Met68Leu) located in the dimerization area identified in a French CMTX5 patient. Mol Genet Genomic Med 2019; 7:e875. [PMID: 31338985 PMCID: PMC6732271 DOI: 10.1002/mgg3.875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/21/2019] [Accepted: 07/08/2019] [Indexed: 12/04/2022] Open
Abstract
Background CMTX5 is characterized by peripheral neuropathy, early‐onset sensorineural hearing impairment, and optic neuropathy. Only seven variants have been reported and no genotype‐phenotype correlations have yet been established. PRPS1 has a crystallographic structure, as it is composed of three dimers that constitute a hexamer. Methods Next‐generation sequencing (NGS) was performed using a custom 92‐gene panel designed for the diagnosis of Charcot‐Marie‐Tooth (CMT) and associated neuropathies. Results We report the case of a 35‐year‐old male, who had presented CMT and hearing loss since childhood associated to bilateral optic neuropathy without any sign of retinitis pigmentosa. A new hemizygous variant on chromosomic position X:106,882,604, in the PRPS1 gene, c.202A > T, p.(Met68Leu) was found. This change is predicted to lead to an altered affinity between the different subunits in the dimer, thereby may prevent the hexamer formation. Conclusion CMTX5 is probably under‐diagnosed, as an overlap among the different features due to PRPS1 exists. Patients who developed polyneuropathy associated to sensorineural deafness and optic atrophy during childhood should be assessed for PRPS1.
Collapse
Affiliation(s)
- Justine Lerat
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Limoges, France
| | - Corinne Magdelaine
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | - Paco Derouault
- CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | - Hélène Beauvais-Dzugan
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | - Eric Bieth
- CHU Toulouse, Service Génétique Médicale, Toulouse, France
| | - Blandine Acket
- CHU Toulouse, Explorations neurophysiologiques, Centre SLA, Centre de référence de pathologie neuromusculaire, Toulouse, France
| | - Marie-Christine Arne-Bes
- CHU Toulouse, Explorations neurophysiologiques, Centre SLA, Centre de référence de pathologie neuromusculaire, Toulouse, France
| | - Franck Sturtz
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| | - Anne-Sophie Lia
- Univ. Limoges, MMNP, Limoges, France.,CHU Limoges, Service Biochimie et Génétique Moléculaire, Limoges, France
| |
Collapse
|
27
|
Meng L, Wang K, Lv H, Wang Z, Zhang W, Yuan Y. A novel mutation in PRPS1 causes X-linked Charcot-Marie-Tooth disease-5. Neuropathology 2019; 39:342-347. [PMID: 31434166 DOI: 10.1111/neup.12589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
X-linked Charcot-Marie-Tooth disease-5 (CMTX5) is a rare hereditary disorder caused by mutations in the gene for phosphoribosyl pyrophosphate synthetase-1 (PRPS1). We investigated a boy with a novel PRPS1 mutation (c.334G>C, p.V112L) via genetic, neuropathological and enzymatic tests. The proband was a 13-year-old boy with congenital non-syndromic sensorineural deafness. At 3 year old, he developed progressive distal weakness of all limbs with muscle atrophy of both hands and shanks. Nerve conduction study revealed the loss of sensory nerve action potentials, and slowing down of motor nerve conduction velocities with a decrease of amplitudes of compound motor action potentials. Visual evoked potentials and brainstem auditory evoked potentials were not bilaterally evocable. Sural biopsy proved the loss of myelinated nerve fibers, with axonal degeneration, regenerating clusters and onion bulbs. Enzymatically, PRPS1 activity was close to zero in the proband and mildly reduced in his mother, compared with controls. To our knowledge, this is the first report of CMTX5 in a Chinese population. The genetic finding has expanded the genotypic spectrum of PRPS1 mutations.
