1
|
Montero-Vega MT, Matilla J, Bazán E, Reimers D, De Andrés-Martín A, Gonzalo-Gobernado R, Correa C, Urbano F, Gómez-Coronado D. Fluvastatin Converts Human Macrophages into Foam Cells with Increased Inflammatory Response to Inactivated Mycobacterium tuberculosis H37Ra. Cells 2024; 13:536. [PMID: 38534380 DOI: 10.3390/cells13060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cholesterol biosynthesis inhibitors (statins) protect hypercholesterolemic patients against developing active tuberculosis, suggesting that these drugs could help the host to control the pathogen at the initial stages of the disease. This work studies the effect of fluvastatin on the early response of healthy peripheral blood mononuclear cells (PBMCs) to inactivated Mycobacterium tuberculosis (Mtb) H37Ra. We found that in fluvastatin-treated PBMCs, most monocytes/macrophages became foamy cells that overproduced NLRP3 inflammasome components in the absence of immune stimulation, evidencing important cholesterol metabolism/immunity connections. When both fluvastatin-treated and untreated PBMCs were exposed to Mtb H37Ra, a small subset of macrophages captured large amounts of bacilli and died, concentrating the bacteria in necrotic areas. In fluvastatin-untreated cultures, most of the remaining macrophages became epithelioid cells that isolated these areas of cell death in granulomatous structures that barely produced IFNγ. By contrast, in fluvastatin-treated cultures, foamy macrophages surrounded the accumulated bacteria, degraded them, markedly activated caspase-1 and elicited a potent IFNγ/cytotoxic response. In rabbits immunized with the same bacteria, fluvastatin increased the tuberculin test response. We conclude that statins may enhance macrophage efficacy to control Mtb, with the help of adaptive immunity, offering a promising tool in the design of alternative therapies to fight tuberculosis.
Collapse
Affiliation(s)
- María Teresa Montero-Vega
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Joaquín Matilla
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Diana Reimers
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Ana De Andrés-Martín
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gonzalo-Gobernado
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Carlos Correa
- Unidad de Cirugía Experimental y Animalario, Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Francisco Urbano
- Servicio Interdepartamental de Investigación (SIdI), Facultad de Medicina, Universidad Autónoma, 28029 Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
2
|
Cadena AM, Hopkins FF, Maiello P, Carey AF, Wong EA, Martin CJ, Gideon HP, DiFazio RM, Andersen P, Lin PL, Fortune SM, Flynn JL. Concurrent infection with Mycobacterium tuberculosis confers robust protection against secondary infection in macaques. PLoS Pathog 2018; 14:e1007305. [PMID: 30312351 PMCID: PMC6200282 DOI: 10.1371/journal.ppat.1007305] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 09/13/2018] [Indexed: 02/03/2023] Open
Abstract
For many pathogens, including most targets of effective vaccines, infection elicits an immune response that confers significant protection against reinfection. There has been significant debate as to whether natural Mycobacterium tuberculosis (Mtb) infection confers protection against reinfection. Here we experimentally assessed the protection conferred by concurrent Mtb infection in macaques, a robust experimental model of human tuberculosis (TB), using a combination of serial imaging and Mtb challenge strains differentiated by DNA identifiers. Strikingly, ongoing Mtb infection provided complete protection against establishment of secondary infection in over half of the macaques and allowed near sterilizing bacterial control for those in which a secondary infection was established. By contrast, boosted BCG vaccination reduced granuloma inflammation but had no impact on early granuloma bacterial burden. These findings are evidence of highly effective concomitant mycobacterial immunity in the lung, which may inform TB vaccine design and development.
Collapse
Affiliation(s)
- Anthony M. Cadena
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Forrest F. Hopkins
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Allison F. Carey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eileen A. Wong
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Constance J. Martin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Hannah P. Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert M. DiFazio
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Philana Ling Lin
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Performativity and a microbe: Exploring Mycobacterium bovis and the political ecologies of bovine tuberculosis. BIOSOCIETIES 2018; 14:179-204. [PMID: 32226469 PMCID: PMC7100403 DOI: 10.1057/s41292-018-0124-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mycobacterium bovis, the bacterium responsible for causing bovine tuberculosis (bTB) in cattle, displays what I call ‘microbial performativity’. Like many other lively disease-causing microorganisms, it has an agency which is difficult to contain, and there is a need for fresh thinking on the challenges of dealing with this slippery and indeterminate microbe. As a practising veterinary scientist who side-stepped mid-career into a parallel training in the social sciences to view bTB from an alternative perspective, I create an interdisciplinary coming-together where veterinary science converges with a political ecology of (animal) health influenced by science and technology studies (STS) and social science and humanities scholarship on performativity. This suitably hybridized nexus creates a place to consider the ecologies of a pathogen which could be considered as life out of control. I consider what this means for efforts to eradicate this disease through combining understandings from the published scientific literature with qualitative interview-based fieldwork with farmers, veterinarians and others involved in the statutory bTB eradication programme in a high incidence region of the UK. This study demonstrates the value of life scientists turning to the social sciences to re-view their familiar professional habitus—challenging assumptions, and offering alternative perspectives on complex problems.
