1
|
Campioli CC, Castillo Almeida NE, O'Horo JC, Wilson WR, Cano E, DeSimone DC, Baddour LM, SohailMD MR. Diagnosis, Management, and Outcomes of Brain Abscess due to Gram-Negative Versus Gram-Positive Bacteria: Brain abscess due to Gram-positive vs. Gram-negative bacteria. Int J Infect Dis 2021; 115:189-194. [PMID: 34902581 DOI: 10.1016/j.ijid.2021.12.322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Differences in management and outcomes of brain abscesses due to Gram-positive (GPB) versus Gram-negative bacteria (GNB) are not well defined. METHODS Retrospectively reviewed adult patients with brain abscesses due to monomicrobial infection from 2009 through 2020. RESULTS 177 had a monomicrobial brain abscess; 143 (80.8%) caused by GPB and 34 (19.2%) by GNB. Patients with GNB had more history of head/neck surgery than those with GPB (58.8% vs. 36.4%; P= 0.02). Pathogens in the GNB group included Pseudomonas aeruginosa (29.4%), Klebsiella species (spp.; 20.6%), and Enterobacter spp. (20.6%); in the GPB group were Staphylococcus aureus (32.2%) and Streptococcus spp. (31.5%). Most patients had combined medical/surgical management (64.7% GNB vs. 63.6% GPB). Median duration of antibiotic therapy was 42 days, and there were no significant differences in infection relapse or 3-month survival rates. Patients with GNB were more likely to have therapeutic failure than did those with GPB (44.1% vs. 22.4%; P= 0.01). CONCLUSION Compared with brain abscesses caused by GPB, those due to GNB were more likely to have prior head and neck surgery. No statistically difference in outcomes was observed between groups; however, patients with GNB had a higher therapeutic failure rate than did those with GPB.
Collapse
Affiliation(s)
| | - Natalia E Castillo Almeida
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - John C O'Horo
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Division of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN, USA
| | - Walter R Wilson
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Edison Cano
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel C DeSimone
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Larry M Baddour
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Rizwan SohailMD
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Shute L, Kasper K, Walkty A, Ying S, Krawitz S, Embil JM. Atypical presentation of a methicillin-resistant Staphylococcus aureus brain abscess. IDCases 2021; 26:e01335. [PMID: 34877255 PMCID: PMC8627987 DOI: 10.1016/j.idcr.2021.e01335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lauren Shute
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ken Kasper
- Department of Medicine, Section of Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephen Ying
- Department of Radiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sherry Krawitz
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John M. Embil
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medicine, Section of Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Staphylococcal Infections: Host and Pathogenic Factors. Microorganisms 2021; 9:microorganisms9051080. [PMID: 34069873 PMCID: PMC8157358 DOI: 10.3390/microorganisms9051080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
|
4
|
Bahubali VKH, Vijayan P, Bhandari V, Siddaiah N, Srinivas D. Methicillin-resistant Staphylococcus aureus intracranial abscess: An analytical series and review on molecular, surgical and medical aspects. Indian J Med Microbiol 2018; 36:97-103. [PMID: 29735835 DOI: 10.4103/ijmm.ijmm_17_41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose Intracranial abscess caused by methicillin-resistant Staphylococcus aureus (MRSA) is rare and unexplored. The aim of the present study is to examine the prevalence, clinical and molecular characteristics, treatment options and outcome of MRSA intracranial abscess over a period of 6 years. Patientsand Methods A total of 21 patients were included in this retrospective study. The demographic and clinical details of all the patients were collected. Molecular typing including staphylococcal cassette chromosome mec typing, spa typing and polymerase chain reaction of Panton-Valentine leucocidin toxin (PVL) gene for the latter 6 isolates was performed. Results The paediatric population was the most affected group (33.3%). The primary route of infection was post-operative/trauma in 7 (33.3%) cases. All the patients were treated surgically either by aspiration or excision. Fifteen (71%) patients received anti-MRSA treatment with vancomycin or linezolid, where linezolid-treated patients showed better prognosis. Of the 11 patients who were on follow-up, unfavourable outcome was observed in 3 (27.3%) cases and 8 (72.7%) cases improved. The molecular typing of six isolates revealed four community-associated (CA) MRSA, one each of livestock-associated (LA) and healthcare-associated MRSA with PVL gene noted in all. Conclusion We propose that timely diagnosis, surgical intervention and appropriate anti-MRSA treatment would contribute to better outcome. The occurrence of CA-MRSA and LA-MRSA infection in the central nervous system signifies the threat from the community and livestock reservoir, thus drawing attention towards surveillance and tracking to understand the epidemiology and implement infection control measures.
