1
|
Novoplansky A, Souza G, Brenner E, Bhatla S, Van Volkenburgh E. Exploring the complex information processes underlying plant behavior. PLANT SIGNALING & BEHAVIOR 2024; 19:2411913. [PMID: 39381978 PMCID: PMC11469436 DOI: 10.1080/15592324.2024.2411913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Newly discovered plant behaviors, linked to historical observations, contemporary technologies, and emerging knowledge of signaling mechanisms, argue that plants utilize complex information processing systems. Plants are goal-oriented in an evolutionary and physiological sense; they demonstrate agency and learning. While most studies on plant plasticity, learning, and memory deal with the responsiveness of individual plants to resource availability and biotic stresses, adaptive information is often perceived from and coordinated with neighboring plants, while competition occurs for limited resources. Based on existing knowledge, technologies, and sustainability principles, climate-smart agricultural practices are now being adopted to enhance crop resilience and productivity. A deeper understanding of the dynamics of plant behavior offers a rich palette of potential amelioration strategies for improving the productivity and health of natural and agricultural ecosystems.
Collapse
Affiliation(s)
- A. Novoplansky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - G.M. Souza
- Department of Botany, Institute of Biology – Section of Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - E.D. Brenner
- Department of Biology, Pace University, New York, New York, USA
| | - S.C. Bhatla
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | | |
Collapse
|
2
|
Korolenko A, Skinner MK. Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution. Epigenetics 2024; 19:2380929. [PMID: 39104183 PMCID: PMC11305060 DOI: 10.1080/15592294.2024.2380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).
Collapse
Affiliation(s)
- Alexandra Korolenko
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
3
|
Chellappoo A. Postgenomic understandings of fatness and metabolism. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:34. [PMID: 39476192 PMCID: PMC11525248 DOI: 10.1007/s40656-024-00630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/26/2024] [Indexed: 11/02/2024]
Abstract
'Obesity' has, for decades, been a subject of intense scientific and public interest, and remains a key target for postgenomic science. I examine the emergence of determinism in research into 'obesity' in the postgenomic field of metabolomics. I argue that determinism appears in metabolomics research in two ways: firstly, fragmentation and narrow construal of the environment is evident in metabolomics studies on weight loss interventions, resulting in particular features of the environment (notably, dietary intake) having outsized influence while the wider social environment is neglected. Secondly, studies aiming to characterize the metabolic signature of 'obesity' are guided by a commitment to a deterministic connection between 'obesity' and dysfunction, leading to a neglect or distortion of metabolic heterogeneity across individuals regardless of body size.
Collapse
Affiliation(s)
- Azita Chellappoo
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
4
|
Müller GA, Müller TD. A "poly-matter network" conception of biological inheritance. Genetica 2024:10.1007/s10709-024-00216-1. [PMID: 39425866 DOI: 10.1007/s10709-024-00216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Here we intend to shift the "DNA- and information-centric" conception of biological inheritance, with the accompanying exclusion of any non-DNA matter, to a "poly-matter network" framework which, in addition to DNA, considers the action of other cellular membranous constituents. These cellular structures, in particular organelles and plasma membranes, express "landscapes" of specific topologies at their surfaces, which may become altered in response to certain environmental factors. These so-called "membranous environmental landscapes" (MELs), which replicate by self-organization / autopoiesis rather than self-assembly, are transferred from donor to acceptor cells by various - vesicular and non-vesicular - mechanisms and exert novel features in the acceptor cells. The "DNA-centric" conception may be certainly explanatorily sufficient for the transfer of heritable phenotype variation to acceptor cells following the copying of DNA in donor cells and thereby for the phenomenon of biological inheritance of traits. However, it is not causally sufficient. With the observation of phenotype variation, as initially manifested during bacterial transformation, the impact of environmental factors, such as nutrition and stress, in the differential regulation of gene expression has been widely accepted and resulted in intense efforts to resolve the underlying epigenetic mechanisms. However, these are explained under a conceptual frame where the DNA (and associated proteins) are the only matter of inheritance. In contrast, it is our argumentation that inheritance can only be adequately understood as the transfer of DNA in concert with non-DNA matter in a "poly-matter network" conception. The adequate inclusion of the transfer of non-DNA matter is still a desideratum of future genetic research, which may pave the way for the experimental elucidation not only of how DNA and membrane matter act in concert to enable the inheritance of innate traits, but also whether they interact for that of acquired biological traits. Moreover, the "poly-matter network" conception may open new perspectives for an understanding of the pathogenesis of "common complex" diseases.
