1
|
Haemophilus ducreyi Infection Induces Oxidative Stress, Central Metabolic Changes, and a Mixed Pro- and Anti-inflammatory Environment in the Human Host. mBio 2022; 13:e0312522. [PMID: 36453940 PMCID: PMC9765465 DOI: 10.1128/mbio.03125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Few studies have investigated host-bacterial interactions at sites of infection in humans using transcriptomics and metabolomics. Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. We developed a human challenge model in which healthy adult volunteers are infected with H. ducreyi on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics. In a previous pilot study, we determined the human and H. ducreyi transcriptomes and the metabolome of pustule and wounded sites of 4 volunteers (B. Griesenauer, T. M. Tran, K. R. Fortney, D. M. Janowicz, et al., mBio 10:e01193-19, 2019, https://doi.org/10.1128/mBio.01193-19). While we could form provisional transcriptional networks between the host and H. ducreyi, the study was underpowered to integrate the metabolome with the host transcriptome. To better define and integrate the transcriptomes and metabolome, we used samples from both the pilot study (n = 4) and new volunteers (n = 8) to identify 5,495 human differentially expressed genes (DEGs), 123 H. ducreyi DEGs, 205 differentially abundant positive ions, and 198 differentially abundant negative ions. We identified 42 positively correlated and 29 negatively correlated human-H. ducreyi transcriptome clusters. In addition, we defined human transcriptome-metabolome networks consisting of 9 total clusters, which highlighted changes in fatty acid metabolism and mitigation of oxidative damage. Taken together, the data suggest a mixed pro- and anti-inflammatory environment and rewired central metabolism in the host that provides a hostile, nutrient-limited environment for H. ducreyi. IMPORTANCE Interactions between the host and bacteria at sites of infection in humans are poorly understood. We inoculated human volunteers on the upper arm with the skin pathogen H. ducreyi or a buffer control and biopsied the resulting infected and sham-inoculated sites. We performed dual transcriptome sequencing (RNA-seq) and metabolic analysis on the biopsy samples. Network analyses between the host and bacterial transcriptomes and the host transcriptome-metabolome network were used to identify molecules that may be important for the virulence of H. ducreyi in the human host. Our results suggest that the pustule is highly oxidative, contains both pro- and anti-inflammatory components, and causes metabolic shifts in the host, to which H. ducreyi adapts to survive. To our knowledge, this is the first study to integrate transcriptomic and metabolomic responses to a single bacterial pathogen in the human host.
Collapse
|
2
|
Brothwell JA, Griesenauer B, Chen L, Spinola SM. Interactions of the Skin Pathogen Haemophilus ducreyi With the Human Host. Front Immunol 2021; 11:615402. [PMID: 33613541 PMCID: PMC7886810 DOI: 10.3389/fimmu.2020.615402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
The obligate human pathogen Haemophilus ducreyi causes both cutaneous ulcers in children and sexually transmitted genital ulcers (chancroid) in adults. Pathogenesis is dependent on avoiding phagocytosis and exploiting the suppurative granuloma-like niche, which contains a myriad of innate immune cells and memory T cells. Despite this immune infiltrate, long-lived immune protection does not develop against repeated H. ducreyi infections—even with the same strain. Most of what we know about infectious skin diseases comes from naturally occurring infections and/or animal models; however, for H. ducreyi, this information comes from an experimental model of infection in human volunteers that was developed nearly three decades ago. The model mirrors the progression of natural disease and serves as a valuable tool to determine the composition of the immune cell infiltrate early in disease and to identify host and bacterial factors that are required for the establishment of infection and disease progression. Most recently, holistic investigation of the experimentally infected skin microenvironment using multiple “omics” techniques has revealed that non-canonical bacterial virulence factors, such as genes involved in central metabolism, may be relevant to disease progression. Thus, the immune system not only defends the host against H. ducreyi, but also dictates the nutrient availability for the invading bacteria, which must adapt their gene expression to exploit the inflammatory metabolic niche. These findings have broadened our view of the host-pathogen interaction network from considering only classical, effector-based virulence paradigms to include adaptations to the metabolic environment. How both host and bacterial factors interact to determine infection outcome is a current focus in the field. Here, we review what we have learned from experimental H. ducreyi infection about host-pathogen interactions, make comparisons to what is known for other skin pathogens, and discuss how novel technologies will deepen our understanding of this infection.