Collapse
|
4
|
Schille S, Crauwels P, Bohn R, Bagola K, Walther P, van Zandbergen G. LC3-associated phagocytosis in microbial pathogenesis. Int J Med Microbiol 2017; 308:228-236. [PMID: 29169848 DOI: 10.1016/j.ijmm.2017.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Phagocytosis is essential for uptake and elimination of pathogenic microorganisms. Autophagy is a highly conserved mechanism for incorporation of cellular constituents to replenish nutrients by degradation. Recently, parts of the autophagy machinery - above all microtubule-associated protein 1 light chain 3 (LC3) - were found to be specifically recruited to phagosomal membranes resulting in phagosome-lysosome fusion and efficient degradation of internalized cargo in a process termed LC3-associated phagocytosis (LAP). Many pathogenic bacterial, fungal and parasitic microorganisms reside within LAP-targeted single-membrane phagosomes or vacuoles after infection of host cells. In this minireview we describe the state of knowledge on the interaction of pathogens with LAP or LAP-like pathways and report on various pathogens that have evolved strategies to circumvent degradation in LAP compartments.
Collapse
Affiliation(s)
- Stefan Schille
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Peter Crauwels
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Rebecca Bohn
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Katrin Bagola
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Paul Walther
- Central Facility for EM, Ulm University, Ulm, Germany
| | - Ger van Zandbergen
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany; Institute for Immunology, University Medicine Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
5
|
Rotsinger JE, Celada LJ, Polosukhin VV, Atkinson JB, Drake WP. Molecular Analysis of Sarcoidosis Granulomas Reveals Antimicrobial Targets. Am J Respir Cell Mol Biol 2017; 55:128-34. [PMID: 26807608 DOI: 10.1165/rcmb.2015-0212oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sarcoidosis is a granulomatous disease of unknown cause. Prior molecular and immunologic studies have confirmed the presence of mycobacterial virulence factors, such as catalase peroxidase and superoxide dismutase A, within sarcoidosis granulomas. Molecular analysis of granulomas can identify targets of known antibiotics classes. Currently, major antibiotics are directed against DNA synthesis, protein synthesis, and cell wall formation. We conducted molecular analysis of 40 sarcoidosis diagnostic specimens and compared them with 33 disease control specimens for the presence of mycobacterial genes that encode antibiotic targets. We assessed for genes involved in DNA synthesis (DNA gyrase A [gyrA] and DNA gyrase B), protein synthesis (RNA polymerase subunit β), cell wall synthesis (embCAB operon and enoyl reductase), and catalase peroxidase. Immunohistochemical analysis was conducted to investigate the locale of mycobacterial genes such as gyrA within 12 sarcoidosis specimens and 12 disease controls. Mycobacterial DNA was detected in 33 of 39 sarcoidosis specimens by quantitative real-time polymerase chain reaction compared with 2 of 30 disease control specimens (P < 0.001, two-tailed Fisher's test). Twenty of 39 were positive for three or more mycobacterial genes, compared with 1 of 30 control specimens (P < 0.001, two-tailed Fisher's test). Immunohistochemistry analysis localized mycobacterial gyrA nucleic acids to sites of granuloma formation in 9 of 12 sarcoidosis specimens compared with 1 of 12 disease controls (P < 0.01). Microbial genes encoding enzymes that can be targeted by currently available antimycobacterial antibiotics are present in sarcoidosis specimens and localize to sites of granulomatous inflammation. Use of antimicrobials directed against target enzymes may be an innovative treatment alternative.
Collapse
Affiliation(s)
| | | | | | - James B Atkinson
- 3 Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wonder P Drake
- 1 Divisions of Infectious Diseases and.,3 Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
6
|
Ndlovu H, Marakalala MJ. Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Front Immunol 2016; 7:434. [PMID: 27822210 PMCID: PMC5075764 DOI: 10.3389/fimmu.2016.00434] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a leading global health problem that is aggravated by emergence of drug-resistant strains, which account for increasing number of treatment-refractory cases. Thus, eradication of this disease will strongly require better therapeutic strategies. Identification of host factors promoting disease progression may accelerate discovery of adjunct host-directed therapies (HDTs) that will boost current treatment protocols. HDTs focus on potentiating key components of host anti-mycobacterial effector mechanisms, and limiting inflammation and pathological damage in the lung. Granulomas represent a pathological hallmark of TB. They are comprised of impressive arrangement of immune cells that serve to contain the invading pathogen. However, granulomas can also undergo changes, developing caseums and cavities that facilitate bacterial spread and disease progression. Here, we review current concepts on the role of granulomas in pathogenesis and protective immunity against TB, drawing from recent clinical studies in humans and animal models. We also discuss therapeutic potential of inflammatory pathways that drive granuloma progression, with a focus on new and existing drugs that will likely improve TB treatment outcomes.