Collapse
Affiliation(s)
| | - Priya Vijayan
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Vasundhra Bhandari
- Department of Infectious Diseases, National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Nagarathna Siddaiah
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Haysom L, Cross M, Anastasas R, Moore E, Hampton S. Prevalence and Risk Factors for Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Custodial Populations: A Systematic Review. JOURNAL OF CORRECTIONAL HEALTH CARE 2018; 24:197-213. [DOI: 10.1177/1078345818765271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Leigh Haysom
- Justice Health and Forensic Mental Health Network, Adolescent Health, NSW, Australia
| | - Melanie Cross
- Macquarie University, Sydney, New South Wales, Australia
| | | | - Elizabeth Moore
- Justice Health and Forensic Mental Health Network, Adolescent Health, NSW, Australia
| | - Stephen Hampton
- Justice Health and Forensic Mental Health Network, Medical Administration Unit, NSW, Australia
| |
Collapse
|
6
|
Abstract
Staphylococcus aureus, although generally identified as a commensal, is also a common cause of human bacterial infections, including of the skin and other soft tissues, bones, bloodstream, and respiratory tract. The history of S. aureus treatment is marked by the development of resistance to each new class of antistaphylococcal antimicrobial drugs, including the penicillins, sulfonamides, tetracyclines, glycopeptides, and others, complicating therapy. S. aureus isolates identified in the 1960s were sometimes resistant to methicillin, a ß-lactam antimicrobial active initially against a majority S. aureus strains. These MRSA isolates, resistant to nearly all ß-lactam antimicrobials, were first largely confined to the health care environment and the patients who attended it. However, in the mid-1990s, new strains, known as community-associated (CA-) MRSA strains, emerged. CA-MRSA organisms, compared with health care-associated (HA-) MRSA strain types, are more often susceptible to multiple classes of non ß-lactam antimicrobials. While infections caused by methicillin-susceptible S. aureus (MSSA) strains are usually treated with drugs in the ß-lactam class, such as cephalosporins, oxacillin or nafcillin, MRSA infections are treated with drugs in other antimicrobial classes. The glycopeptide drug vancomycin, and in some countries teicoplanin, is the most common drug used to treat severe MRSA infections. There are now other classes of antimicrobials available to treat staphylococcal infections, including several that have been approved after 2009. The antimicrobial management of invasive and noninvasive S. aureus infections in the ambulatory and in-patient settings is the topic of this review. Also discussed are common adverse effects of antistaphylococcal antimicrobial agents, advantages of one agent over another for specific clinical syndromes, and the use of adjunctive therapies such as surgery and intravenous immunoglobulin. We have detailed considerations in the therapy of noninvasive and invasive S. aureus infections. This is followed by sections on specific clinical infectious syndromes including skin and soft tissue infections, bacteremia, endocarditis and intravascular infections, pneumonia, osteomyelitis and vertebral discitis, epidural abscess, septic arthritis, pyomyositis, mastitis, necrotizing fasciitis, orbital infections, endophthalmitis, parotitis, staphylococcal toxinoses, urogenital infections, and central nervous system infections.
Collapse
|
7
|
Mishra AK, Dufour H, Roche PH, Lonjon M, Raoult D, Fournier PE. Molecular revolution in the diagnosis of microbial brain abscesses. Eur J Clin Microbiol Infect Dis 2014; 33:2083-93. [DOI: 10.1007/s10096-014-2166-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/15/2014] [Indexed: 12/30/2022]
|
8
|
Gong J, Li D, Yan J, Liu Y, Li D, Dong J, Gao Y, Sun T, Yang G. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine intracranial abscesses model. Braz J Infect Dis 2014; 18:501-6. [PMID: 24833200 PMCID: PMC9428208 DOI: 10.1016/j.bjid.2014.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/20/2014] [Accepted: 03/18/2014] [Indexed: 01/14/2023] Open
Abstract
Background Intracranial abscesses are associated with high mortality. Staphylococcus aureus is one of the main pathogens that cause intracranial infection. Until now, there is no report to identify the key effectors of S. aureus during the intracranial infection. Methods The murine intracranial abscesses model induced by S. aureus was constructed. The vital sign and survival rate of mice were observed to evaluate the infection. Histological examination was used to diagnose the pathological alterations of mouse tissues. The sensitivity of S. aureus to whole blood was evaluated by whole-blood killing assay. Results In murine intracranial abscesses model, it was shown that the mortality caused by the accessory gene regulator (agr) locus deficient strain was significant decreased compared with its parent strain. Moreover, we found that RNAIII, the effector of agr system, was essential for the intracranial infection caused by S. aureus. In the further investigation, it was shown that restoration the expression of α-toxin in agr deficient strain could partially recover the mortality in the murine intracranial abscesses model. Conclusion Our data suggested that the agr system of S. aureus is an important virulence determinant in the induction and mortality of intracranial abscesses in mice.
Collapse
Affiliation(s)
- Jian Gong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, China
| | - Dongzhi Li
- Ningxia Medical University, Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Yinchuan, China
| | - Jun Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Di Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Sun
- Ningxia Medical University, Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Yinchuan, China.
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Abstract
Brain abscess is a serious and life-threatening disease among children despite advances in diagnosis and management. Changes in the epidemiology of predisposing conditions for brain abscess are associated with changes in the patient population and causative organisms. Though still a potentially fatal infection, there have been recent improvements in diagnosis, treatment, and outcome. Although mortality appears to be decreasing, a significant percentage of children continue to have residual neurological deficits, including epilepsy, permanent motor or sensory dysfunction, visual field defects, and personality change. Some children also require placement of a ventriculoperitoneal shunt. The most common origin of microbial infection in children remains direct or indirect cranial infection arising from the middle ear, paranasal sinuses, or teeth. No prospective clinical trials have compared the various surgical and medical treatment strategies available to guide the management of cerebral abscesses in children. Most surgical and medical treatment guidelines are based on populations consisting primarily of adult patients. The use of corticosteroids for treatment of brain abscess is controversial. Anticonvulsants are recommended in children who have developed seizures potentially to prevent further episodes. Duration of anticonvulsant therapy should be individualized and guided by electroencephalographic (EEG) study in the follow-up phase of disease.