Collapse
Affiliation(s)
- Julie A Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brad Griesenauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Li Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Stanley M Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Determination of an Interaction Network between an Extracellular Bacterial Pathogen and the Human Host. mBio 2019; 10:mBio.01193-19. [PMID: 31213562 PMCID: PMC6581864 DOI: 10.1128/mbio.01193-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dual RNA sequencing (RNA-seq) offers the promise of determining an interactome at a transcriptional level between a bacterium and the host but has yet to be done on any bacterial infection in human tissue. We performed dual RNA-seq and metabolomics analyses on wounded and infected sites following experimental infection of the arm with H. ducreyi. Our results suggest that H. ducreyi survives in an abscess by utilizing l-ascorbate as an alternative carbon source, possibly taking advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregulating genes involved in anaerobic metabolism and inorganic ion and nutrient transport. To our knowledge, this is the first description of an interaction network between a bacterium and the human host at a site of infection. A major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found that in vivoH. ducreyi transcripts were distinct from those in the inocula, as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggest that H. ducreyi exploits the metabolic niche created by the host immune response.
Collapse
|
4
|
Ahlstrand T, Tuominen H, Beklen A, Torittu A, Oscarsson J, Sormunen R, Pöllänen MT, Permi P, Ihalin R. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8. Virulence 2016; 8:115-134. [PMID: 27459270 PMCID: PMC5383217 DOI: 10.1080/21505594.2016.1216294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heidi Tuominen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Arzu Beklen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Jan Oscarsson
- b Oral Microbiology , Department of Odontology, Umeå University , Umeå , Sweden
| | - Raija Sormunen
- c Biocenter Oulu and Department of Pathology , University of Oulu , Oulu Finland
| | | | - Perttu Permi
- e Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , Helsinki , Finland.,f Department of Biological and Environmental Sciences , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland.,g Department of Chemistry , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
5
|
Gaston JR, Roberts SA, Humphreys TL. Molecular phylogenetic analysis of non-sexually transmitted strains of Haemophilus ducreyi. PLoS One 2015; 10:e0118613. [PMID: 25774793 PMCID: PMC4361675 DOI: 10.1371/journal.pone.0118613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/21/2015] [Indexed: 12/19/2022] Open
Abstract
Haemophilus ducreyi, the etiologic agent of chancroid, has been previously reported to show genetic variance in several key virulence factors, placing strains of the bacterium into two genetically distinct classes. Recent studies done in yaws-endemic areas of the South Pacific have shown that H. ducreyi is also a major cause of cutaneous limb ulcers (CLU) that are not sexually transmitted. To genetically assess CLU strains relative to the previously described class I, class II phylogenetic hierarchy, we examined nucleotide sequence diversity at 11 H. ducreyi loci, including virulence and housekeeping genes, which encompass approximately 1% of the H. ducreyi genome. Sequences for all 11 loci indicated that strains collected from leg ulcers exhibit DNA sequences homologous to class I strains of H. ducreyi. However, sequences for 3 loci, including a hemoglobin receptor (hgbA), serum resistance protein (dsrA), and a collagen adhesin (ncaA) contained informative amounts of variation. Phylogenetic analyses suggest that these non-sexually transmitted strains of H. ducreyi comprise a sub-clonal population within class I strains of H. ducreyi. Molecular dating suggests that CLU strains are the most recently developed, having diverged approximately 0.355 million years ago, fourteen times more recently than the class I/class II divergence. The CLU strains' divergence falls after the divergence of humans from chimpanzees, making it the first known H. ducreyi divergence event directly influenced by the selective pressures accompanying human hosts.