Collapse
Affiliation(s)
- Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kang Wang
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
DeSmidt AA, Zou B, Grati M, Yan D, Mittal R, Yao Q, Richmond MT, Denyer S, Liu XZ, Lu Z. Zebrafish Model for Nonsyndromic X-Linked Sensorineural Deafness, DFNX1. Anat Rec (Hoboken) 2019; 303:544-555. [PMID: 30874365 DOI: 10.1002/ar.24115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022]
Abstract
Hereditary deafness is often a neurosensory disorder and affects the quality of life of humans. Only three X-linked genes (POU class 3 homeobox 4 (POU3F4), phosphoribosyl pyrophosphate synthetase 1 (PRPS1), and small muscle protein X-linked (SMPX)) are known to be involved in nonsyndromic hearing loss. Four PRPS1 missense mutations have been found to associate with X-linked nonsyndromic sensorineural deafness (DFNX1/DFN2) in humans. However, a causative relationship between PRPS1 mutations and hearing loss in humans has not been well studied in any animal model. Phosphoribosyl pyrophosphate synthetase 1 (PRS-I) is highly conserved in vertebrate taxa. In this study, we used the zebrafish as a model to investigate the auditory role of zebrafish orthologs (prps1a and prps1b) of the human PRPS1 gene with whole mount in situ hybridization, reverse transcription polymerase chain reaction, phenotypic screening, confocal imaging, and electrophysiological methods. We found that both prps1a and prps1b genes were expressed in the inner ear of zebrafish. Splice-blocking antisense morpholino oligonucleotides (MO1 and MO2) caused exon-2 skip and intron-2 retention of prps1a and exon-2 skip and intron-1 retention of prps1b to knock down functions of the genes, respectively. MO1 and MO2 morphants had smaller otic vesicles and otoliths, fewer inner ear hair cells, and lower microphonic response amplitude and sensitivity than control zebrafish. Therefore, knockdown of either prps1a or prps1b resulted in significant sensorineural hearing loss in zebrafish. We conclude that the prps1 genes are essential for hearing in zebrafish, which has the potential to help us understand the biology of human deafness DFNX1/DFN2. Anat Rec, 303:544-555, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
| | - Bing Zou
- Department of Biology, University of Miami, Coral Gables, Florida.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Qi Yao
- Department of Biology, University of Miami, Coral Gables, Florida.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Steven Denyer
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhongmin Lu
- Department of Biology, University of Miami, Coral Gables, Florida.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Neuroscience Program, University of Miami, Miami, Florida.,International Center for Marine Studies, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Sauvaget M, Hutton F, Coull R, Vavassori S, Wang K, Reznik A, Chyker T, Newfield CG, Euston E, Benary G, Schweizer LM, Schweizer M. The NHR1-1 of Prs1 and the pentameric motif 284KKCPK288 of Prs3 permit multi-functionality of the PRPP synthetase in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5288342. [PMID: 30649305 DOI: 10.1093/femsyr/foz006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 12/23/2022] Open
Abstract
The five-membered PRS gene family of Saccharomyces cerevisiae is an example of gene duplication allowing the acquisition of novel functions. Each of the five Prs polypeptides is theoretically capable of synthesising PRPP but at least one of the following heterodimers is required for survival: Prs1/Prs3, Prs2/Prs5 and Prs4/Prs5. Prs3 contains a pentameric motif 284KKCPK288 found only in nuclear proteins. Deletion of 284KKCPK288 destabilises the Prs1/Prs3 complex resulting in a cascade of events, including reduction in PRPP synthetase activity and altered cell wall integrity (CWI) as measured by caffeine sensitivity and Rlm1 expression. Prs3 also interacts with the kinetochore-associated protein, Nuf2. Following the possibility of 284KKCPK288-mediated transport of the Prs1/Prs3 complex to the nucleus, it may interact with Nuf2 and phosphorylated Slt2 permitting activation of Rlm1. This scenario explains the breakdown of CWI encountered in mutants lacking PRS3 or deleted for 284KKCPK288. However, removal of NHR1-1 from Prs1 does not disrupt the Prs1/Prs3 interaction as shown by increased PRPP synthetase activity. This is evidence for the separation of the two metabolic functions of the PRPP-synthesising machinery: provision of PRPP and maintenance of CWI and is an example of evolutionary development when multiple copies of a gene were present in the ancestral organism.
Collapse
Affiliation(s)
- Maëlle Sauvaget
- Institute of Biological Chemistry, Biophysics & Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Fraser Hutton
- Institute of Life & Earth Sciences, School of Energy, Geoscience, Infrastructure & Society, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Robert Coull
- Institute of Life & Earth Sciences, School of Energy, Geoscience, Infrastructure & Society, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Stefano Vavassori
- Institute of Biological Chemistry, Biophysics & Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Ke Wang
- School of Life Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Aleksandra Reznik
- School of Life Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Tatsiana Chyker
- School of Life Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Chelsea G Newfield
- Institute of Life & Earth Sciences, School of Energy, Geoscience, Infrastructure & Society, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Eloise Euston
- Institute of Biological Chemistry, Biophysics & Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Gerrit Benary
- Institute of Biological Chemistry, Biophysics & Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Lilian M Schweizer
- School of Life Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| | - Michael Schweizer
- Institute of Biological Chemistry, Biophysics & Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Edinburgh EH14 4AS, UK
| |
Collapse
|
31
|
Brown EB, Rayens E, Rollmann SM. The Gene CG6767 Affects Olfactory Behavior in Drosophila melanogaster. Behav Genet 2019; 49:317-326. [PMID: 30710192 DOI: 10.1007/s10519-019-09949-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/21/2019] [Indexed: 01/09/2023]
Abstract
Chemosensory systems mediate some of the most vital animal behaviors. However, our knowledge of the genetic mechanisms that underlie behavioral responses to olfactory cues remains fragmented. Genome-wide association mapping has greatly advanced our ability to identify candidate loci associated with variation in olfactory behavior, but functional validation of these candidates remain a necessary next step in understanding the mechanisms by which these genes influence chemoreception. In previous genome-wide association analyses, a genomic region that spans multiple polymorphic loci on the left arm of the third chromosome was found to be significantly associated with variation in olfactory behavioral responses to the odorant 2,3-butanedione, a volatile compound present in fermenting fruit. In this study, behavioral analysis of flies possessing either the major or minor haplotype for this region confirmed the association between polymorphisms in the region and variation in olfactory behavior. Moreover, functional dissection of the genes within this region using P-element insertional mutagenesis together with targeted RNAi experiments revealed that the gene CG6767, a gene of previously unknown function but predicted to encode an enzyme responsible for the synthesis and metabolism of nucleic acids, affects olfactory behavioral responses to 2,3-butanedione. Specifically, RNAi mediated knockdown of CG6767 expression in different neuroanatomical populations of the olfactory system suggests that this gene functions in local interneurons of the antennal lobe. These results reveal a new role for CG6767 and its importance in olfactory behavior.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA
| | - Emily Rayens
- Department of Biology, Wittenberg University, Springfield, OH, 45501, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.