Collapse
|
10
|
Hanamsagar R, Aldrich A, Kielian T. Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 2014; 129:704-11. [PMID: 24484406 DOI: 10.1111/jnc.12669] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/26/2013] [Accepted: 01/27/2014] [Indexed: 01/16/2023]
Abstract
Interleukin-1β (IL-1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL-1β production in response to live S. aureus is mediated through the Nod-like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis-associated speck-like protein containing a caspase-1 recruitment domain), and pro-caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild-type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL-1β, other key inflammatory mediators, including IL-6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL-1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL-1β release and survival during acute CNS S. aureus infection.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
11
|
Day SR, Moore CM, Kundzins JR, Sifri CD. Community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus virulence toward Caenorhabditis elegans compared. Virulence 2012; 3:576-82. [PMID: 23076331 DOI: 10.4161/viru.22120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) strains have emerged as major human pathogens. CA-MRSA virulence appears to be distinct from healthcare-associated (HA) MRSA with several factors [α-hemolysin (Hla), Panton-Valentine leukocidin (PVL), α-type phenol soluble modulins (PSMα) and SCCmec IV] postulated to enhance virulence or fitness. Using the Caenorhabditis elegans infection model, we compared the virulence of clinical and laboratory isolates of CA-MRSA and HA-MRSA and explored the contribution of CA-MRSA associated virulence factors to nematode killing. All CA-MRSA strains were highly pathogenic to nematodes, while HA-MRSA strains demonstrated variable nematode killing. Nematode killing by isogenic mutants of hla or the loci for PVL, PSMα, PSMβ, PSMδ or SCCmec IV was not different than the parental strains. These results demonstrate that CA-MRSA is highly virulent, shows some strains of HA-MRSA are equally virulent toward nematodes and suggests CA-MRSA virulence in C. elegans is not linked to a single virulence factor.
Collapse
Affiliation(s)
- Shandra R Day
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
12
|
Vidlak D, Kielian T. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection. J Neuroinflammation 2012; 9:128. [PMID: 22704602 PMCID: PMC3411413 DOI: 10.1186/1742-2094-9-128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 06/15/2012] [Indexed: 01/13/2023] Open
Abstract
Although IL-17A (commonly referred to as IL-17) has been implicated in the pathogenesis of central nervous system (CNS) autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R) knockout (KO) mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25). In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT) cell and gamma-delta (γδ) T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT) animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.
Collapse
Affiliation(s)
- Debbie Vidlak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
| | | |
Collapse
|
13
|
Lessa FC, Mu Y, Ray SM, Dumyati G, Bulens S, Gorwitz RJ, Fosheim G, DeVries AS, Schaffner W, Nadle J, Gershman K, Fridkin SK. Impact of USA300 methicillin-resistant Staphylococcus aureus on clinical outcomes of patients with pneumonia or central line-associated bloodstream infections. Clin Infect Dis 2012; 55:232-41. [PMID: 22523264 DOI: 10.1093/cid/cis408] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The USA300 methicillin-resistant Staphylococcus aureus (MRSA) strain, which initially emerged as a cause of community-associated infections, has recently become an important pathogen in healthcare-associated infections (HAIs). However, its impact on patient outcomes has not been well studied. We evaluated patients with invasive MRSA infections to assess differences in outcomes between infections caused by USA100 and those caused by USA300. METHODS Population-based data for invasive MRSA infections were used to identify 2 cohorts: (1) nondialysis patients with central line-associated bloodstream infections (CLABSIs) and (2) patients with community-onset pneumonia (PNEUMO) during 2005-2007 from 6 US metropolitan areas. Medical records of patients with confirmed MRSA USA100 or USA300 infection were reviewed. Logistic regression and, when appropriate, survival analysis was performed to evaluate mortality, early and late complications, and length of stay. RESULTS A total of 236 and 100 patients were included in the CLABSI and PNEUMO cohorts, respectively. USA300 was the only independent predictor of early complications for PNEUMO patients (odds ratio [OR], 2.6; P = .02). Independent predictors of CLABSI late complications included intensive care unit (ICU) admission before MRSA culture (adjusted OR [AOR], 2.1; P= .01) and Charlson comorbidity index (AOR, 2.6; P = .003), but not strain type. PNEUMO patients were significantly more likely to die if they were older (P = .02), black (P < .001), or infected with USA100 strain (P = .02), whereas those with CLABSI were more likely to die if they were older (P < .001), had comorbidities (P < .001), or had an ICU admission before MRSA culture (P = .001). CONCLUSIONS USA300 was associated with early complications in PNEUMO patients. However, it was not associated with mortality for either PNEUMO or CLABSI patients. Concerns regarding higher mortality from HAIs caused by USA300 may not be warranted.
Collapse
Affiliation(s)
- Fernanda C Lessa
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
IL-1RI (interleukin-1 receptor type I) signalling is essential for host defence and hemichannel activity during acute central nervous system bacterial infection. ASN Neuro 2012; 4:AN20120008. [PMID: 22414156 PMCID: PMC3328864 DOI: 10.1042/an20120008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1) response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system) infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I) KO (knockout) animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type) animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88) and TLR2 (Toll-like receptor 2) KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.
Collapse
|
15
|
Karpuk N, Burkovetskaya M, Kielian T. Neuroinflammation alters voltage-dependent conductance in striatal astrocytes. J Neurophysiol 2012; 108:112-23. [PMID: 22457466 DOI: 10.1152/jn.01182.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(+) astrocytes neighboring abscesses at postinfection days 3 or 7 in adult mice. Cell input conductance (G(i)) measurements spanning a membrane potential (V(m)) surrounding resting membrane potential (RMP) revealed two prevalent astrocyte subsets. A1 and A2 astrocytes were identified by negative and positive G(i) increments vs. V(m), respectively. A1 and A2 astrocytes displayed significantly different RMP, G(i), and cell membrane capacitance that were influenced by both time after bacterial exposure and astrocyte proximity to the inflammatory site. Specifically, the percentage of A1 astrocytes was decreased immediately surrounding the inflammatory lesion, whereas A2 cells were increased. These changes were particularly evident at postinfection day 7, revealing increased cell numbers with an outward current component. Furthermore, RMP was inversely modified in A1 and A2 astrocytes during neuroinflammation, and resting G(i) was increased from 21 to 30 nS in the latter. In contrast, gap junction communication was significantly decreased in all astrocyte populations associated with inflamed tissues. Collectively, these findings demonstrate the heterogeneity of striatal astrocyte populations, which experience distinct electrophysiological modifications in response to CNS inflammation.