Collapse
Affiliation(s)
- Hlumani Ndlovu
- Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| | - Mohlopheni J Marakalala
- TB Immunopathogenesis Group, Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
7
|
Pagán AJ, Yang CT, Cameron J, Swaim LE, Ellett F, Lieschke GJ, Ramakrishnan L. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment. Cell Host Microbe 2016; 18:15-26. [PMID: 26159717 PMCID: PMC4509513 DOI: 10.1016/j.chom.2015.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Abstract
The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis. Myeloid deficiencies increase innate immune susceptibility to mycobacterial infection Depletion of macrophage supply below a critical threshold hastens granuloma necrosis Increasing macrophage supply to the granuloma delays granuloma necrosis
Collapse
Affiliation(s)
- Antonio J Pagán
- Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Chao-Tsung Yang
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - James Cameron
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Laura E Swaim
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Felix Ellett
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Graham J Lieschke
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lalita Ramakrishnan
- Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Matty MA, Roca FJ, Cronan MR, Tobin DM. Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunol Rev 2015; 264:276-87. [PMID: 25703566 DOI: 10.1111/imr.12273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent work in a variety of animal models, including mice, zebrafish, and macaques, as well as in humans, has led to a reassessment of several tenets of mycobacterial infection. In this review, we describe new findings about the composition and dynamics of the tuberculous granuloma, the central host structure in mycobacterial infection, as well as inflammatory mediators that drive a successful anti-microbial response on one hand and pathological inflammation on the other. We highlight granuloma heterogeneity that emerges in the context of infection, the functional consequences of angiogenesis in tuberculous granulomas, and data that balanced inflammation in humans, with a central role for tumor necrosis factor, appears to play a key role in optimal defense against mycobacterial infection. These findings have suggested new and specific host-directed therapies that await further clinical exploration.
Collapse
Affiliation(s)
- Molly A Matty
- Department of Molecular Genetics and Microbiology, Center for Host-Microbial Interactions, Duke University Medical Center, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | | | | |
Collapse
|
9
|
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 2015; 38:153-66. [PMID: 26438324 DOI: 10.1007/s00281-015-0531-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.
Collapse
|
10
|
Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol 2015; 38:261-73. [PMID: 26324465 PMCID: PMC4779130 DOI: 10.1007/s00281-015-0522-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Zebrafish has earned its place among animal models of tuberculosis. Its natural pathogen, Mycobacterium marinum, shares major virulence factors with the human pathogen Mycobacterium tuberculosis. In adult zebrafish, which possess recombination-activated adaptive immunity, it can cause acute infection or a chronic progressive disease with containment of mycobacteria in well-structured, caseating granulomas. In addition, a low-dose model that closely mimics human latent infection has recently been developed. These models are used alongside infection of optically transparent zebrafish embryos and larvae that rely on innate immunity and permit non-invasive visualization of the early stages of developing granulomas that are inaccessible in other animal models. By microinjecting mycobacteria intravenously or into different tissues, systemic and localized infections can be induced, each useful for studying particular aspects of early pathogenesis, such as phagocyte recruitment, granuloma expansion and maintenance, vascularization of granulomas, and the phagocyte-mediated dissemination of mycobacteria. This has contributed to new insights into the mycobacteria-driven mechanisms that promote granuloma formation, the double-edged role of inflammation, the mechanisms of macrophage cell death that favor disease progression, and the host-protective role of autophagy. As a result, zebrafish models are now increasingly used to explore strategies for adjunctive therapy of tuberculosis with host-directed drugs.
Collapse
|
11
|
Abstract
Despite efforts to generate new vaccines and antibiotics for tuberculosis, the disease remains a public health problem worldwide. The zebrafish Danio rerio has emerged as a useful model to investigate mycobacterial pathogenesis and treatment. Infection of zebrafish with Mycobacterium marinum, the closest relative of the Mycobacterium tuberculosis complex, recapitulates many aspects of human tuberculosis. The zebrafish model affords optical transparency, abundant genetic tools and in vivo imaging of the progression of infection. Here, we review how the zebrafish–M. marinum system has been deployed to make novel observations about the role of innate immunity, the tuberculous granuloma, and crucial host and bacterial genes. Finally, we assess how these findings relate to human disease and provide a framework for novel strategies to treat tuberculosis.
Collapse
Affiliation(s)
- Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA. Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Host Evasion and Exploitation Schemes of Mycobacterium tuberculosis. Cell 2014; 159:1497-509. [DOI: 10.1016/j.cell.2014.11.024] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 12/20/2022]
|
13
|
Pagán AJ, Ramakrishnan L. Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a018499. [PMID: 25377142 DOI: 10.1101/cshperspect.a018499] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which "walls-off" mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models--rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century.
Collapse
Affiliation(s)
- Antonio J Pagán
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195 Department of Medicine, University of Washington, Seattle, Washington 98195 Department of Immunology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
14
|
Fader CM, Aguilera MO, Colombo MI. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens. Amino Acids 2014; 47:2101-12. [PMID: 25234192 DOI: 10.1007/s00726-014-1835-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023]
Abstract
Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.