| |
Collapse
|
32
|
Nishikura N, Yamagata T, Morimune T, Matsui J, Sokoda T, Sawai C, Sakaue Y, Higuchi Y, Hashiguchi A, Takashima H, Takeuchi Y, Maruo Y. X-linked Charcot-Marie-Tooth disease type 5 with recurrent weakness after febrile illness. Brain Dev 2019; 41:201-204. [PMID: 30177296 DOI: 10.1016/j.braindev.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
X-linked Charcot-Marie-Tooth disease type 5 (CMTX5) is an X-linked disorder characterized by early-onset sensorineural hearing impairment, peripheral neuropathy, and progressive optic atrophy. It is caused by a loss-of-function mutation in the phosphoribosyl pyrophosphate synthetase 1 gene (PRPS1), which encodes isoform I of phosphoribosyl pyrophosphate synthetase (PRS-I). A decreased activity leads to nonsyndromic sensorineural deafness (DFN2), CMTX5, and Arts syndrome depending upon residual PRS-I activity. Clinical and neurophysiological features of pediatric CMTX5 are poorly defined. We report two male siblings with peripheral neuropathy and prelingual sensorineural hearing loss who carried a novel c.319A>G (p.Ile107Val) PRPS1 missense mutation. They exhibited recurrent episodes of transient proximal muscle weakness, showing Gowers' sign and waddling gait after suffering from febrile illness. This transient weakness has not been previously reported in CMTX5. A patient with Arts syndrome was reported to have transient proximal weakness after febrile illness. The transient weakness presenting in both CMTX5 and Arts syndrome suggests an overlap of signs and a continuous spectrum of PRS-I hypoactivity disease. Children presenting with transient neurological signs should be evaluated for peripheral neuropathy and consider genetic analysis for PRPS1.
Collapse
Affiliation(s)
- Noriko Nishikura
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takao Morimune
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Jun Matsui
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Tatsuyuki Sokoda
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Chihiro Sawai
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Yuko Sakaue
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshihiro Takeuchi
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
33
|
Mateos J, Fafián-Labora J, Morente-López M, Lesende-Rodriguez I, Monserrat L, Ódena MA, de Oliveira E, de Toro J, Arufe MC. Next-Generation Sequencing and Quantitative Proteomics of Hutchinson-Gilford progeria syndrome-derived cells point to a role of nucleotide metabolism in premature aging. PLoS One 2018; 13:e0205878. [PMID: 30379953 PMCID: PMC6209416 DOI: 10.1371/journal.pone.0205878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/03/2018] [Indexed: 02/05/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a very rare fatal disease characterized for accelerated aging. Although the causal agent, a point mutation in LMNA gene, was identified more than a decade ago, the molecular mechanisms underlying HGPS are still not fully understood and, currently, there is no cure for the patients, which die at a mean age of thirteen. With the aim of unraveling non-previously altered molecular pathways in the premature aging process, human cell lines from HGPS patients and from healthy parental controls were studied in parallel using Next-Generation Sequencing (RNAseq) and High-Resolution Quantitative Proteomics (iTRAQ) techniques. After selection of significant proteins and transcripts and crosschecking of the results a small set of protein/transcript pairs were chosen for validation. One of those proteins, ribose-phosphate pyrophosphokinase 1 (PRPS1), is essential for nucleotide synthesis. PRPS1 loss-of-function mutants present lower levels of purine. PRPS1 protein and transcript levels are detected as significantly decreased in HGPS cell lines vs. healthy parental controls. This modulation was orthogonally confirmed by targeted techniques in cell lines and also in an animal model of Progeria, the ZMPSTE24 knock-out mouse. In addition, functional experiments through supplementation with S-adenosyl-methionine (SAMe), a metabolite that is an alternative source of purine, were done. Results indicate that SAMe has a positive effect in the proliferative capacity and reduces senescence-associated Beta-galactosidase staining of the HPGS cell lines. Altogether, our data suggests that nucleotide and, specifically, purine-metabolism, are altered in premature aging, opening a new window for the therapeutic treatment of the disease.