Collapse
Affiliation(s)
- Nikolay Karpuk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | | | | |
Collapse
|
16
|
Holley MM, Kielian T. Th1 and Th17 cells regulate innate immune responses and bacterial clearance during central nervous system infection. THE JOURNAL OF IMMUNOLOGY 2011; 188:1360-70. [PMID: 22190181 DOI: 10.4049/jimmunol.1101660] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Brain abscesses arise following parenchymal infection with pyogenic bacteria and are typified by inflammation and edema, which frequently results in a multitude of long-term health problems. The impact of adaptive immunity in shaping continued innate responses during late-stage brain abscess formation is not known but is important, because robust innate immunity is required for effective bacterial clearance. To address this issue, brain abscesses were induced in TCR αβ knockout (KO) mice, because CD4(+) and NKT cells represented the most numerous T cell infiltrates. TCR αβ KO mice exhibited impaired bacterial clearance during later stages of infection, which was associated with alterations in neutrophil and macrophage recruitment, as well as perturbations in cytokine/chemokine expression. Adoptive transfer of either Th1 or Th17 cells into TCR αβ KO mice restored bacterial burdens and innate immune cell infiltrates to levels detected in wild-type animals. Interestingly, adoptively transferred Th17 cells demonstrated plasticity within the CNS compartment and induced distinct cytokine secretion profiles in abscess-associated microglia and macrophages compared with Th1 transfer. Collectively, these studies identified an amplification loop for Th1 and Th17 cells in shaping established innate responses during CNS infection to maximize bacterial clearance and differentially regulate microglial and macrophage secretory profiles.
Collapse
Affiliation(s)
- Monica M Holley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68128, USA
| | | |
Collapse
|
17
|
Community-Acquired Methicillin-Resistant Staphylococcus Aureus (CA-MRSA) Brain Abscess. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2011. [DOI: 10.1097/ipc.0b013e3182294bae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011; 121:367-87. [PMID: 21745188 PMCID: PMC4231819 DOI: 10.1042/cs20110164] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve tailored therapy.
Collapse
Affiliation(s)
- Mark L. Hanke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
19
|
Aldrich A, Kielian T. Central nervous system fibrosis is associated with fibrocyte-like infiltrates. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2952-62. [PMID: 22015460 DOI: 10.1016/j.ajpath.2011.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/18/2011] [Indexed: 12/25/2022]
Abstract
Fibrotic wall formation is essential for limiting pathogen dissemination during brain abscess development. However, little is known about the regulation of fibrotic processes in the central nervous system (CNS). Most CNS injury responses are associated with hypertrophy of resident astrocytes, a process termed reactive gliosis. Studies of fibrosis outside the CNS have identified two bone marrow-derived cell types, fibrocytes and alternatively activated M2 macrophages, as key mediators of fibrosis. The current study used bone marrow chimeras generated from green fluorescent protein transgenic mice to evaluate the appearance of these cell types and whether bone marrow-derived cells were capable of acquiring fibrotic characteristics during brain abscess development. Immunofluorescence staining revealed partial overlap between green fluorescent protein, α-smooth muscle actin, and procollagen, suggesting that a population of cells forming the brain abscess capsule originate from a bone marrow precursor. In addition, the influx of fibrocyte-like cells into brain abscesses immediately preceded the onset of fibrotic encapsulation. Fibrotic wall formation was also associated with increased numbers of alternatively activated M2 microglia and macrophages. To our knowledge, this is the first study demonstrating that bone marrow-derived infiltrates are capable of expressing fibrotic molecules during CNS inflammation.
Collapse
Affiliation(s)
- Amy Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | | |
Collapse
|
20
|
Hanamsagar R, Torres V, Kielian T. Inflammasome activation and IL-1β/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 2011; 119:736-48. [PMID: 21913925 DOI: 10.1111/j.1471-4159.2011.07481.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microglia are important innate immune effectors against invading CNS pathogens, such as Staphylococcus aureus (S. aureus), a common etiological agent of brain abscesses typified by widespread inflammation and necrosis. The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing following exposure to both pathogen- and danger-associated molecular patterns. Although previous studies from our laboratory have established that IL-1β is a major cytokine product of S. aureus-activated microglia and is pivotal for eliciting protective anti-bacterial immunity during brain abscess development, the molecular machinery responsible for cytokine release remains to be determined. Therefore, the functional role of the NLRP3 inflammasome and its adaptor protein apoptosis-associated speck-like protein (ASC) in eliciting IL-1β and IL-18 release was examined in primary microglia. Interestingly, we found that IL-1β, but not IL-18 production, was significantly attenuated in both NLRP3 and ASC knockout microglia following exposure to live S. aureus. NLRP3 inflammasome activation was partially dependent on autocrine/paracrine ATP release and α- and γ-hemolysins produced by live bacteria. A cathepsin B inhibitor attenuated IL-β release from NLRP3 and ASC knockout microglia, demonstrating the existence of alternative inflammasome-independent mechanisms for IL-1β processing. In contrast, microglial IL-18 secretion occurred independently of cathepsin B and inflammasome action. Collectively, these results demonstrate that microglial IL-1β processing is regulated by multiple pathways and diverges from mechanisms utilized for IL-18 cleavage. Understanding the molecular events that regulate IL-1β production is important for modulating this potent proinflammatory cytokine during CNS disease.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | |
Collapse
|
21
|
Holley MM, Zhang Y, Lehrmann E, Wood WH, Becker KG, Kielian T. Toll-like receptor 2 (TLR2)-TLR9 crosstalk dictates IL-12 family cytokine production in microglia. Glia 2011; 60:29-42. [PMID: 21901759 DOI: 10.1002/glia.21243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 08/11/2011] [Indexed: 02/06/2023]
Abstract
Microglia are the resident mononuclear phagocytes of the CNS parenchyma and represent an initial line of defense against invading microorganisms. Microglia utilize Toll-like receptors (TLRs) for pathogen recognition and TLR2 specifically senses conserved motifs of gram-positive bacteria including lipoproteins, lipoteichoic acids, and peptidoglycan (PGN) leading to cytokine/chemokine production. Interestingly, primary microglia derived from TLR2 knockout (KO) mice over-expressed numerous IL-12 family members, including IL-12p40, IL-12p70, and IL-27 in response to intact S. aureus, but not the less structurally complex TLR2 ligands Pam3CSK4 or PGN. The ability of intact bacteria to augment IL-12 family member expression was specific for gram-positive organisms, since numerous gram-negative strains were unable to elicit exaggerated responses in TLR2 KO microglia. Inhibition of SYK or IRAK4 signaling did not impact heightened IL-12 family member production in S. aureus-treated TLR2 KO microglia, whereas PI3K, MAPK, and JNK inhibitors were all capable of restoring exaggerated cytokine expression to wild type levels. Additionally, elevated IL-12 production in TLR2 KO microglia was ablated by a TLR9 antagonist, suggesting that TLR9 drives IL-12 family member production following exposure to intact bacteria that remains unchecked in the absence of TLR2 signaling. Collectively, these findings indicate crosstalk between TLR2 and TLR9 pathways to regulate IL-12 family member production by microglia. The summation of TLR signals must be tightly controlled to ensure the timely cessation and/or fine tuning of cytokine signaling to avoid nonspecific bystander damage due to sustained IL-12 release.
