1
|
Kakoullis L, Economidou S, Mehrotra P, Panos G, Karampitsakos T, Stratakos G, Tzouvelekis A, Sampsonas F. Bronchoscopy-related outbreaks and pseudo-outbreaks: A systematic review. Infect Control Hosp Epidemiol 2024; 45:509-519. [PMID: 38099453 DOI: 10.1017/ice.2023.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
OBJECTIVE To identify and report the pathogens and sources of contamination associated with bronchoscopy-related outbreaks and pseudo-outbreaks. DESIGN Systematic review. SETTING Inpatient and outpatient outbreaks and pseudo-outbreaks after bronchoscopy. METHODS PubMed/Medline databases were searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, using the search terms "bronchoscopy," "outbreak," and "pseudo-outbreak" from inception until December 31, 2022. From eligible publications, data were extracted regarding the type of event, pathogen involved, and source of contamination. Pearson correlation was used to identify correlations between variables. RESULTS In total, 74 studies describing 23 outbreaks and 52 pseudo-outbreaks were included in this review. The major pathogens identified in these studies were Pseudomonas aeruginosa, Mycobacterium tuberculosis, nontuberculous mycobacteria (NTM), Klebsiella pneumoniae, Serratia marcescens, Stenotrophomonas maltophilia, Legionella pneumophila, and fungi. The primary sources of contamination were the use of contaminated water or contaminated topical anesthetics, dysfunction and contamination of bronchoscopes or automatic endoscope reprocessors, and inadequate disinfection of the bronchoscopes following procedures. Correlations were identified between primary bronchoscope defects and the identification of P. aeruginosa (r = 0.351; P = .002) and K. pneumoniae (r = 0.346; P = .002), and between the presence of a contaminated water source and NTM (r = 0.331; P = .004) or L. pneumophila (r = 0.280; P = .015). CONCLUSIONS Continued vigilance in bronchoscopy disinfection practices remains essential because outbreaks and pseudo-outbreaks continue to pose a significant risk to patient care, emphasizing the importance of stringent disinfection and quality control measures.
Collapse
Affiliation(s)
- Loukas Kakoullis
- Department of Medicine, Mount Auburn Hospital, Cambridge, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Sofia Economidou
- Department of Medicine, Mount Auburn Hospital, Cambridge, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Preeti Mehrotra
- Harvard Medical School, Boston, Massachusetts, United States
- Division of Infection Controland Hospital Epidemiology, Silverman Institute for Health Care Quality and Safety, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - George Panos
- Department of Internal Medicine, Division of Infectious Diseases, University General Hospital of Patras, Patras, Greece
| | - Theodoros Karampitsakos
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, University of South Florida, Tampa, Florida, United States
| | - Grigorios Stratakos
- Department of Respiratory Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
2
|
Challenges in the Hospital Water System and Innovations to Prevent Healthcare-Associated Infections. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2023. [DOI: 10.1007/s40506-023-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Teixeira P, Brandão J, Silva S, Babič MN, Gunde‐Cimerman N, Pires J, Costa S, Valério E. Microbiological and chemical quality of ice used to preserve fish in Lisbon marketplaces. J Food Saf 2019. [DOI: 10.1111/jfs.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pedro Teixeira
- Bromatology and Water LaboratoryEnergy, Environment and Green Structure Department Lisbon Municipality, Lisbon Portugal
- CESAM—Centre for Environmental and Marine StudiesUniversity of Aveiro Aveiro Portugal
| | - João Brandão
- Department of Environmental HealthNational Institute of Health Doutor Ricardo Jorge Lisbon Portugal
| | - Susana Silva
- Department of EpidemiologyNational Institute of Health Doutor Ricardo Jorge Lisbon Portugal
| | - Monika Novak Babič
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana Ljubljana Slovenia
| | - Nina Gunde‐Cimerman
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana Ljubljana Slovenia
| | - Joana Pires
- FCUL—Faculty of SciencesUniversity of Lisbon Lisbon Portugal
| | - Sílvia Costa
- Bromatology and Water LaboratoryEnergy, Environment and Green Structure Department Lisbon Municipality, Lisbon Portugal
| | - Elisabete Valério
- Department of Environmental HealthNational Institute of Health Doutor Ricardo Jorge Lisbon Portugal
| |
Collapse
|
4
|
Hamilton KA, Prussin AJ, Ahmed W, Haas CN. Outbreaks of Legionnaires’ Disease and Pontiac Fever 2006–2017. Curr Environ Health Rep 2018; 5:263-271. [DOI: 10.1007/s40572-018-0201-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Whiley H. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 14:E12. [PMID: 28029126 PMCID: PMC5295263 DOI: 10.3390/ijerph14010012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/05/2023]
Abstract
Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups.
Collapse
Affiliation(s)
- Harriet Whiley
- Health and the Environment, School of the Environment, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| |
Collapse
|
6
|
Botana-Rial M, Leiro-Fernández V, Núñez-Delgado M, Álvarez-Fernández M, Otero-Fernández S, Bello-Rodríguez H, Vilariño-Pombo C, Fernández-Villar A. A Pseudo-Outbreak of Pseudomonas putida and Stenotrophomonas maltophilia in a Bronchoscopy Unit. Respiration 2016; 92:274-278. [DOI: 10.1159/000449137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022] Open
|
7
|
van Heijnsbergen E, Schalk JAC, Euser SM, Brandsema PS, den Boer JW, de Roda Husman AM. Confirmed and Potential Sources of Legionella Reviewed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4797-815. [PMID: 25774976 DOI: 10.1021/acs.est.5b00142] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Legionella bacteria are ubiquitous in natural matrices and man-made systems. However, it is not always clear if these reservoirs can act as source of infection resulting in cases of Legionnaires' disease. This review provides an overview of reservoirs of Legionella reported in the literature, other than drinking water distribution systems. Levels of evidence were developed to discriminate between potential and confirmed sources of Legionella. A total of 17 systems and matrices could be classified as confirmed sources of Legionella. Many other man-made systems or natural matrices were not classified as a confirmed source, since either no patients were linked to these reservoirs or the supporting evidence was weak. However, these systems or matrices could play an important role in the transmission of infectious Legionella bacteria; they might not yet be considered in source investigations, resulting in an underestimation of their importance. To optimize source investigations it is important to have knowledge about all the (potential) sources of Legionella. Further research is needed to unravel what the contribution is of each confirmed source, and possibly also potential sources, to the LD disease burden.