Collapse
Affiliation(s)
- Jesús Mateos
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC
| | - Juan Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC
| | - Miriam Morente-López
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC
| | | | | | - María A. Ódena
- Proteomics Platform–Barcelona Science Park, Barcelona, Spain
| | | | - Javier de Toro
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC
| | - María C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Dpto. Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, INIBIC-CHUAC
| |
Collapse
|
34
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
35
|
Agrahari AK, Sneha P, George Priya Doss C, Siva R, Zayed H. A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metab Brain Dis 2018; 33:589-600. [PMID: 29047041 DOI: 10.1007/s11011-017-0121-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/04/2017] [Indexed: 01/16/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most commonly inherited congenital neurological disorders, affecting approximately 1 in 2500 in the US. About 80 genes were found to be in association with CMT. The phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is an essential enzyme in the primary stage of de novo and salvage nucleotide synthesis. The mutations in the PRPS1 gene leads to X-linked Charcot-Marie-Tooth neuropathy type 5 (CMTX5), PRS super activity, Arts syndrome, X-linked deafness-1, breast cancer, and colorectal cancer. In the present study, we obtained 20 missense mutations from UniProt and dbSNP databases and applied series of comprehensive in silico prediction methods to assess the degree of pathogenicity and stability. In silico tools predicted four missense mutations (D52H, M115 T, L152P, and D203H) to be potential disease causing mutations. We further subjected the four mutations along with native protein to 50 ns molecular dynamics simulation (MDS) using Gromacs package. The resulting trajectory files were analyzed to understand the stability differences caused by the mutations. We used the Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), solvent accessibility surface area (SASA), Covariance matrix, Principal Component Analysis (PCA), Free Energy Landscape (FEL), and secondary structure analysis to assess the structural changes in the protein upon mutation. Our study suggests that the four mutations might affect the PRPS1 protein function and stability of the structure. The proposed study may serve as a platform for drug repositioning and personalized medicine for diseases that are caused by the PRPS1 deficiency.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - P Sneha
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - R Siva
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
36
|
Phenotypical features of two patients diagnosed with PHARC syndrome and carriers of a new homozygous mutation in the ABHD12 gene. J Neurol Sci 2018; 387:134-138. [PMID: 29571850 DOI: 10.1016/j.jns.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/19/2018] [Accepted: 02/06/2018] [Indexed: 11/22/2022]
Abstract
PHARC (Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa and Cataracts) (MIM# 612674) is an autosomal recessive neurodegenerative disease caused by mutations in the ABHD12 gene. We evaluated two Spanish siblings affected with pes cavus, sensorimotor neuropathy, hearing loss, retinitis pigmentosa and juvenile cataracts in whom the genetic test of ABHD12 revealed a novel homozygous frameshift mutation, c.211_223del (p.Arg71Tyrfs*26). The earliest clinical manifestation in these patients was a demyelinating neuropathy manifested with a Charcot-Marie-Tooth phenotype over three decades. Progressive hearing loss, cataracts and retinitis pigmentosa appeared after the age of 30. We herein describe the complete clinical picture of these two patients, and focus particularly on neuropathy characteristics. This study supports the fact that although PHARC is rare, its phenotype is very characteristic and we should include its study in patients affected with demyelinating polyneuropathy, hearing loss and retinopathy.
Collapse
|
37
|
Fiorentino A, Fujinami K, Arno G, Robson AG, Pontikos N, Arasanz Armengol M, Plagnol V, Hayashi T, Iwata T, Parker M, Fowler T, Rendon A, Gardner JC, Henderson RH, Cheetham ME, Webster AR, Michaelides M, Hardcastle AJ. Missense variants in the X-linked gene PRPS1 cause retinal degeneration in females. Hum Mutat 2018; 39:80-91. [PMID: 28967191 DOI: 10.1002/humu.23349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
Retinal dystrophies are a heterogeneous group of disorders of visual function leading to partial or complete blindness. We report the genetic basis of an unusual retinal dystrophy in five families with affected females and no affected males. Heterozygous missense variants were identified in the X-linked phosphoribosyl pyrophosphate synthetase 1 (PRPS1) gene: c.47C > T, p.(Ser16Phe); c.586C > T, p.(Arg196Trp); c.641G > C, p.(Arg214Pro); and c.640C > T, p.(Arg214Trp). Missense variants in PRPS1 are usually associated with disease in male patients, including Arts syndrome, Charcot-Marie-Tooth, and nonsyndromic sensorineural deafness. In our study families, affected females manifested a retinal dystrophy with interocular asymmetry. Three unrelated females from these families had hearing loss leading to a diagnosis of Usher syndrome. Other neurological manifestations were also observed in three individuals. Our data highlight the unexpected X-linked inheritance of retinal degeneration in females caused by variants in PRPS1 and suggest that tissue-specific skewed X-inactivation or variable levels of pyrophosphate synthetase-1 deficiency are the underlying mechanism(s). We speculate that the absence of affected males in the study families suggests that some variants may be male embryonic lethal when inherited in the hemizygous state. The unbiased nature of next-generation sequencing enables all possible modes of inheritance to be considered for association of gene variants with novel phenotypic presentation.