Collapse
Affiliation(s)
- Monica M Holley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ordóñez PE, Quave CL, Reynolds WF, Varughese KI, Berry B, Breen PJ, Malagón O, Smeltzer MS, Compadre CM. Sesquiterpene lactones from Gynoxys verrucosa and their anti-MRSA activity. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1055-9. [PMID: 21782013 PMCID: PMC3159821 DOI: 10.1016/j.jep.2011.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/02/2011] [Accepted: 07/03/2011] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Because of its virulence and antibiotic resistance, Staphylococcus aureus is a more formidable pathogen now than at any time since the pre-antibiotic era. In an effort to identify and develop novel antimicrobial agents with activity against this pathogen, we have examined Gynoxys verrucosa Wedd (Asteraceae), an herb used in traditional medicine in southern Ecuador for the treatment and healing of wounds. MATERIALS AND METHODS The sesquiterpene lactones leucodine (1) and dehydroleucodine (2) were extracted and purified from the aerial parts of Gynoxys verrucosa, and their structure was elucidated by spectroscopic methods and single-crystal X-ray analysis. The in vitro anti-microbial activity of Gynoxys verrucosa extracts and its purified constituents was determined against six clinical isolates including Staphylococcus aureus and Staphylococcus epidermidis strains with different drug-resistance profiles, using the microtiter broth method. RESULTS Compound 1 has very low activity, while compound 2 has moderate activity with MIC(50)s between 49 and 195 μg/mL. The extract of Gynoxys verrucosa has weak activity with MIC(50)s between 908 and 3290 μg/mL. CONCLUSIONS We are reporting the full assignment of the (1)H NMR and (13)C NMR of both compounds, and the crystal structure of compound 2, for the first time. Moreover, the fact that compound 2 has antimicrobial activity and compound 1 does not, demonstrates that the exocyclic conjugated methylene in the lactone ring is essential for the antimicrobial activity of these sesquiterpene lactones. However, the weak activity observed for the plant extracts, does not explain the use of Gynoxys verrucosa in traditional medicine for the treatment of wounds and skin infections.
Collapse
Affiliation(s)
- Paola E. Ordóñez
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Instituto de Química Aplicada, Universidad Técnica Particular de Loja, Loja, Ecuador
- Department of Chemistry, University of Arkansas at Little Rock, AR 72205
| | - Cassandra L. Quave
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | | | - Kottayil I. Varughese
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Brian Berry
- Department of Chemistry, University of Arkansas at Little Rock, AR 72205
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Omar Malagón
- Instituto de Química Aplicada, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
23
|
Vidlak D, Mariani MM, Aldrich A, Liu S, Kielian T. Roles of Toll-like receptor 2 (TLR2) and superantigens on adaptive immune responses during CNS staphylococcal infection. Brain Behav Immun 2011; 25:905-14. [PMID: 20868736 PMCID: PMC3024450 DOI: 10.1016/j.bbi.2010.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a common etiologic agent of brain abscesses and possesses numerous virulence factors that manipulate host immunity. One example is superantigens (SAG) that clonally expand T cell subsets bearing specific Vβ receptors. Toll-like receptor 2 (TLR2) is one receptor implicated in S. aureus recognition. However, the interplay between TLR2, SAG, and adaptive immunity during brain abscess formation has not yet been investigated and could reveal novel insights into host-pathogen interactions for regulating protective immunity. A comprehensive analysis of abscess-associated T cell populations in TLR2 KO and WT mice was performed following infection with a S. aureus clinical isolate. Both natural killer T (NKT) and γδ T cell infiltrates were increased in brain abscesses of TLR2 KO mice and produced more IL-17 and IFN-γ compared to WT populations, which could have resulted from elevated bacterial burdens observed in these animals. Analysis of SAG-reactive T cells revealed a predominant Vβ(8.1,8.2) infiltrate reactive with staphylococcal enterotoxin B (SEB), whereas SEA-reactive Vβ(11) T cells were less numerous. Brain abscesses of TLR2 KO mice had fewer Vβ(8.1,8.2) and Vβ(11) T cells and produced less TNF-α and IFN-γ compared to WT animals. Treatment of primary microglia with purified SEB augmented TNF-α production in response to the TLR2 ligand Pam3Cys, which may serve to amplify proinflammatory cascades during CNS S. aureus infection. Collectively, these studies demonstrate that TLR2 impacts adaptive immunity to S. aureus infection and modulates SAG responses.