Collapse
Affiliation(s)
- Jordan R. Gaston
- Department of Biology, Allegheny College, Meadville, Pennsylvania, United States of America
| | - Sally A. Roberts
- Department of Microbiology, Auckland District Health Board, Auckland, New Zealand
| | - Tricia L. Humphreys
- Department of Biology, Allegheny College, Meadville, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Janowicz DM, Zwickl BW, Fortney KR, Katz BP, Bauer ME. Outer membrane protein P4 is not required for virulence in the human challenge model of Haemophilus ducreyi infection. BMC Microbiol 2014; 14:166. [PMID: 24961160 PMCID: PMC4081464 DOI: 10.1186/1471-2180-14-166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 01/14/2023] Open
Abstract
Background Bacterial lipoproteins often play important roles in pathogenesis and can stimulate protective immune responses. Such lipoproteins are viable vaccine candidates. Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, expresses a number of lipoproteins during human infection. One such lipoprotein, OmpP4, is homologous to the outer membrane lipoprotein e (P4) of H. influenzae. In H. influenzae, e (P4) stimulates production of bactericidal and protective antibodies and contributes to pathogenesis by facilitating acquisition of the essential nutrients heme and nicotinamide adenine dinucleotide (NAD). Here, we tested the hypothesis that, like its homolog, H. ducreyi OmpP4 contributes to virulence and stimulates production of bactericidal antibodies. Results We determined that OmpP4 is broadly conserved among clinical isolates of H. ducreyi. We next constructed and characterized an isogenic ompP4 mutant, designated 35000HPompP4, in H. ducreyi strain 35000HP. To test whether OmpP4 was necessary for virulence in humans, eight healthy adults were experimentally infected. Each subject was inoculated with a fixed dose of 35000HP on one arm and three doses of 35000HPompP4 on the other arm. The overall parent and mutant pustule formation rates were 52.4% and 47.6%, respectively (P = 0.74). These results indicate that expression of OmpP4 in not necessary for H. ducreyi to initiate disease or progress to pustule formation in humans. Hyperimmune mouse serum raised against purified, recombinant OmpP4 did not promote bactericidal killing of 35000HP or phagocytosis by J774A.1 mouse macrophages in serum bactericidal and phagocytosis assays, respectively. Conclusions Our data suggest that, unlike e (P4), H. ducreyi OmpP4 is not a suitable vaccine candidate. OmpP4 may be dispensable for virulence because of redundant mechanisms in H. ducreyi for heme acquisition and NAD utilization.
Collapse
Affiliation(s)
- Diane M Janowicz
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive Room EH-435, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
7
|
Fusco WG, Choudhary NR, Routh PA, Ventevogel MS, Smith VA, Koch GG, Almond GW, Orndorff PE, Sempowski GD, Leduc I. The Haemophilus ducreyi trimeric autotransporter adhesin DsrA protects against an experimental infection in the swine model of chancroid. Vaccine 2014; 32:3752-8. [PMID: 24844153 DOI: 10.1016/j.vaccine.2014.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 01/09/2023]
Abstract
Adherence of pathogens to cellular targets is required to initiate most infections. Defining strategies that interfere with adhesion is therefore important for the development of preventative measures against infectious diseases. As an adhesin to host extracellular matrix proteins and human keratinocytes, the trimeric autotransporter adhesin DsrA, a proven virulence factor of the Gram-negative bacterium Haemophilus ducreyi, is a potential target for vaccine development. A recombinant form of the N-terminal passenger domain of DsrA from H. ducreyi class I strain 35000HP, termed rNT-DsrAI, was tested as a vaccine immunogen in the experimental swine model of H. ducreyi infection. Viable homologous H. ducreyi was not recovered from any animal receiving four doses of rNT-DsrAI administered with Freund's adjuvant at two-week intervals. Control pigs receiving adjuvant only were all infected. All animals receiving the rNT-DsrAI vaccine developed antibody endpoint titers between 3.5 and 5 logs. All rNT-DsrAI antisera bound the surface of the two H. ducreyi strains used to challenge immunized pigs. Purified anti-rNT-DsrAI IgG partially blocked binding of fibrinogen at the surface of viable H. ducreyi. Overall, immunization with the passenger domain of the trimeric autotransporter adhesin DsrA accelerated clearance of H. ducreyi in experimental lesions, possibly by interfering with fibrinogen binding.