Collapse
Affiliation(s)
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
- National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Anthony G Robson
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, London, United Kingdom
- UCL Genetics Institute, London, United Kingdom
| | | | | | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan
| | - Matthew Parker
- Genomics England, Queen Mary University of London, London, United Kingdom
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Tom Fowler
- Genomics England, Queen Mary University of London, London, United Kingdom
| | - Augusto Rendon
- Genomics England, Queen Mary University of London, London, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Robert H Henderson
- Moorfields Eye Hospital, London, United Kingdom
- Great Ormond Street Hospital for Children, Great Ormond Street, London, United Kingdom
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | | |
Collapse
|
38
|
Kim SY, Kim AR, Kim NKD, Lee C, Han JH, Kim MY, Jeon EH, Park WY, Mittal R, Yan D, Liu XZ, Choi BY. Functional characterization of a novel loss-of-function mutation of PRPS1 related to early-onset progressive nonsyndromic hearing loss in Koreans (DFNX1): Potential implications on future therapeutic intervention. J Gene Med 2017; 18:353-358. [PMID: 27886419 DOI: 10.1002/jgm.2935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The symptoms of phosphoribosyl pyrophosphate synthetase 1 (PRPS1) deficiency diseases have been reported to be alleviated by medication. In the present study, we report biochemical data that favor PRPS1 deficiency-related hearing loss as a potential target for pharmaceutical treatment. METHODS We recruited 42 probands from subjects aged less than 15 years with a moderate degree of nonsyndromic autosomal-recessive or sporadic sensorineural hearing loss (SNHL) in at least one side. Molecular genetic testing, including targeted exome sequencing (TES) of 129 genes for deafness, and in silico prediction were performed. RESULTS A strong candidate variant (p.A82P) of PRPS1 is co-segregated with SNHL in X-linked recessive inheritance from one Korean multiplex SNHL family. Subsequent measurement of in vitro enzymatic activities of PRPS1 from erythrocytes of affected and unaffected family members, as well as unrelated normal controls, confirmed a pathogenic role of this variant. In detail, compared to normal hearing controls (0.23-0.26 nmol/ml/h), the proband, the affected sibling and their normal hearing mother demonstrated a significantly decreased PRPS1 enzymatic activity (0.07, 0.03 and 0.11 nmol/ml/h, respectively). This novel loss-of-function mutation of PRPS1 (p.A82P) is the ninth and sixth most reported mutation in the world and in Asia, respectively. CONCLUSIONS DFNX1 was found to account for approximately 2.4% (1/42) of moderate SNHL in a Korean pediatric population. Confirmation of PRPS1 activity deficiency and an audiologic phenotype that initially begins in a milder form of SNHL, as in our family, should indicate the need for rigorous genetic screening as early as possible.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Ah Reum Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Eun-Hee Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, South Korea
| |
Collapse
|
39
|
Jiang P, Wei WF, Zhong GW, Zhou XG, Qiao WR, Fisher R, Lu L. The function of the three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans. MICROBIOLOGY-SGM 2017; 163:218-232. [PMID: 28277197 DOI: 10.1099/mic.0.000427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and AnprsC are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.
Collapse
Affiliation(s)
- Ping Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen-Fan Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Guo-Wei Zhong
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Xiao-Gang Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wei-Ran Qiao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Reinhard Fisher
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
40
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
41
|
He M, Chao L, You YP. PRPS1 silencing reverses cisplatin resistance in human breast cancer cells. Biochem Cell Biol 2016; 95:385-393. [PMID: 28177767 DOI: 10.1139/bcb-2016-0106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PRPS1 (phosphoribosyl pyrophosphate synthetase 1), which drives the nucleotide biosynthesis pathway, modulates a variety of functions by providing central building blocks and cofactors for cell homeostasis. As tumor cells often display abnormal nucleotide metabolism, dysregulated de-novo nucleotide synthesis has potential impacts in cancers. We now report that PRPS1 is specifically and highly expressed in chemoresistant (CR) cancer cells derived from cisplatin-resistant human breast cancer cell lines SK-BR-3 and MCF-7. The inhibition of PRPS1 activity in CR cells by genetic silencing reduces cell viability and increases apoptosis in vitro, both of which can be further potentiated by cisplatin treatment. Significantly, such down-regulation of PRPS1 in CR cells when administered to nude mice enhanced the survival of those animals, as demonstrated by decreased tumor growth. Knockdown of PRPSI may cause these effects by potently inducing autonomous activation of caspase-3 and inhibiting the proliferation in the engrafted CR tumors. As a result, cisplatin sensitivity in a xenograft model of CR cancer cells can be restored by the down-regulation of PRPS1. Thus, PRPS1 inhibition may afford a therapeutic approach to relapsed patients with breast cancer, resistant to chemotherapy.
Collapse
Affiliation(s)
- Min He
- a Department of Breast Surgery, Wuxi Second People's Hospital, Wuxi 214000, China
| | - Lin Chao
- a Department of Breast Surgery, Wuxi Second People's Hospital, Wuxi 214000, China
| | - Yi-Ping You
- b Department of Neurology, Wuxi People's Hospital, Wuxi 214000, China
| |
Collapse
|
42
|
Ugbogu EA, Wang K, Schweizer LM, Schweizer M. Metabolic gene products have evolved to interact with the cell wall integrity pathway inSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow092. [DOI: 10.1093/femsyr/fow092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
|
43
|
Kennerson ML, Kim EJ, Siddell A, Kidambi A, Kim SM, Hong YB, Hwang SH, Chung KW, Choi BO. X-linked Charcot-Marie-Tooth disease type 6 (CMTX6) patients with a p.R158H mutation in the pyruvate dehydrogenase kinase isoenzyme 3 gene. J Peripher Nerv Syst 2016; 21:45-51. [DOI: 10.1111/jns.12160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/09/2016] [Accepted: 01/18/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Marina L. Kennerson