Collapse
Affiliation(s)
- Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina
| | - Milton Osmar Aguilera
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina.
| |
Collapse
|
15
|
Benard EL, Racz PI, Rougeot J, Nezhinsky AE, Verbeek FJ, Spaink HP, Meijer AH. Macrophage-expressed perforins mpeg1 and mpeg1.2 have an anti-bacterial function in zebrafish. J Innate Immun 2014; 7:136-52. [PMID: 25247677 DOI: 10.1159/000366103] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
Macrophage-expressed gene 1 (MPEG1) encodes an evolutionarily conserved protein with a predicted membrane attack complex/perforin domain associated with host defence against invading pathogens. In vertebrates, MPEG1/perforin-2 is an integral membrane protein of macrophages, suspected to be involved in the killing of intracellular bacteria by pore-forming activity. Zebrafish have 3 copies of MPEG1; 2 are expressed in macrophages, whereas the third could be a pseudogene. The mpeg1 and mpeg1.2 genes show differential regulation during infection of zebrafish embryos with the bacterial pathogens Mycobacterium marinum and Salmonella typhimurium. While mpeg1 is downregulated during infection with both pathogens, mpeg1.2 is infection inducible. Upregulation of mpeg1.2 is partially dependent on the presence of functional Mpeg1 and requires the Toll-like receptor adaptor molecule MyD88 and the transcription factor NFκB. Knockdown of mpeg1 alters the immune response to M. marinum infection and results in an increased bacterial burden. In Salmonella typhimurium infection, both mpeg1 and mpeg1.2 knockdown increase the bacterial burdens, but mpeg1 morphants show increased survival times. The combined results of these two in vivo infection models support the anti-bacterial function of the MPEG1/perforin-2 family and indicate that the intricate cross-regulation of the two mpeg1 copies aids the zebrafish host in combatting infection of various pathogens.
Collapse
Affiliation(s)
- Erica L Benard
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Carroll P, Muwanguzi-Karugaba J, Melief E, Files M, Parish T. Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis. BMC Res Notes 2014; 7:366. [PMID: 24934902 PMCID: PMC4091752 DOI: 10.1186/1756-0500-7-366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/06/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fluorescent proteins are used widely as reporter genes in many organisms. We previously codon-optimized mCherry for Mycobacterium tuberculosis and generated expression constructs with high level expression in mycobacteria with multiple uses in vitro and in vivo. However, little is known about the expression of fluorescent proteins in mycobacteria and the translational start codon for mCherry has not been experimentally determined. RESULTS We determined the translational start site for functional (fluorescent) mCherry in mycobacteria. Several potential translational start codons were identified; introduction of downstream stop codons by mutagenesis was used to determine which start codon was utilized in the bacterial cells. Fluorescent protein was expressed from a construct which would allow translation of a protein of 226 amino acids or a protein of 235 amino acids. No fluorescence was seen when a construct which could give rise to a protein of 219 amino acids was used. Similar results were obtained in mycobacteria and in Escherichia coli. Western blotting confirmed that mCherry was expressed from the constructs encoding 235 or 226 amino acids, but not from the plasmid encoding 219 amino acids. N-terminal sequencing and mass determination confirmed that the mature protein was 226 amino acids and commenced with the amino acid sequence AIIKE. CONCLUSION We conclude that mCherry is expressed in M. tuberculosis as a smaller protein than expected lacking the GFP-derived N-terminal sequence designed to allow efficient fusions.
Collapse
Affiliation(s)
- Paul Carroll
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
| | - Julian Muwanguzi-Karugaba
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
| | - Eduard Melief
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Megan Files
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Tanya Parish
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
- Infectious Disease Research Institute, Seattle, Washington, USA
| |
Collapse
|
17
|
Pienaar E, Lerm M. A mathematical model of the initial interaction between Mycobacterium tuberculosis and macrophages. J Theor Biol 2013; 342:23-32. [PMID: 24112967 DOI: 10.1016/j.jtbi.2013.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/07/2013] [Accepted: 09/19/2013] [Indexed: 11/16/2022]
Abstract
There is a large body of literature describing molecular level interactions between Mycobacterium tuberculosis (Mtb) and macrophages. Macrophages initiate a range of anti-bacterial mechanisms in response to infection, and Mtb is capable of surviving and circumventing many of these responses. We apply a computational approach to ask: what are the effects on the cellular level of these opposing interactions? The model considers the interplay between bacterial killing and the pathogen's interference with macrophage function. The results reveal an oscillating balance between host and pathogen, but the balance is transient and varies in length, indicating that stochasticity in the bacterial population or host response could contribute to the diverse incubation periods observed in exposed individuals. The model captures host and strain variation and gives new insight into host-pathogen compatibility and co-evolution.