Collapse
Affiliation(s)
- William G Fusco
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Neelima R Choudhary
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patty A Routh
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Melissa S Ventevogel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A Smith
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary G Koch
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Glen W Almond
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Paul E Orndorff
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Isabelle Leduc
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Trimeric autotransporter DsrA is a major mediator of fibrinogen binding in Haemophilus ducreyi. Infect Immun 2013; 81:4443-52. [PMID: 24042118 DOI: 10.1128/iai.00743-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. In both natural and experimental chancroid, H. ducreyi colocalizes with fibrin at the base of the ulcer. Fibrin is obtained by cleavage of the serum glycoprotein fibrinogen (Fg) by thrombin to initiate formation of the blood clot. Fg binding proteins are critical virulence factors in medically important Gram-positive bacteria. H. ducreyi has previously been shown to bind Fg in an agglutination assay, and the H. ducreyi Fg binding protein FgbA was identified in ligand blotting with denatured proteins. To better characterize the interaction of H. ducreyi with Fg, we examined Fg binding to intact, viable H. ducreyi bacteria and identified a novel Fg binding protein. H. ducreyi bound unlabeled Fg in a dose-dependent manner, as measured by two different methods. In ligand blotting with total denatured cellular proteins, digoxigenin (DIG)-Fg bound only two H. ducreyi proteins, the trimeric autotransporter DsrA and the lectin DltA; however, only the isogenic dsrA mutant had significantly less cell-associated Fg than parental strains in Fg binding assays with intact bacteria. Furthermore, expression of DsrA, but not DltA or an empty vector, rendered the non-Fg-binding H. influenzae strain Rd capable of binding Fg. A 13-amino-acid sequence in the C-terminal section of the passenger domain of DsrA appears to be involved in Fg binding by H. ducreyi. Taken together, these data suggest that the trimeric autotransporter DsrA is a major determinant of Fg binding at the surface of H. ducreyi.
Collapse
|
9
|
Paino A, Ahlstrand T, Nuutila J, Navickaite I, Lahti M, Tuominen H, Välimaa H, Lamminmäki U, Pöllänen MT, Ihalin R. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans. PLoS One 2013; 8:e70509. [PMID: 23936223 PMCID: PMC3729834 DOI: 10.1371/journal.pone.0070509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022] Open
Abstract
Aggregatibacteractinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1β also interacted with BilRI. Our findings suggest that A. actinomycetemcomitans expresses an IL-1β-binding surface-exposed lipoprotein that may be part of the bacterial IL-1β-sensing system.
Collapse
Affiliation(s)
- Annamari Paino
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Tuuli Ahlstrand
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jari Nuutila
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Indre Navickaite
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Maria Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi Tuominen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Hannamari Välimaa
- Haartman Institute, Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki University Hospital, Helsinki, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | - Riikka Ihalin
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
10
|
Activation of CpxRA in Haemophilus ducreyi primarily inhibits the expression of its targets, including major virulence determinants. J Bacteriol 2013; 195:3486-502. [PMID: 23729647 DOI: 10.1128/jb.00372-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA, the lspB-lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo. To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo. Characterization of the downregulated genes may offer new insights into pathogenesis.
Collapse
|
11
|
Carbon storage regulator A contributes to the virulence of Haemophilus ducreyi in humans by multiple mechanisms. Infect Immun 2012; 81:608-17. [PMID: 23230298 DOI: 10.1128/iai.01239-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.
Collapse
|
12
|
Lagergård T, Bölin I, Lindholm L. On the evolution of the sexually transmitted bacteria Haemophilus ducreyi and Klebsiella granulomatis. Ann N Y Acad Sci 2012; 1230:E1-E10. [PMID: 22239475 DOI: 10.1111/j.1749-6632.2011.06193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemophilus ducreyi and Klebsiella (Calymmatobacterium) granulomatis are sexually transmitted bacteria that cause characteristic, persisting ulceration on external genitals called chancroid and granuloma inguinale, respectively. Those ulcers are endemic in developing countries or exist, as does granuloma inguinale, only in some geographic "hot spots."H. ducreyi is placed in the genus Haemophilus (family Pasteurellacae); however, this phylogenetic position is not obvious. The multiple ways in which the bacterium may be adapted to its econiche through specialized nutrient acquisitions; defenses against the immune system; and virulence factors that increase attachment, fitness, and persistence within genital tissue are discussed below. The analysis of K. granulomatis phylogeny demonstrated a high degree of identity with other Klebsiella species, and the name K. granulomatis comb. nov. was proposed. Because of the difficulty in growing this bacterium on artificial media, its characteristics have not been sufficiently defined. More studies are needed to understand bacterial genetics related to the pathogenesis and evolution of K. granulomatis.