Collapse
Affiliation(s)
| | | | | | | | - Tammy Kielian
- Corresponding Author: Tammy Kielian, Ph.D., University of Nebraska Medical Center, Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, Phone: (402) 559-8002, FAX: (402) 559-5900,
| |
Collapse
|
24
|
Defining the strain-dependent impact of the Staphylococcal accessory regulator (sarA) on the alpha-toxin phenotype of Staphylococcus aureus. J Bacteriol 2011; 193:2948-58. [PMID: 21478342 DOI: 10.1128/jb.01517-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We demonstrate that mutation of the staphylococcal accessory regulator (sarA) limits the accumulation of alpha-toxin and phenol-soluble modulins (PSMs) in Staphylococcus aureus isolates of the USA300 clonal lineage. Degradation assays and experiments done with protease inhibitors suggested that this was due to the increased production of extracellular proteases rather than differences associated with the impact of sarA on transcription of the target gene (hla) or the accessory gene regulator (agr). This was confirmed by demonstrating that concomitant mutation of the gene encoding aureolysin (aur) reversed the alpha-toxin and PSM-deficient phenotypes of a USA300 sarA mutant. Mutation of sarA had little impact on the alpha-toxin or PSM phenotypes of the commonly studied strain Newman, which is known to have a mutation in saeS that results in constitutive activation of the saeRS regulatory system, and we also demonstrate that repair of this defect resulted in the increased production of extracellular proteases and reversed both the alpha-toxin and PSM-positive phenotypes of a Newman sarA mutant.
Collapse
|
25
|
Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 2011; 31:414-25. [PMID: 21228152 DOI: 10.1523/jneurosci.5247-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.
Collapse
|
26
|
Rose DZ, Parra-Herran C, Petito CK, Post MJD. Restricted Diffusion of Pus in the Subarachnoid Space: MRSA Meningo-Vasculitis and Progressive Brainstem Ischemic Strokes - A Case Report. Case Rep Neurol 2010; 2:101-110. [PMID: 21045937 PMCID: PMC2968771 DOI: 10.1159/000319691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extra-axial restriction on diffusion weighted imaging (DWI) is an unusual finding on brain magnetic resonance imaging (MRI). Intra-axial restriction on DWI, however, is common, and can represent brain parenchymal infarction, tumor, abscess, or toxic-metabolic process. The infrequency of extra-axial DWI restriction and the paucity of clinico-pathological correlation in the literature limit its differential diagnosis. Scant case reports suggest that extra-axial DWI restriction could be a lymphoma, neurenteric cyst, or, in one patient, subdural empyema [1,2,3]. We postulate that pus formation must be excluded first, because it can provoke an aggressive meningo-vasculitis with rapidly fatal, intra-axial infarctions. Our patient was a 45-year-old man, presenting to our hospital with left facial droop and right (contralateral) arm and leg weakness. Initial MRI revealed DWI restriction in the left lateral pons, consistent with a classic Millard-Gubler stroke. Also noted was a subtle, extra-axial area of curvilinear diffusion restriction in the left cerebellar-pontine angle's subarachnoid space. Days later, the patient had a headache, and repeat MRI revealed extension of the two DWI lesions – both the intra-axial pontine infarction and the extra-axial area of restricted diffusion in the subarachnoid space. The patient became comatose, a third MRI revealed more extensive DWI restrictions, and he expired despite aggressive care. Autopsy revealed massive brainstem infarcts, a thick lymphoplasmacytic infiltrate, copious Gram-Positive cocci (likely MRSA) and arteries partially occluded with fibrointimal proliferation. This emphasizes the concept that extra-axial DWI restriction can represent pus development in the subarachnoid space – a radiographic marker to identify a patient at risk for demise due to septic, meningo-vasculitic infarctions.
Collapse
Affiliation(s)
- David Z Rose
- Department of Neurology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, Fla., USA
| | | | | | | |
Collapse
|
27
|
David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010; 23:616-87. [PMID: 20610826 PMCID: PMC2901661 DOI: 10.1128/cmr.00081-09] [Citation(s) in RCA: 1385] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is an important cause of skin and soft-tissue infections (SSTIs), endovascular infections, pneumonia, septic arthritis, endocarditis, osteomyelitis, foreign-body infections, and sepsis. Methicillin-resistant S. aureus (MRSA) isolates were once confined largely to hospitals, other health care environments, and patients frequenting these facilities. Since the mid-1990s, however, there has been an explosion in the number of MRSA infections reported in populations lacking risk factors for exposure to the health care system. This increase in the incidence of MRSA infection has been associated with the recognition of new MRSA clones known as community-associated MRSA (CA-MRSA). CA-MRSA strains differ from the older, health care-associated MRSA strains; they infect a different group of patients, they cause different clinical syndromes, they differ in antimicrobial susceptibility patterns, they spread rapidly among healthy people in the community, and they frequently cause infections in health care environments as well. This review details what is known about the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection. It also addresses the therapy of these infections and strategies for their prevention.