Collapse
Affiliation(s)
- Elsje Pienaar
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| |
Collapse
|
18
|
Kumar A, Lewin A, Rani PS, Qureshi IA, Devi S, Majid M, Kamal E, Marek S, Hasnain SE, Ahmed N. Dormancy Associated Translation Inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression. Cytokine 2013; 64:258-64. [DOI: 10.1016/j.cyto.2013.06.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/16/2022]
|
19
|
Mills HL, Cohen T, Colijn C. Community-wide isoniazid preventive therapy drives drug-resistant tuberculosis: a model-based analysis. Sci Transl Med 2013; 5:180ra49. [PMID: 23576815 PMCID: PMC3714172 DOI: 10.1126/scitranslmed.3005260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tuberculosis (TB) control is especially difficult in settings of high HIV prevalence; HIV co-infection erodes host immunity and increases risk of progression to active TB. Studies have demonstrated that a 6-month (or longer) course of monotherapy with isoniazid [isoniazid preventive therapy (IPT)] can reduce this risk. The World Health Organization endorses IPT for symptom-free individuals with HIV/TB co-infection and has recommended expanding IPT to entire communities (community-wide IPT). Although previous reviews have not found a statistically significant elevated risk of isoniazid-resistant TB among individuals previously treated with IPT, community-wide IPT programs may nonetheless generate substantial selective pressure and increase the burden of drug-resistant TB (DRTB). We developed mathematical models to identify the conditions under which community-wide IPT interventions could increase the burden of isoniazid-resistant Mycobacterium tuberculosis, even when we assumed that IPT does not select for resistance among those treated with IPT. We found that in models that included any mechanism of interstrain competition (such as partial immunity conferred by a previous M. tuberculosis infection), community-wide IPT interventions conferred an indirect benefit to drug-resistant strains through selective suppression of drug-sensitive infections. This result suggests that the absence of an observed elevation in the risk of DRTB among those receiving IPT in small-scale studies of limited duration does not imply that the selective pressure imposed by community-wide IPT will not be substantial. Community-wide IPT may play an important role in TB control in these settings, and its rollout should be accompanied by interventions to detect and treat drug-resistant disease.
Collapse
Affiliation(s)
- Harriet L Mills
- Bristol Centre for Complexity Sciences, University of Bristol, Bristol BS8 1TR, UK
| | | | | |
Collapse
|
20
|
Mixed-strain mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control. Clin Microbiol Rev 2013; 25:708-19. [PMID: 23034327 DOI: 10.1128/cmr.00021-12] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous studies have reported that individuals can simultaneously harbor multiple distinct strains of Mycobacterium tuberculosis. To date, there has been limited discussion of the consequences for the individual or the epidemiological importance of mixed infections. Here, we review studies that documented mixed infections, highlight challenges associated with the detection of mixed infections, and discuss possible implications of mixed infections for the diagnosis and treatment of patients and for the community impact of tuberculosis control strategies. We conclude by highlighting questions that should be resolved in order to improve our understanding of the importance of mixed-strain M. tuberculosis infections.
Collapse
|
21
|
Looking Within the Zebrafish to Understand the Tuberculous Granuloma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:251-66. [DOI: 10.1007/978-1-4614-6111-1_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Blocking pathogen entry into the cell: the future of infectious disease treatment and control? Future Med Chem 2012; 4:1375-7. [PMID: 22857526 DOI: 10.4155/fmc.12.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 2012; 12:352-66. [PMID: 22517424 DOI: 10.1038/nri3211] [Citation(s) in RCA: 564] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The granuloma, which is a compact aggregate of immune cells, is the hallmark structure of tuberculosis. It is historically regarded as a host-protective structure that 'walls off' the infecting mycobacteria. This Review discusses surprising new discoveries--from imaging studies coupled with genetic manipulations--that implicate the innate immune mechanisms of the tuberculous granuloma in the expansion and dissemination of infection. It also covers why the granuloma can fail to eradicate infection even after adaptive immunity develops. An understanding of the mechanisms and impact of tuberculous granuloma formation can guide the development of therapies to modulate granuloma formation. Such therapies might be effective for tuberculosis as well as for other granulomatous diseases.
Collapse
Affiliation(s)
- Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
24
|
Mutoji KN, Ennis DG. Expression of common fluorescent reporters may modulate virulence for Mycobacterium marinum: dramatic attenuation results from Gfp over-expression. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:39-48. [PMID: 21658470 DOI: 10.1016/j.cbpc.2011.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium marinum is an established surrogate pathogen for Mycobacterium tuberculosis because of its strong conservation of thousands of orthologous genes, lower risk to researchers and similar pathology in fish. This pathogen causes TB-like chronic disease in a wide variety of fish species. As in human TB, the microbe grows within the host macrophages, can mount life-long chronic infections and produces granulomatous lesions in target organs. One of the fish species known to manifest chronic "fish TB" is the small laboratory fish, Japanese ricefish (medaka; Oryzias latipes). Our laboratory is currently characterizing the disease progression in medaka using fluorescent reporter systems that are introduced into engineered strains of M. marinum. While conducting these studies we observed differences in growth, plasmid stability, and virulence depending on which fluorescent reporter construct was present. Here, we describe large negative effects on virulence and organ colonization that occurred with a commonly used plasmid pG13, that expresses green fluorescent protein (Gfp). The studies presented here, indicate that Gfp over-expression was the basis for the reduced virulence in this reporter construct. We also show that these negative effects could be reversed by significantly reducing Gfp expression levels or by using low-expression constructs of Rfp.