Collapse
Affiliation(s)
- Teresa Lagergård
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
13
|
Sialylation of lipooligosaccharides is dispensable for the virulence of Haemophilus ducreyi in humans. Infect Immun 2011; 80:679-87. [PMID: 22144477 DOI: 10.1128/iai.05826-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.
Collapse
|
14
|
Abstract
Haemophilus ducreyi, the etiologic agent of chancroid, expresses variants of several key virulence factors. While previous reports suggested that H. ducreyi strains formed two clonal populations, the differences between, and diversity within, these populations were unclear. To assess their variability, we examined sequence diversity at 11 H. ducreyi loci, including virulence and housekeeping genes, augmenting published data sets with PCR-amplified genes to acquire data for at least 10 strains at each locus. While sequences from all 11 loci place strains into two distinct groups, there was very little variation within each group. The difference between alleles of the two groups was variable and large at 3 loci encoding surface-exposed proteins (0.4 < K(S) < 1.3, where K(S) is divergence at synonymous sites) but consistently small at genes encoding cytoplasmic or periplasmic proteins (K(S) < 0.09). The data suggest that the two classes have recently diverged, that recombination has introduced variant alleles into at least 3 distinct loci, and that these alleles have been confined to one of the two classes. In addition, recombination is evident among alleles within, but not between, classes. Rather than clones of the same species, these properties indicate that the two classes may form distinct species.
Collapse
|
15
|
Deletion of mtrC in Haemophilus ducreyi increases sensitivity to human antimicrobial peptides and activates the CpxRA regulon. Infect Immun 2011; 79:2324-34. [PMID: 21444663 DOI: 10.1128/iai.01316-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Haemophilus ducreyi resists killing by antimicrobial peptides encountered during human infection, including cathelicidin LL-37, α-defensins, and β-defensins. In this study, we examined the role of the proton motive force-dependent multiple transferable resistance (MTR) transporter in antimicrobial peptide resistance in H. ducreyi. We found a proton motive force-dependent effect on H. ducreyi's resistance to LL-37 and β-defensin HBD-3, but not α-defensin HNP-2. Deletion of the membrane fusion protein MtrC rendered H. ducreyi more sensitive to LL-37 and human β-defensins but had relatively little effect on α-defensin resistance. The mtrC mutant 35000HPmtrC exhibited phenotypic changes in outer membrane protein profiles, colony morphology, and serum sensitivity, which were restored to wild type by trans-complementation with mtrC. Similar phenotypes were reported in a cpxA mutant; activation of the two-component CpxRA regulator was confirmed by showing transcriptional effects on CpxRA-regulated genes in 35000HPmtrC. A cpxR mutant had wild-type levels of antimicrobial peptide resistance; a cpxA mutation had little effect on defensin resistance but led to increased sensitivity to LL-37. 35000HPmtrC was more sensitive than the cpxA mutant to LL-37, indicating that MTR contributed to LL-37 resistance independent of the CpxRA regulon. The CpxRA regulon did not affect proton motive force-dependent antimicrobial peptide resistance; however, 35000HPmtrC had lost proton motive force-dependent peptide resistance, suggesting that the MTR transporter promotes proton motive force-dependent resistance to LL-37 and human β-defensins. This is the first report of a β-defensin resistance mechanism in H. ducreyi and shows that LL-37 resistance in H. ducreyi is multifactorial.