Collapse
Affiliation(s)
- Michael Z David
- Department of Pediatrics and Department of Medicine, the University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | |
Collapse
|
28
|
Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One 2010; 5:e10790. [PMID: 20520723 PMCID: PMC2875390 DOI: 10.1371/journal.pone.0010790] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/30/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci. METHODOLOGY/PRINCIPAL FINDINGS We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to form a biofilm in the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard. CONCLUSIONS AND SIGNIFICANCE The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lara N. Mrak
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Linda M. Griffin
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Agnieszka K. Zielinska
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lindsey N. Shaw
- Department of Biology, University of South Florida, Tampa, Florida, United States of America
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nygaard TK, Pallister KB, Ruzevich P, Griffith S, Vuong C, Voyich JM. SaeR binds a consensus sequence within virulence gene promoters to advance USA300 pathogenesis. J Infect Dis 2010; 201:241-54. [PMID: 20001858 DOI: 10.1086/649570] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This investigation examines the role of the SaeR/S 2-component system in USA300, a prominent circulating clone of community-associated methicillin-resistant Staphylococcus aureus. Using a saeR/S isogenic deletion mutant of USA300 (USA300DeltasaeR/S) in murine models of sepsis and soft-tissue infection revealed that this sensory system is critical to pathogenesis of USA300 during both superficial and invasive infection. Oligonucleotide microarray and real-time reverse-transcriptase polymerase chain reaction identified numerous extracellular virulence genes that are down-regulated in USA300DeltasaeR/S. Unexpectedly, an up-regulation of mecA and mecR1 corresponded to increased methicillin resistance in USA300DeltasaeR/S. 5'-RACE analysis defined transcript start sites for sbi, efb, mecA, lukS-PV, hlb, SAUSA300_1975, and hla, to underscore a conserved consensus sequence within promoter regions of genes under strong SaeR/S transcriptional regulation. Electrophoretic mobility shift assay experiments illustrated direct binding of SaeR(His) to promoter regions containing the conserved consensus sequence. Collectively, the findings of this investigation demonstrate that SaeR/S directly interacts with virulence gene promoters to significantly influence USA300 pathogenesis.
Collapse
Affiliation(s)
- Tyler K Nygaard
- Department of Veterinary Molecular Biology, Montana State University-Bozeman, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Infections that are caused by antibiotic-resistant strains often occur in epidemic waves that are initiated by one or a few successful clones. Methicillin-resistant S. aureus (MRSA) features prominently in these epidemics. Historically associated with hospitals and other health care settings, MRSA has now emerged as a widespread cause of community infections. Community or community-associated MRSA (CA-MRSA) can spread rapidly among healthy individuals. Outbreaks of CA-MRSA infections have been reported worldwide, and CA-MRSA strains are now epidemic in the United States. Here, we review the molecular epidemiology of the epidemic waves of penicillin- and methicillin-resistant strains of S. aureus that have occurred since 1940, with a focus on the clinical and molecular epidemiology of CA-MRSA.
Collapse
Affiliation(s)
- Henry F Chambers
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110, USA.
| | | |
Collapse
|
31
|
Naesens R, Ronsyn M, Druwé P, Denis O, Ieven M, Jeurissen A. Central nervous system invasion by community-acquired meticillin-resistant Staphylococcus aureus. J Med Microbiol 2009; 58:1247-1251. [DOI: 10.1099/jmm.0.011130-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a case of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) bacteraemia with cavernous sinus thrombosis, meningitis and brain abscess in a previously healthy American, who was employed in Belgium. We consecutively reviewed all published cases of CA-MRSA with central nervous system (CNS) involvement. A total of 12 similar cases were found, of which 11 were published in the last 4 years. Predominantly, young previously healthy subjects were affected (median age 28 years). The cases involved brain abscesses (5/12), disseminated disease (4/12), cavernous sinus thrombosis (2/12) and other (1/12). Infection origins were superficial skin infections (5/12), mostly of the face, sinusitis (1/12), otitis media (1/12), other or unknown (5/12). Although, in our review of the literature patients treated with linezolid had a better outcome compared to patients treated with vancomycin, the latter is still the mainstay of therapy for CNS infections associated with MRSA.
Collapse
Affiliation(s)
- Reinout Naesens
- Laboratory of Medical Microbiology, GZA Hospitals, Antwerp, Belgium
| | - Mark Ronsyn
- Intensive Care Unit, GZA Hospitals, Antwerp, Belgium
| | - Patrick Druwé
- Intensive Care Unit, GZA Hospitals, Antwerp, Belgium
| | - Olivier Denis
- Laboratoire de Référence MRSA–Staphylocoques, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Margareta Ieven
- Laboratory of Medical Microbiology, University Hospital Antwerp, Antwerp, Belgium
| | - Axel Jeurissen
- Laboratory of Medical Microbiology, GZA Hospitals, Antwerp, Belgium
| |
Collapse
|
32
|
Impact of sarA on daptomycin susceptibility of Staphylococcus aureus biofilms in vivo. Antimicrob Agents Chemother 2009; 53:4096-102. [PMID: 19651914 DOI: 10.1128/aac.00484-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used a murine model of catheter-associated biofilm formation to determine whether the mutation of the staphylococcal accessory regulator (sarA) has an impact on the susceptibility of established Staphylococcus aureus biofilms to treatment with daptomycin in vivo. The experiments were done with two clinical isolates, one of which (UAMS-1) was obtained from the bone of a patient suffering from osteomyelitis, while the other (UAMS-1625) is an isolate of the USA300 clonal lineage of community-acquired methicillin (meticillin)-resistant S. aureus. UAMS-1625 had a reduced capacity to form a biofilm in vivo compared to that of UAMS-1 (P = 0.0015), but in both cases the mutation of sarA limited biofilm formation compared to that of the corresponding parent strain (P < or = 0.001). The mutation of sarA did not affect the daptomycin MIC for either strain, but it did result in increased susceptibility in vivo in the context of an established biofilm. Specifically, daptomycin treatment resulted in the clearance of detectable bacteria from <10% of the catheters colonized with the parent strains, while treatment with an equivalent daptomycin concentration resulted in the clearance of 46.4% of the catheters colonized with the UAMS-1 sarA mutant and 69.1% of the catheters colonized with the UAMS-1625 sarA mutant. In the absence of daptomycin treatment, mice with catheters colonized with the UAMS-1625 parent strain also developed skin lesions in the region adjacent to the implanted catheter. No such lesions were observed in any other experimental group, including untreated mice containing catheters colonized with the UAMS-1625 sarA mutant.