Collapse
Affiliation(s)
- K Nadine Mutoji
- Department of Biology, University of Louisiana, Lafayette, LA 70504, USA
| | | |
Collapse
|
25
|
PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun 2011; 80:43-54. [PMID: 22038915 DOI: 10.1128/iai.05249-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) family proteins are prevalent in pathogenic mycobacteria and play a diverse role in mycobacterial pathogenesis. While some members have been studied, the function of most PE/PPE proteins remains unknown. In this study, we isolated a transposon-inactivated PPE38 mutant of Mycobacterium marinum and characterized its phenotype. We found that the PPE38 protein is associated with the cell wall and exposed on the cell surface. The inactivation of PPE38 altered the bacterial cell surface properties and led to deficiencies in cord formation, sliding motility, and biofilm formation. The PPE38 mutant was defective in phagocytosis by macrophages and exhibited reduced virulence in adult zebrafish. We also found that PPE38 is involved in the induction of proinflammatory cytokines in infected macrophages. Together, our results indicate that PPE38, a previously uncharacterized protein, plays a role in mycobacterial virulence, presumably by modulating the host innate immune response.
Collapse
|
26
|
Huynh KK, Joshi SA, Brown EJ. A delicate dance: host response to mycobacteria. Curr Opin Immunol 2011; 23:464-72. [PMID: 21726990 DOI: 10.1016/j.coi.2011.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis is an enormously successful human pathogen that can infect its host for decades without causing clinical disease, only to reactivate when host immunity is compromised. A normal immune response thus contains bacterial spread without inducing sterilizing immunity, therefore benefitting both host and pathogen. Recent work has begun to outline the complexity of this host-pathogen interaction and to reveal how the homeostatic balance between the two is achieved. This review focuses on two significant aspects of this delicate dance: the host's initial innate response and the mature granuloma that later contains the pathogen. Here, we review the fine balance of inflammatory events triggered or controlled by both the host and bacteria and implications for the survival of each.
Collapse
Affiliation(s)
- Kassidy K Huynh
- Department of Microbial Pathogenesis, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
27
|
Shaler CR, Kugathasan K, McCormick S, Damjanovic D, Horvath C, Small CL, Jeyanathan M, Chen X, Yang PC, Xing Z. Pulmonary mycobacterial granuloma increased IL-10 production contributes to establishing a symbiotic host-microbe microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1622-34. [PMID: 21406169 PMCID: PMC3078470 DOI: 10.1016/j.ajpath.2010.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/09/2023]
Abstract
The granuloma, a hallmark of host defense against pulmonary mycobacterial infection, has long been believed to be an active type 1 immune environment. However, the mechanisms regarding why granuloma fails to eliminate mycobacteria even in immune-competent hosts, have remained largely unclear. By using a model of pulmonary Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection, we have addressed this issue by comparing the immune responses within the airway luminal and granuloma compartments. We found that despite having a similar immune cellular profile to that in the airway lumen, the granuloma displayed severely suppressed type 1 immune cytokine but enhanced chemokine responses. Both antigen-presenting cells (APCs) and T cells in granuloma produced fewer type 1 immune molecules including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and nitric oxide. As a result, the granuloma APCs developed a reduced capacity to phagocytose mycobacteria and to induce T-cell proliferation. To examine the molecular mechanisms, we compared the levels of immune suppressive cytokine IL-10 in the airway lumen and granuloma and found that both granuloma APCs and T cells produced much more IL-10. Thus, IL-10 deficiency restored type 1 immune activation within the granuloma while having a minimal effect within the airway lumen. Hence, our study provides the first experimental evidence that, contrary to the conventional belief, the BCG-induced lung granuloma represents a symbiotic host-microbe microenvironment characterized by suppressed type 1 immune activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhou Xing
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Lerena MC, Colombo MI. Mycobacterium marinum induces a marked LC3 recruitment to its containing phagosome that depends on a functional ESX-1 secretion system. Cell Microbiol 2011; 13:814-35. [PMID: 21447143 DOI: 10.1111/j.1462-5822.2011.01581.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy has been implicated as part of the innate immune system against different intracellular microorganisms. Mycobacterium marinum is the causative agent of the fish-tank granuloma and has been widely used as an alternative model to study pathogenic mycobacteria. In this report, we show an active interaction of M. marinum with the autophagic protein LC3, an event that requires pathogen viability and bacterial protein synthesis. Interestingly, M. marinum lacking the region of difference 1 (RD1) is unable to recruit LC3, indicating that a functional ESX-1 secretion system is an absolute requirement for this process. In addition, phagocytosis of the bacteria is also a condition for the LC3 rearrangement induced by M. marinum. We present evidence that this pathogen resides temporarily in a LC3-decorated compartment with late endocytic features but mostly devoid of lysosomal enzymes or degradative properties. In addition our results indicate that autophagy induction by rapamycin treatment leads to maturation of the M. marinum-containing compartment.