- Northcott Neuroscience Laboratory; ANZAC Research Institute & Sydney Medical School University of Sydney; Sydney Australia
- Molecular Medicine Laboratory; Concord Hospital; Sydney Australia
| | - Eun J. Kim
- Department of Neurology, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Neuroscience Center; Samsung Medical Center; Seoul Korea
| | - Anna Siddell
- Northcott Neuroscience Laboratory; ANZAC Research Institute & Sydney Medical School University of Sydney; Sydney Australia
| | - Aditi Kidambi
- Northcott Neuroscience Laboratory; ANZAC Research Institute & Sydney Medical School University of Sydney; Sydney Australia
| | - Sung M. Kim
- Department of Biological Sciences; Kongju National University; Gongju Korea
| | - Young B. Hong
- Stem Cell & Regenerative Medicine Center; Kongju National University; Gongju Korea
- Neuroscience Center; Samsung Medical Center; Seoul Korea
| | - Sun H. Hwang
- Department of Neurology, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Ki W. Chung
- Department of Biological Sciences; Kongju National University; Gongju Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Stem Cell & Regenerative Medicine Center; Kongju National University; Gongju Korea
- Neuroscience Center; Samsung Medical Center; Seoul Korea
| |
Collapse
|
44
|
Mutations in PRPS1 causing syndromic or nonsyndromic hearing impairment: intrafamilial phenotypic variation complicates genetic counseling. Pediatr Res 2015; 78:97-102. [PMID: 25785835 DOI: 10.1038/pr.2015.56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/06/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND PRPS1 encodes isoform I of phosphoribosylpyrophosphate synthetase (PRS-I), a key enzyme in nucleotide biosynthesis. Different missense mutations in PRPS1 cause a variety of disorders that include PRS-I superactivity, nonsyndromic sensorineural hearing impairment, Charcot-Marie-Tooth disease, and Arts syndrome. It has been proposed that each mutation would result in a specific phenotype, depending on its effects on the structure and function of the enzyme. METHODS Thirteen Spanish unrelated families segregating X-linked hearing impairment were screened for PRPS1 mutations by Sanger sequencing. In two positive pedigrees, segregation of mutations was studied, and clinical data from affected subjects were compared. RESULTS We report two novel missense mutations in PRPS1, p.Ile275Thr and p.Gly306Glu, which were found in the propositi of two unrelated Spanish families, both subjects presenting with nonsyndromic hearing impairment. Further investigation revealed syndromic features in other hemizygous carriers from one of the pedigrees. Sequencing of genes that are functionally related to PRPS1 did not reveal any candidate variant that might act as a phenotype modifier. CONCLUSION This case of intrafamilial phenotypic variation associated with a single PRPS1 mutation complicates the genotype-phenotype correlations, which makes genetic counseling of mutation carriers difficult because of the wide spectrum of severity of the associated disorders.
Collapse
|
45
|
Association of PRPS1 Mutations with Disease Phenotypes. DISEASE MARKERS 2015; 2015:127013. [PMID: 26089585 PMCID: PMC4458296 DOI: 10.1155/2015/127013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/06/2015] [Indexed: 01/01/2023]
Abstract
Phosphoribosylpyrophosphate synthetase 1 (PRPS1) codes for PRS-I enzyme that catalyzes the first step of nucleotide synthesis. PRPS1 gene mutations have been implicated in a number of human diseases. Recently, new mutations in PRPS1 have been identified that have been associated with novel phenotypes like diabetes insipidus expanding the spectrum of PRPS1-related diseases. The purpose of this review is to evaluate current literature on PRPS1-related syndromes and summarize potential therapies. The overexpression of PRPS1 results in PRS-I superactivity resulting in purine overproduction. Patients with PRS-I superactivity demonstrate uric acid overproduction, hypotonia, ataxia, neurodevelopment abnormalities, and postlingual hearing impairment. On the other hand, decreased activity leads to X-linked nonsyndromic sensorineural deafness (DFNX-2), Charcot-Marie-Tooth disease-5 (CMTX5), and Arts syndrome depending on the residual activity of PRS-I. Mild PRS-I deficiency (DFNX-2) results in non-syndromic progressive hearing loss whereas moderate PRS-I deficiency (CMTX5) and severe PRS-I deficiency (Arts syndrome) present with peripheral or optic neuropathy, prelingual progressive sensorineural hearing loss, and central nervous system impairment. Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in patients with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients and open new avenues of therapeutic intervention.
Collapse
|
46
|
Park MW, Lee HS, Kim EY, Lee KA. RNA Polymerase II Inhibitor, α-Amanitin, Affects Gene Expression for Gap Junctions and Metabolic Capabilities of Cumulus Cells, but Not Oocyte, during in vitro Mouse Oocyte Maturation. Dev Reprod 2015; 17:63-72. [PMID: 25949122 PMCID: PMC4282216 DOI: 10.12717/dr.2013.17.1.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/17/2022]
Abstract
A specific inhibitor of RNA polymerase II, α-amanitin is broadly used to block transcriptional activities in cells. Previous studies showed that α-amanitin affects in vitro maturation of cumulus-oocyte-complex (COC). In this study, we evaluated the target of α-amanitin, and whether it affects oocytes or cumulus cells (CCs), or both. We treated α-amanitin with different time period during in vitro culture of denuded oocytes (DOs) or COCs in comparison, and observed the changes in morphology and maturation status. Although DOs did not show any change in morphology and maturation rates with α-amanitin treatment, oocytes from COCs were arrested at metaphase I (MI) stage and CCs were more scattered than control groups. To discover causes of meiotic arrest and scattering of CCs, we focused on changes of cumulus expansion, gap junctions, and cellular metabolism which to be the important factors for the successful in vitro maturation of COCs. Expression of genes for cumulus expansion markers (Ptx3, Has2, and Tnfaip6) and gap junctional proteins (Gja1, Gja4, and Gjc1) decreased in α-amanitin-treated CCs. However, these changes were not observed in oocytes. In addition, expression of genes related to metabolism (Prps1, Rpe, Rpia, Taldo1, and Tkt) decreased in α -amanitin-treated CCs but not in oocytes. Therefore, we concluded that the transcriptional activities of CCs for supporting suitable transcripts, especially for its metabolic activities and formation of gap junctions among CCs as well as with oocytes, are important for oocytes maturation in COCs.