Collapse
|
33
|
Alexandroff A, Graham-Brown R. Report from the 67th Annual Meeting of the American Academy of Dermatology. Br J Dermatol 2009; 162:12-21. [DOI: 10.1111/j.1365-2133.2009.09395.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Moore CL, Hingwe A, Donabedian SM, Perri MB, Davis SL, Haque NZ, Reyes K, Vager D, Zervos MJ. Comparative evaluation of epidemiology and outcomes of methicillin-resistant Staphylococcus aureus (MRSA) USA300 infections causing community- and healthcare-associated infections. Int J Antimicrob Agents 2009; 34:148-55. [PMID: 19394801 DOI: 10.1016/j.ijantimicag.2009.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) USA300 clone is commonly found in the community and is being increasingly reported in the healthcare setting. A retrospective analysis was conducted to compare the epidemiology and outcomes between community-associated (CA) and healthcare-associated (HA) USA300 MRSA infections. The study enrolled 160 subjects with USA300 MRSA infections (47.5% CA-MRSA and 52.5% HA-MRSA). Failure in the HA group was higher (38.1%) compared with the CA group (23.7%) (P=0.05). Predictors of failure included male gender, age, presence of any co-morbidity, coronary artery disease, chronic kidney disease, history of MRSA, previous admission, fluoroquinolone exposure, HA infection and osteomyelitis (P<or=0.05). Independent predictors of failure were osteomyelitis, history of MRSA, male gender and pneumonia. Recurrent disease was found in 32.6% of cases. Overall, USA300 MRSA most commonly causes infection of the skin and skin structure, however, 20% of subjects can experience more invasive disease with infection of the bloodstream, lung or bone. Failure rates are higher in subjects with healthcare risk factors or if the infection was acquired in the hospital, with these subjects experiencing more invasive infections such as bacteraemia, pneumonia or osteomyelitis.
Collapse
Affiliation(s)
- Carol L Moore
- Division of Infectious Disease, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Valentini P, Parisi G, Monaco M, Crea F, Spanu T, Ranno O, Tronci M, Pantosti A. An uncommon presentation for a severe invasive infection due to methicillin-resistant Staphylococcus aureus clone USA300 in Italy: a case report. Ann Clin Microbiol Antimicrob 2008; 7:11. [PMID: 18447939 PMCID: PMC2390582 DOI: 10.1186/1476-0711-7-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/30/2008] [Indexed: 01/09/2023] Open
Abstract
Background Methicillin resistant Staphylococcus aureus (MRSA) has been considered for many years a typical nosocomial pathogen. Recently MRSA has emerged as a frequent cause of infections in the community. More commonly, community-acquired (CA)-MRSA is a cause of infections of the skin and soft-tissues, but life-threatening infections such as necrotizing pneumonia and sepsis can occasionally occur. Case presentation This report describes an uncommon presentation of invasive CA-MRSA infection in an adolescent without known risk factors. The presentation was typical for bacterial meningitis, but the clinical findings also revealed necrotizing pneumonia. Following the development of deep venous thrombosis, the presence of an inherited trombophilic defect (factor V Leiden) was detected. The patient was successfully treated with an antibiotic combination including linezolid and with anticoagulant therapy. CA-MRSA was isolated from both cerebrospinal fluid and blood. The isolates were resistant to oxacillin and other beta-lactam antibiotics and susceptible to the other antibiotics tested including erythromycin. Molecular typing revealed that the strains contained the Panton-Valentine leukocidin genes and type IV SCCmec, and were ST8, spa type t008, and agr type 1. This genetic background is identical to that of the USA300 clone. Conclusion This report highlights that meningitis can be a new serious presentation of CA-MRSA infection. CA-MRSA strains with the genetic background of the USA300 clone are circulating in Italy and are able to cause severe infections.
Collapse
Affiliation(s)
- Piero Valentini
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Phulwani NK, Kielian T. Poly (ADP-ribose) polymerases (PARPs) 1-3 regulate astrocyte activation. J Neurochem 2008; 106:578-90. [PMID: 18410506 DOI: 10.1111/j.1471-4159.2008.05403.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Besides their traditional role in maintaining CNS homeostasis, astrocytes also participate in innate immune responses. Indeed, we have previously demonstrated that astrocytes are capable of recognizing bacterial pathogens such as Staphylococcus aureus, a common etiologic agent of CNS infections, and respond with the robust production of numerous proinflammatory mediators. Suppression of Poly (ADP-ribose) polymerase-1 (PARP-1), a DNA repair enzyme, has been shown to attenuate inflammatory responses in several cell types including mixed glial cultures. However, a role for PARP-1 in regulating innate immune responses in purified astrocytes and the potential for multiple PARP family members to cooperatively regulate astrocyte activation has not yet been examined. The synthetic PARP-1 inhibitor PJ-34 attenuated the production of several proinflammatory mediators by astrocytes in response to S. aureus stimulation including nitric oxide, interleukin-1 beta, tumor necrosis factor-alpha, and CCL2. The release of all four mediators was partially reduced in PARP-1 knockout (KO) astrocytes compared to wild-type cells. The residual inflammatory mediator expression detected in PARP-1 KO astrocytes was further blocked with PJ-34, suggesting either non-specific effects of the drug or actions on alternative PARP isoforms. Reduction in PARP-2 or PARP-3 expression by siRNA knock down revealed that these isoforms also contributed to inflammatory mediator regulation in response to S. aureus. Interestingly, the combined targeting of either PARP-1/PARP-2 or PARP-2/PARP-3 attenuated astrocyte inflammatory responses more effectively compared to knock down of either PARP alone, suggesting cooperativity between PARP isoforms. Collectively, these findings suggest that PARPs influence the extent of S. aureus-induced astrocyte activation.
Collapse
Affiliation(s)
- Nirmal K Phulwani
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | |
Collapse
|
37
|
Community-associated methicillin-resistant Staphylococcus aureus skin infections: advances toward identifying the key virulence factors. Curr Opin Infect Dis 2008; 21:147-52. [DOI: 10.1097/qco.0b013e3282f64819] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|