Collapse
Affiliation(s)
- María Cecilia Lerena
- Laboratorio de Biología Celular y Molecular - Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | |
Collapse
|
29
|
Schreiber HA, Harding JS, Altamirano CJ, Hunt O, Hulseberg PD, Fabry Z, Sandor M. CONTINUOUS REPOPULATION OF LYMPHOCYTE SUBSETS IN TRANSPLANTED MYCOBACTERIAL GRANULOMAS. Eur J Microbiol Immunol (Bp) 2011; 1:59-69. [PMID: 22096617 DOI: 10.1556/eujmi.1.2011.1.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Granulomas are the interface between host and mycobacteria, and are crucial for the surivival of both species. While macrophages are the main cellular component of these lesions, different lymphocyte subpopulations within the lesions also play important roles. Lymphocytes are continuously recruited into these inflammatory lesions via local vessels to replace cells that are either dying or leaving; however, their rate of replacement is not known. Using a model of granuloma transplantation and fluorescently labeled cellular compartments we report that, depending on the subpopulation, 10-80%, of cells in the granuloma are replaced within one week after transplantation. CD4(+) T cells specific for Mycobacterium antigen entered transplanted granulomas at a higher frequency than Foxp3(+) CD4(+) T cells by one week. Interestingly, a small number of T lymphocytes migrated out of the granuloma to secondary lymphoid organs. The mechanisms that define the differences in recruitment and efflux behind each subpopulation requires further studies. Ultimately, a better understanding of lymphoid traffic may provide new ways to modulate, regulate, and treat granulomatous diseases.
Collapse
Affiliation(s)
- H A Schreiber
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kaufmann SHE. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity 2010; 33:567-77. [PMID: 21029966 DOI: 10.1016/j.immuni.2010.09.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 02/08/2023]
Abstract
With almost a dozen vaccine candidates in clinical trials, tuberculosis (TB) research and development is finally reaping the first fruits of its labors. Vaccine candidates in clinical trials may prevent TB disease reactivation by efficiently containing the pathogen Mycobacterium tuberculosis (Mtb). Future research should target vaccines that achieve sterile eradication of Mtb or even prevent stable infection. These are ambitious goals that can be reached only by highly cooperative engagement of basic immunologists, vaccinologists, and clinical researchers--or in other words, by translation from basic immunology to vaccine research and development, as well as reverse translation of insights from clinical trials back to hypothesis-driven research in the basic laboratory. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
31
|
Hawkes M, Li X, Crockett M, Diassiti A, Finney C, Min-Oo G, Liles WC, Liu J, Kain KC. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis 2010; 10:299. [PMID: 20950462 PMCID: PMC2965149 DOI: 10.1186/1471-2334-10-299] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/15/2010] [Indexed: 01/27/2023] Open
Abstract
Background Members of the CD36 scavenger receptor family have been implicated as sensors of microbial products that mediate phagocytosis and inflammation in response to a broad range of pathogens. We investigated the role of CD36 in host response to mycobacterial infection. Methods Experimental Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection in Cd36+/+ and Cd36-/- mice, and in vitro co-cultivation of M. tuberculosis, BCG and M. marinum with Cd36+/+ and Cd36-/-murine macrophages. Results Using an in vivo model of BCG infection in Cd36+/+ and Cd36-/- mice, we found that mycobacterial burden in liver and spleen is reduced (83% lower peak splenic colony forming units, p < 0.001), as well as the density of granulomas, and circulating tumor necrosis factor (TNF) levels in Cd36-/- animals. Intracellular growth of all three mycobacterial species was reduced in Cd36-/- relative to wild type Cd36+/+ macrophages in vitro. This difference was not attributable to alterations in mycobacterial uptake, macrophage viability, rate of macrophage apoptosis, production of reactive oxygen and/or nitrogen species, TNF or interleukin-10. Using an in vitro model designed to recapitulate cellular events implicated in mycobacterial infection and dissemination in vivo (i.e., phagocytosis of apoptotic macrophages containing mycobacteria), we demonstrated reduced recovery of viable mycobacteria within Cd36-/- macrophages. Conclusions Together, these data indicate that CD36 deficiency confers resistance to mycobacterial infection. This observation is best explained by reduced intracellular survival of mycobacteria in the Cd36-/- macrophage and a role for CD36 in the cellular events involved in granuloma formation that promote early bacterial expansion and dissemination.