Collapse
Affiliation(s)
- Min-Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, CHA Research Institute, Fertility Center, CHA General Hospital, Seoul 135-081, Korea
| | - Hyun-Seo Lee
- DNA Repair Research Center, Chosun University, Gwangju 501-759, Korea
| | - Eun-Young Kim
- Department of Biomedical Science, College of Life Science, CHA University, CHA Research Institute, Fertility Center, CHA General Hospital, Seoul 135-081, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, CHA Research Institute, Fertility Center, CHA General Hospital, Seoul 135-081, Korea
| |
Collapse
|
47
|
Chen P, Liu Z, Wang X, Peng J, Sun Q, Li J, Wang M, Niu L, Zhang Z, Cai G, Teng M, Li X. Crystal and EM structures of human phosphoribosyl pyrophosphate synthase I (PRS1) provide novel insights into the disease-associated mutations. PLoS One 2015; 10:e0120304. [PMID: 25781187 PMCID: PMC4363470 DOI: 10.1371/journal.pone.0120304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022] Open
Abstract
Human PRS1, which is indispensable for the biosynthesis of nucleotides, deoxynucleotides and their derivatives, is associated directly with multiple human diseases because of single base mutation. However, a molecular understanding of the effect of these mutations is hampered by the lack of understanding of its catalytic mechanism. Here, we reconstruct the 3D EM structure of the PRS1 apo state. Together with the native stain EM structures of AMPNPP, AMPNPP and R5P, ADP and the apo states with distinct conformations, we suggest the hexamer is the enzymatically active form. Based on crystal structures, sequence analysis, mutagenesis, enzyme kinetics assays, and MD simulations, we reveal the conserved substrates binding motifs and make further analysis of all pathogenic mutants.
Collapse
Affiliation(s)
- Peng Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Zheng Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Xuejuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Junhui Peng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Qianqian Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Jianzhong Li
- Department of Otolaryngology Head and Neck Surgery, Fuzhou general hospital of Nanjing Command, PLA, Fuzhou 350025, China
| | - Mingxing Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Gang Cai
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
- * E-mail: (XL); (MT); (GC)
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
- * E-mail: (XL); (MT); (GC)
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
- * E-mail: (XL); (MT); (GC)
| |
Collapse
|
48
|
Almoguera B, He S, Corton M, Fernandez-San Jose P, Blanco-Kelly F, López-Molina MI, García-Sandoval B, Del Val J, Guo Y, Tian L, Liu X, Guan L, Torres RJ, Puig JG, Hakonarson H, Xu X, Keating B, Ayuso C. Expanding the phenotype of PRPS1 syndromes in females: neuropathy, hearing loss and retinopathy. Orphanet J Rare Dis 2014; 9:190. [PMID: 25491489 PMCID: PMC4272780 DOI: 10.1186/s13023-014-0190-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022] Open
Abstract
Background Phosphoribosyl pyrophosphate synthetase (PRS) I deficiency is a rare medical condition caused by missense mutations in PRPS1 that lead to three different phenotypes: Arts Syndrome (MIM 301835), X-linked Charcot-Marie-Tooth (CMTX5, MIM 311070) or X-linked non-syndromic sensorineural deafness (DFN2, MIM 304500). All three are X-linked recessively inherited and males affected display variable degree of central and peripheral neuropathy. We applied whole exome sequencing to a three-generation family with optic atrophy followed by retinitis pigmentosa (RP) in all three cases, and ataxia, progressive peripheral neuropathy and hearing loss with variable presentation. Methods Whole exome sequencing was performed in two affecteds and one unaffected member of the family. Sanger sequencing was used to validate and segregate the 12 candidate mutations in the family and to confirm the absence of the novel variant in PRPS1 in 191 controls. The pathogenic role of the novel mutation in PRPS1 was assessed in silico and confirmed by enzymatic determination of PRS activity, mRNA expression and sequencing, and X-chromosome inactivation. Results A novel missense mutation was identified in PRPS1 in the affected females. Age of onset, presentation and severity of the phenotype are highly variable in the family: both the proband and her mother have neurological and ophthalmological symptoms, whereas the phenotype of the affected sister is milder and currently confined to the eye. Moreover, only the proband displayed a complete lack of expression of the wild type allele in leukocytes that seems to correlate with the degree of PRS deficiency and the severity of the phenotype. Interestingly, optic atrophy and RP are the only common manifestations to all three females and the only phenotype correlating with the degree of enzyme deficiency. Conclusions These results are in line with recent evidence of the existence of intermediate phenotypes in PRS-I deficiency syndromes and demonstrate that females can exhibit a disease phenotype as severe and complex as their male counterparts. Electronic supplementary material The online version of this article (doi:10.1186/s13023-014-0190-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Berta Almoguera
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Sijie He
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,BGI-Shenzhen, Shenzhen, 518083, China.