Collapse
Affiliation(s)
- Eri van Heijnsbergen
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Johanna A C Schalk
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Sjoerd M Euser
- ‡Regional Public Health Laboratory Kennemerland, Haarlem, Boerhaavelaan 26, 2035 RC Haarlem, The Netherlands
| | - Petra S Brandsema
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Jeroen W den Boer
- ‡Regional Public Health Laboratory Kennemerland, Haarlem, Boerhaavelaan 26, 2035 RC Haarlem, The Netherlands
| | - Ana Maria de Roda Husman
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
- §Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
8
|
Blake M, Embil JM, Trepman E, Adam H, Myers R, Mutcher P. Pseudo-Outbreak of Phaeoacremonium parasiticum from a Hospital Ice Dispenser. Infect Control Hosp Epidemiol 2015. [DOI: 10.1086/589153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In 31 patients,Phaeoacremonium parasiticumwas recovered from bronchoscopy specimens (biopsies and aspirates). The pseudo-outbreak was caused by contaminated ice used to control hemorrhage during bronchoscopy and was associated with deficiencies in equipment cleaning. The bronchoscopy technique was modified, the ice dispenser was disinfected, bronchoscope reprocessing was improved, and there were no recurrences.Infect Control Hosp Epidemiol2014;35(8):1063–1065
Collapse
|
9
|
Weber DJ, Rutala WA. Lessons Learned From Outbreaks and Pseudo-Outbreaks Associated with Bronchoscopy. Infect Control Hosp Epidemiol 2015; 33:230-4. [DOI: 10.1086/664495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Yu VL, Stout JE. Legionella in an Ice Machine May Be a Sentinel for Drinking Water Contamination. Infect Control Hosp Epidemiol 2015; 31:317; author reply 318. [DOI: 10.1086/651067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Whiley H, Keegan A, Fallowfield H, Ross K. Uncertainties associated with assessing the public health risk from Legionella. Front Microbiol 2014; 5:501. [PMID: 25309526 PMCID: PMC4174118 DOI: 10.3389/fmicb.2014.00501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Legionella is an opportunistic pathogen of public health concern. Current regulatory and management guidelines for the control of this organism are informed by risk assessments. However, there are many unanswered questions and uncertainties regarding Legionella epidemiology, strain infectivity, infectious dose, and detection methods. This review follows the EnHealth Risk Assessment Framework, to examine the current information available regarding Legionella risk and discuss the uncertainties and assumptions. This review can be used as a tool for understanding the uncertainties associated with Legionella risk assessment. It also serves to highlight the areas of Legionella research that require future focus. Improvement of these uncertainties will provide information to enhance risk management practices for Legionella, potentially improving public health protection and reducing the economic costs by streamlining current management practices.
Collapse
Affiliation(s)
- Harriet Whiley
- Health and the Environment, Flinders UniversityAdelaide, SA, Australia
| | | | | | - Kirstin Ross
- Health and the Environment, Flinders UniversityAdelaide, SA, Australia
| |
Collapse
|
12
|
Healthcare-associated infections and their prevention after extensive flooding. Curr Opin Infect Dis 2013; 26:359-65. [DOI: 10.1097/qco.0b013e3283630b1d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
|
14
|
Williams MM, Armbruster CR, Arduino MJ. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review. BIOFOULING 2013; 29:147-62. [PMID: 23327332 PMCID: PMC9326810 DOI: 10.1080/08927014.2012.757308] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Several bacterial species that are natural inhabitants of potable water distribution system biofilms are opportunistic pathogens important to sensitive patients in healthcare facilities. Waterborne healthcare-associated infections (HAI) may occur during the many uses of potable water in the healthcare environment. Prevention of infection is made more challenging by lack of data on infection rate and gaps in understanding of the ecology, virulence, and infectious dose of these opportunistic pathogens. Some healthcare facilities have been successful in reducing infections by following current water safety guidelines. This review describes several infections, and remediation steps that have been implemented to reduce waterborne HAIs.
Collapse
Affiliation(s)
- Margaret M Williams
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
15
|
|
16
|
Schuetz AN, Ribner BS. Reply to Yu and Stout. Infect Control Hosp Epidemiol 2010. [DOI: 10.1086/651068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Allen G. Evidence for Practice. AORN J 2009. [DOI: 10.1016/j.aorn.2009.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Bonura C, Mammina C, Vella A, Belfiore S, Chiarini A, Giammanco A. A combined molecular typing approach does not discriminate Legionella pneumophila serogroup 1 strains of a predominant sequence-based type in Palermo, Italy. J Infect Public Health 2009; 2:184-8. [PMID: 20701881 DOI: 10.1016/j.jiph.2009.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/07/2009] [Accepted: 09/10/2009] [Indexed: 01/15/2023] Open
Affiliation(s)
- Celestino Bonura
- Section of Microbiology, Department of Sciences for Health Promotion G. D'Alessandro, University, Palermo, Italy
| | | | | | | | | | | |
Collapse
|