Collapse
Affiliation(s)
- Michael Hawkes
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Griffiths G, Nyström B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol 2010; 8:827-34. [DOI: 10.1038/nrmicro2437] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Hawkes M, Li X, Crockett M, Diassiti A, Liles WC, Liu J, Kain KC. Malaria exacerbates experimental mycobacterial infection in vitro and in vivo. Microbes Infect 2010; 12:864-74. [PMID: 20542132 DOI: 10.1016/j.micinf.2010.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/20/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
Abstract
Tuberculosis (Mtb) and malaria are among the most important infectious causes of morbidity and mortality worldwide, causing an estimated 1.5 million and 1 million deaths every year, respectively. Here we demonstrate a biological interaction between malaria and mycobacteria in vitro and in vivo. Murine macrophages co-incubated with Plasmodium falciparum parasitized erythrocytes demonstrated impaired control of intracellular Mtb replication, and reduced production of reactive nitrogen species in response to mycobacteria. Infection of C57BL/6 mice with Plasmodium species exacerbated the course of acute mycobacterial infection (57% increase in peak splenic CFU, p = 0.043 for difference over time course of infection), induced disruption of the structural integrity of established granulomas, and caused reactivation of latent mycobacterial infection (2.6-fold increase in peak splenic CFU, p = 0.016 for difference over time course of reactivation). Malaria pigment deposition within the granulomas of co-infected mice suggested that the influx of dysfunctional hemozoin-laden monocytes into the locus of mycobacterial control may contribute to impaired containment of mycobacteria. Collectively, these results point to malaria-induced dysregulation of innate and adaptive anti-mycobacterial defences, and suggest that the interaction of these globally important pathogens may potentiate Mtb infection and transmission.
Collapse
Affiliation(s)
- Michael Hawkes
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, Wiles S, Robertson BD, Ripoll J, Ward TH, Bancroft GJ, Schaible UE, Parish T. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 2010; 5:e9823. [PMID: 20352111 PMCID: PMC2843721 DOI: 10.1371/journal.pone.0009823] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/01/2010] [Indexed: 01/12/2023] Open
Abstract
Fluorescent reporter proteins have proven useful for imaging techniques in many organisms. We constructed optimized expression systems for several fluorescent proteins from the far-red region of the spectrum and analyzed their utility in several mycobacterial species. Plasmids expressing variants of the Discosoma Red fluorescent protein (DsRed) from the Mycobacterium bovis hsp60 promoter were unstable; in contrast expression from the Mycobacterium smegmatis rpsA promoter was stable. In Mycobacterium tuberculosis expression of several of the far-red reporters was readily visualised by eye and three reporters (mCherry, tdTomato, and Turbo-635) fluoresced at a high intensity. Strains expressing mCherry showed no fitness defects in vitro or in macrophages. Treatment of cells with antibiotics demonstrated that mCherry could also be used as a reporter for cell death, since fluorescence decreased in the presence of a bactericidal compound, but remained stable in the presence of a bacteriostatic compound. mCherry was functional under hypoxic conditions; using mCherry we demonstrated that the P(mtbB) is expressed early in hypoxia and progressively down-regulated. mCherry and other far-red fluorescent proteins will have multiple uses in investigating the biology of mycobacteria, particularly under non-replicating, or low cell density conditions, as well as providing a novel means of detecting cell death rapidly.
Collapse
Affiliation(s)
- Paul Carroll
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lise J. Schreuder
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Julian Muwanguzi-Karugaba
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Siouxsie Wiles
- Department of Medicine, Imperial College London, London, United Kingdom
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | - Jorge Ripoll
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Theresa H. Ward
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gregory J. Bancroft
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ulrich E. Schaible
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Molecular Infection Research, Research Center Borstel, Borstel, Germany
| | - Tanya Parish
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Thwaites GE, Schoeman JF. Update on tuberculosis of the central nervous system: pathogenesis, diagnosis, and treatment. Clin Chest Med 2010; 30:745-54, ix. [PMID: 19925964 DOI: 10.1016/j.ccm.2009.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculous meningitis is the most dangerous form of tuberculosis, yet our understanding of disease pathogenesis is based upon studies performed in the 1920s, our diagnostic methods are dependent upon those developed in the 1880 s, and our treatment has advanced little since the introduction of isoniazid in the 1950s. The authors focus this review on three important questions. First, how does Mycobacterium tuberculosis reach the brain? Second, what is the best way of identifying patients who require early empiric antituberculosis therapy? Third, what is the best way of managing tuberculous hydrocephalus?
Collapse
Affiliation(s)
- Guy E Thwaites
- Department of Microbiology, Imperial College, South Kensington, London, SW7 2AZ UK.
| | | |
Collapse
|
36
|
The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 2009; 192:1662-70. [PMID: 20023019 DOI: 10.1128/jb.00926-09] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis survives in latently infected individuals, likely in a nonreplicating or dormancy-like state. The M. tuberculosis DosR regulon is a genetic program induced by conditions that inhibit aerobic respiration and prevent bacillus replication. In this study, we used a mutant incapable of DosR regulon induction to investigate the contribution of this regulon to bacterial metabolism during anaerobic dormancy. Our results confirm that the DosR regulon is essential for M. tuberculosis survival during anaerobic dormancy and demonstrate that it is required for metabolic processes that occur upon entry into and throughout the dormant state. Specifically, we showed that regulon mechanisms shift metabolism away from aerobic respiration in the face of dwindling oxygen availability and are required for maintaining energy levels and redox balance as the culture becomes anaerobic. We also demonstrated that the DosR regulon is crucial for rapid resumption of growth once M. tuberculosis exits an anaerobic or nitric oxide-induced nonrespiring state. In summary, the DosR regulon encodes novel metabolic mechanisms essential for M. tuberculosis to survive in the absence of respiration and to successfully transition rapidly between respiring and nonrespiring conditions without loss of viability.
Collapse
|