| | - Marta Corton
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital (IISFJD, UAM), 28040, Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| | - Patricia Fernandez-San Jose
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital (IISFJD, UAM), 28040, Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital (IISFJD, UAM), 28040, Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| | - Maria Isabel López-Molina
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain. .,Department of Ophthalmology, Fundación Jiménez Díaz, 28040, Madrid, Spain.
| | - Blanca García-Sandoval
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain. .,Department of Ophthalmology, Fundación Jiménez Díaz, 28040, Madrid, Spain.
| | - Javier Del Val
- Department of Neurology, Fundación Jiménez Díaz, 28040, Madrid, Spain.
| | - Yiran Guo
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | | | | | - Rosa J Torres
- Department of Biochemistry, La Paz University Hospital IdiPaz, Madrid, 28046, Spain.
| | - Juan G Puig
- Department of Internal Medicine, Metabolic-Vascular Unit, La Paz University Hospital IdiPaz, Madrid, 28046, Spain.
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China. .,The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen, China.
| | - Brendan Keating
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Carmen Ayuso
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz University Hospital (IISFJD, UAM), 28040, Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
49
|
The expanding spectrum of PRPS1-associated phenotypes: three novel mutations segregating with X-linked hearing loss and mild peripheral neuropathy. Eur J Hum Genet 2014; 23:766-73. [PMID: 25182139 DOI: 10.1038/ejhg.2014.168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 11/09/2022] Open
Abstract
Next-generation sequencing is currently the technology of choice for gene/mutation discovery in genetically-heterogeneous disorders, such as inherited sensorineural hearing loss (HL). Whole-exome sequencing of a single Italian proband affected by non-syndromic HL identified a novel missense variant within the PRPS1 gene (NM_002764.3:c.337G>T (p.A113S)) segregating with post-lingual, bilateral, progressive deafness in the proband's family. Defects in this gene, encoding the phosphoribosyl pyrophosphate synthetase 1 (PRS-I) enzyme, determine either X-linked syndromic conditions associated with hearing impairment (eg, Arts syndrome and Charcot-Marie-Tooth neuropathy type X-5) or non-syndromic HL (DFNX1). A subsequent screening of the entire PRPS1 gene in 16 unrelated probands from X-linked deaf families led to the discovery of two additional missense variants (c.343A>G (p.M115V) and c.925G>T (p.V309F)) segregating with hearing impairment, and associated with mildly-symptomatic peripheral neuropathy. All three variants result in a marked reduction (>60%) of the PRS-I activity in the patients' erythrocytes, with c.343A>G (p.M115V) and c.925G>T (p.V309F) affecting more severely the enzyme function. Our data significantly expand the current spectrum of pathogenic variants in PRPS1, confirming that they are associated with a continuum disease spectrum, thus stressing the importance of functional studies and detailed clinical investigations for genotype-phenotype correlation.
Collapse
|
50
|
Balasubramaniam S, Duley JA, Christodoulou J. Inborn errors of purine metabolism: clinical update and therapies. J Inherit Metab Dis 2014; 37:669-86. [PMID: 24972650 DOI: 10.1007/s10545-014-9731-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022]
Abstract
Inborn errors of purine metabolism exhibit broad neurological, immunological, haematological and renal manifestations. Limited awareness of the phenotypic spectrum, the recent descriptions of newer disorders and considerable genetic heterogeneity, have contributed to long diagnostic odysseys for affected individuals. These enzymes are widely but not ubiquitously distributed in human tissues and are crucial for synthesis of essential nucleotides, such as ATP, which form the basis of DNA and RNA, oxidative phosphorylation, signal transduction and a range of molecular synthetic processes. Depletion of nucleotides or accumulation of toxic intermediates contributes to the pathogenesis of these disorders. Maintenance of cellular nucleotides depends on the three aspects of metabolism of purines (and related pyrimidines): de novo synthesis, catabolism and recycling of these metabolites. At present, treatments for the clinically significant defects of the purine pathway are restricted: purine 5'-nucleotidase deficiency with uridine; familial juvenile hyperuricaemic nephropathy (FJHN), adenine phosphoribosyl transferase (APRT) deficiency, hypoxanthine phosphoribosyl transferase (HPRT) deficiency and phosphoribosyl-pyrophosphate synthetase superactivity (PRPS) with allopurinol; adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies have been treated by bone marrow transplantation (BMT), and ADA deficiency with enzyme replacement with polyethylene glycol (PEG)-ADA, or erythrocyte-encapsulated ADA; myeloadenylate deaminase (MADA) and adenylosuccinate lyase (ADSL) deficiencies have had trials of oral ribose; PRPS, HPRT and adenosine kinase (ADK) deficiencies with S-adenosylmethionine; and molybdenum cofactor deficiency of complementation group A (MOCODA) with cyclic pyranopterin monophosphate (cPMP). In this review we describe the known inborn errors of purine metabolism, their phenotypic presentations, established diagnostic methodology and recognised treatment options.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Metabolic Unit, Princess Margaret Hospital, Roberts Road, Subiaco, Perth, WA, 6008, Australia
| | | | | |
Collapse
|