Collapse
|
16
|
Abstract
The Haemophilus ducreyi 35000HP genome encodes a homolog of the CpxRA two-component cell envelope stress response system originally characterized in Escherichia coli. CpxR, the cytoplasmic response regulator, was shown previously to be involved in repression of the expression of the lspB-lspA2 operon (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, the H. ducreyi CpxR and CpxA proteins were shown to closely resemble those of other well-studied bacterial species. A cpxA deletion mutant and a CpxR-overexpressing strain were used to explore the extent of the CpxRA regulon. DNA microarray and real-time reverse transcriptase (RT) PCR analyses indicated several potential regulatory targets for the H. ducreyi CpxRA two-component regulatory system. Electrophoretic mobility shift assays (EMSAs) were used to prove that H. ducreyi CpxR interacted with the promoter regions of genes encoding both known and putative virulence factors of H. ducreyi, including the lspB-lspA2 operon, the flp operon, and dsrA. Interestingly, the use of EMSAs also indicated that H. ducreyi CpxR did not bind to the promoter regions of several genes predicted to encode factors involved in the cell envelope stress response. Taken together, these data suggest that the CpxRA system in H. ducreyi, in contrast to that in E. coli, may be involved primarily in controlling expression of genes not involved in the cell envelope stress response.
Collapse
|
17
|
Li W, Tenner-Racz K, Racz P, Janowicz DM, Fortney KR, Katz BP, Spinola SM. Role played by CD4+FOXP3+ regulatory T Cells in suppression of host responses to Haemophilus ducreyi during experimental infection of human volunteers. J Infect Dis 2010; 201:1839-48. [PMID: 20443736 DOI: 10.1086/652781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus ducreyi causes chancroid, a genital ulcer disease. Among human volunteers, the majority of experimentally infected individuals fail to clear the infection and form pustules. Here, we investigated the role played by CD4(+)FOXP3(+) regulatory T (T(reg)) cells in the formation of pustules. In pustules, there was a significant enrichment of CD4(+)FOXP3(+) T cells, compared with that in peripheral blood. The majority of lesional FOXP3(+) T cells were CD4(+), CD25(+), CD127(lo/-), and CTLA-4(+). FOXP3(+) T cells were found throughout pustules but were most abundant at their base. Significantly fewer lesional CD4(+)FOXP3(+) T cells expressed interferon gamma, compared with lesional CD4(+)FOXP3(-) effector T cells. Depletion of CD4(+)CD25(+) T cells from the peripheral blood of infected and uninfected volunteers significantly enhanced proliferation of H. ducreyi-reactive CD4(+) T cells. Our results indicate that the population of CD4(+)CD25(+)CD127(lo/-)FOXP3(+) T(reg) cells are expanded at H. ducreyi-infected sites and that these cells may play a role in suppressing the host immune response to the bacterium.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. RECENT FINDINGS H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. SUMMARY A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.
Collapse
|
19
|
Haemophilus ducreyi SapA contributes to cathelicidin resistance and virulence in humans. Infect Immun 2010; 78:1176-84. [PMID: 20086092 DOI: 10.1128/iai.01014-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Haemophilus ducreyi is an extracellular pathogen of human epithelial surfaces that resists human antimicrobial peptides (APs). The organism's genome contains homologs of genes sensitive to antimicrobial peptides (sap operon) in nontypeable Haemophilus influenzae. In this study, we characterized the sap-containing loci of H. ducreyi 35000HP and demonstrated that sapA is expressed in broth cultures and H. ducreyi-infected tissue; sapA is also conserved among both class I and class II H. ducreyi strains. We constructed a nonpolar sapA mutant of H. ducreyi 35000HP, designated 35000HPsapA, and compared the percent survival of wild-type 35000HP and 35000HPsapA exposed to several human APs, including alpha-defensins, beta-defensins, and the cathelicidin LL-37. Unlike an H. influenzae sapA mutant, strain 35000HPsapA was not more susceptible to defensins than strain 35000HP was. However, we observed a significant decrease in the survival of strain 35000HPsapA after exposure to LL-37, which was complemented by introducing sapA in trans. Thus, the Sap transporter plays a role in resistance of H. ducreyi to LL-37. We next compared mutant strain 35000HPsapA with strain 35000HP for their ability to cause disease in human volunteers. Although both strains caused papules to form at similar rates, the pustule formation rate at sites inoculated with 35000HPsapA was significantly lower than that of sites inoculated with 35000HP (33.3% versus 66.7%; P = 0.007). Together, these data establish that SapA acts as a virulence factor and as one mechanism for H. ducreyi to resist killing by antimicrobial peptides. To our knowledge, this is the first demonstration that an antimicrobial peptide resistance mechanism contributes to bacterial virulence in humans.