Collapse
Affiliation(s)
- Günter A Müller
- Institute of Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Oberschleissheim, Germany.
- Biology and Technology Studies Institute Munich (BITSIM), Lappenweg 16, 80939, Munich, Germany.
- Media, Culture and Society, Department of Media Studies, Faculty of Arts and Humanities, University Paderborn, Warburger Str. 100, 33098, Paderborn, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Oberschleissheim, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
5
|
Singh A, Verma AK, Kumar S, Bag SK, Roy S. Genome-wide DNA methylation and their transgenerational pattern differ in Arabidopsis thaliana populations originated along the elevation of West Himalaya. BMC PLANT BIOLOGY 2024; 24:936. [PMID: 39385079 PMCID: PMC11463068 DOI: 10.1186/s12870-024-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Methylation at 5' cytosine of DNA molecule is an important epigenetic mark. It is known to play critical role in adaptation of organisms under different biotic and abiotic stressors via modulating gene expression and/or chromatin architecture. Plant populations evolved under variable climatic conditions may have evolved different epigenetic marks including DNA methylation. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya. We show that the global methyl cytosine (mC) content is more or less similar in the three populations but differ in their distribution across genome. There was an increase in differential methylation between the populations as elevation increased. The methylation divergence was the highest between the low and the high elevation populations. The high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was associated with population specific phenotypes and climate of the region. The genes which were differentially methylated as well as differentially expressed between the low and high elevation populations were mostly related to abiotic stresses. When grown under controlled condition, there was gain of differential methylation over native condition and the maximum percent changes was observed in CHH-sequence context. Further ~ 99.8% methylated cytosines were stably passed on from F1 to F6 generation. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.Background Arabidopsis thaliana is the model plant species and has been extensively studied to understand plants life processes. There are numerous reports on its origin, demography, evolution, epigenomes and adaptation etc. however, Indian populations of Arabidopsis thaliana evolved along wide elevation ranging from ~ 700 m amsl to ~ 3400 m amsl not explored yet. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya.Results In our study we found that total mCs percent was more or less similar in the three populations but differ in their distribution across genome. The proportion of CG-mCs was the highest, followed by CHH-mCs and CHG-mCs in all the three populations. Under native field condition the methylation divergence was more prominent between low and high elevation populations and the high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was linked to population-specific phenotypes and the regional climate. The genes that showed differential methylation and expression between low and high elevation populations were primarily associated with abiotic stress responses. When grown under controlled condition, there was gain of differential methylation compared to the native condition and the maximum percent changes was observed in CHH-sequence context. Further 99.8% methylated cytosines were stably passed on from F1 to F6 generation.Conclusions The populations of A. thaliana adapted at different climatic conditions were significantly differentially methylated both under native and controlled condition. However, the magnitude and extent of gain or loss of methylation were most significant between the low and the high elevation populations. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.
Collapse
Affiliation(s)
- Akanksha Singh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ashwani Kumar Verma
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Bag
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Computational Biology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sribash Roy
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Department of Plant Sciences, Central University of Hyderabad, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Badcock PB, Davey CG. Active Inference in Psychology and Psychiatry: Progress to Date? ENTROPY (BASEL, SWITZERLAND) 2024; 26:833. [PMID: 39451909 PMCID: PMC11507080 DOI: 10.3390/e26100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The free energy principle is a formal theory of adaptive self-organising systems that emerged from statistical thermodynamics, machine learning and theoretical neuroscience and has since been translated into biologically plausible 'process theories' of cognition and behaviour, which fall under the banner of 'active inference'. Despite the promise this theory holds for theorising, research and practical applications in psychology and psychiatry, its impact on these disciplines has only now begun to bear fruit. The aim of this treatment is to consider the extent to which active inference has informed theoretical progress in psychology, before exploring its contributions to our understanding and treatment of psychopathology. Despite facing persistent translational obstacles, progress suggests that active inference has the potential to become a new paradigm that promises to unite psychology's subdisciplines, while readily incorporating the traditionally competing paradigms of evolutionary and developmental psychology. To date, however, progress towards this end has been slow. Meanwhile, the main outstanding question is whether this theory will make a positive difference through applications in clinical psychology, and its sister discipline of psychiatry.