Collapse
|
20
|
Labandeira-Rey M, Janowicz DM, Blick RJ, Fortney KR, Zwickl B, Katz BP, Spinola SM, Hansen EJ. Inactivation of the Haemophilus ducreyi luxS gene affects the virulence of this pathogen in human subjects. J Infect Dis 2009; 200:409-16. [PMID: 19552526 DOI: 10.1086/600142] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Haemophilus ducreyi 35000HP contains a homologue of the luxS gene, which encodes an enzyme that synthesizes autoinducer 2 (AI-2) in other gram-negative bacteria. H. ducreyi 35000HP produced AI-2 that functioned in a Vibrio harveyi-based reporter system. A H. ducreyi luxS mutant was constructed by insertional inactivation of the luxS gene and lost the ability to produce AI-2. Provision of the H. ducreyi luxS gene in trans partially restored AI-2 production by the mutant. The luxS mutant was compared with its parent for virulence in the human challenge model of experimental chancroid. The pustule-formation rate in 5 volunteers was 93.3% (95% confidence interval, 81.7%-99.9%) at 15 parent sites and 60.0% (95% confidence interval, 48.3%-71.7%) at 15 mutant sites (1-tailed P < .001). Thus, the luxS mutant was partially attenuated for virulence. This is the first report of AI-2 production contributing to the pathogenesis of a genital ulcer disease.
Collapse
Affiliation(s)
- Maria Labandeira-Rey
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li W, Janowicz DM, Fortney KR, Katz BP, Spinola SM. Mechanism of human natural killer cell activation by Haemophilus ducreyi. J Infect Dis 2009; 200:590-8. [PMID: 19572804 DOI: 10.1086/600123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of natural killer (NK) cells in the host response to Haemophilus ducreyi infection is unclear. In pustules obtained from infected human volunteers, there was an enrichment of CD56bright NK cells bearing the activation markers CD69 and HLA-DR, compared with peripheral blood. To study the mechanism by which H. ducreyi activated NK cells, we used peripheral blood mononuclear cells from uninfected volunteers. H. ducreyi activated NK cells only in the presence of antigen-presenting cells. H. ducreyi-infected monocytes and monocyte-derived macrophages activated NK cells in a contact- and interleukin-18 (IL-18)-dependent manner, whereas monocyte-derived dendritic cells induced NK activation through soluble IL-12. More lesional NK cells than peripheral blood NK cells produced IFN-gamma in response to IL-12 and IL-18. We conclude that NK cells are recruited to experimental lesions and likely are activated by infected macrophages and dendritic cells. IFN-gamma produced by lesional NK cells may facilitate phagocytosis of H. ducreyi.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, Center for Immunobiology, School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
22
|
Janowicz DM, Ofner S, Katz BP, Spinola SM. Experimental infection of human volunteers with Haemophilus ducreyi: fifteen years of clinical data and experience. J Infect Dis 2009; 199:1671-9. [PMID: 19432549 PMCID: PMC2682218 DOI: 10.1086/598966] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Haemophilus ducreyi causes chancroid, which facilitates transmission of human immunodeficiency virus type 1. To better understand the biology of H. ducreyi, we developed a human inoculation model. In the present article, we describe clinical outcomes for 267 volunteers who were infected with H. ducreyi. There was a relationship between papule formation and estimated delivered dose. The outcome (either pustule formation or resolution) of infected sites for a given subject was not independent; the most important determinants of pustule formation were sex and host effects. When 41 subjects were infected a second time, their outcomes segregated toward their initial outcome, confirming the host effect. Subjects with pustules developed local symptoms that required withdrawal from the study after a mean of 8.6 days. There were 191 volunteers who had tissue biopsy performed, 173 of whom were available for follow-up analysis; 28 (16.2%) of these developed hypertrophic scars, but the model was otherwise safe. Mutant-parent trials confirmed key features in H. ducreyi pathogenesis, and the model has provided an opportunity to study differential human susceptibility to a bacterial infection.
Collapse
Affiliation(s)
- Diane M Janowicz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | |
Collapse
|