Collapse
Affiliation(s)
- Paul B. Badcock
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC 3052, Australia
- Orygen, Melbourne, VIC 3052, Australia
| | - Christopher G. Davey
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
7
|
Rosic N, Delamare-Deboutteville J, Dove S. Heat stress in symbiotic dinoflagellates: Implications on oxidative stress and cellular changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173916. [PMID: 38866148 DOI: 10.1016/j.scitotenv.2024.173916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Global warming has been shown to harmfully affect symbiosis between Symbiodiniaceae and other marine invertebrates. When symbiotic dinoflagellates (the genus Breviolum) were in vitro exposed to acute heat stress of +7 °C for a period of 5 days, the results revealed the negative impact on all physiological and other cellular parameters measured. Elevated temperatures resulted in a severe reduction in algal density of up to 9.5-fold, as well as pigment concentrations, indicating the status of the physiological stress and early signs of photo-bleaching. Reactive oxygen species (ROS) were increased in all heated dinoflagellate cells, while the antioxidant-reduced glutathione levels initially dropped on day one but increased under prolonged temperature stress. The cell viability parameters were reduced by 97 % over the heating period, with an increased proportion of apoptotic and necrotic cells. Autofluorescence (AF) for Cy5-PE 660-20 was reduced from 1.7-fold at day 1 to up to 50-fold drop at the end of heating time, indicating that the AF changes were highly sensitive to heat stress and that it could be an extremely sensitive tool for assessing the functionality of algal photosynthetic machinery. The addition of the drug 5-AZA-2'-deoxycytidine (5-AZA), which inhibits DNA methylation processes, was assessed in parallel and contributed to some alterations in algal cellular stress response. The presence of drug 5-AZA combined with the temperature stress had an additional impact on Symbiodiniaceae density and cell complexity, including the AF levels. These variations in cellular stress response under heat stress and compromised DNA methylation conditions may indicate the importance of this epigenetic mechanism for symbiotic dinoflagellate thermal tolerance adaptability over a longer period, which needs further exploration. Consequently, the increased ROS levels and changes in AF signals reported during ongoing heat stress in dinoflagellate cells could be used as early stress biomarkers in these microalgae and potentially other photosynthetic species.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia; Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia.
| | | | - Sophie Dove
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
8
|
Yi SV. Epigenetics Research in Evolutionary Biology: Perspectives on Timescales and Mechanisms. Mol Biol Evol 2024; 41:msae170. [PMID: 39235767 PMCID: PMC11376073 DOI: 10.1093/molbev/msae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Epigenetics research in evolutionary biology encompasses a variety of research areas, from regulation of gene expression to inheritance of environmentally mediated phenotypes. Such divergent research foci can occasionally render the umbrella term "epigenetics" ambiguous. Here I discuss several areas of contemporary epigenetics research in the context of evolutionary biology, aiming to provide balanced views across timescales and molecular mechanisms. The importance of epigenetics in development is now being assessed in many nonmodel species. These studies not only confirm the importance of epigenetic marks in developmental processes, but also highlight the significant diversity in epigenetic regulatory mechanisms across taxa. Further, these comparative epigenomic studies have begun to show promise toward enhancing our understanding of how regulatory programs evolve. A key property of epigenetic marks is that they can be inherited along mitotic cell lineages, and epigenetic differences that occur during early development can have lasting consequences on the organismal phenotypes. Thus, epigenetic marks may play roles in short-term (within an organism's lifetime or to the next generation) adaptation and phenotypic plasticity. However, the extent to which observed epigenetic variation occurs independently of genetic influences remains uncertain, due to the widespread impact of genetics on epigenetic variation and the limited availability of comprehensive (epi)genomic resources from most species. While epigenetic marks can be inherited independently of genetic sequences in some species, there is little evidence that such "transgenerational inheritance" is a general phenomenon. Rather, molecular mechanisms of epigenetic inheritance are highly variable between species.
Collapse
Affiliation(s)
- Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Gopalan-Nair R, Coissac A, Legrand L, Lopez-Roques C, Pécrix Y, Vandecasteele C, Bouchez O, Barlet X, Lanois A, Givaudan A, Brillard J, Genin S, Guidot A. Changes in DNA methylation contribute to rapid adaptation in bacterial plant pathogen evolution. PLoS Biol 2024; 22:e3002792. [PMID: 39302959 PMCID: PMC11460718 DOI: 10.1371/journal.pbio.3002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/08/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Adaptation is usually explained by beneficial genetic mutations that are transmitted from parents to offspring and become fixed in the adapted population. However, genetic mutation analysis alone is not sufficient to fully explain the adaptive processes, and several studies report the existence of nongenetic (or epigenetic) inheritance that can enable adaptation to new environments. In the present work, we tested the hypothesis of the role of DNA methylation, a form of epigenetic modification, in adaptation of the plant pathogen Ralstonia pseudosolanacearum to the host during experimental evolution. Using SMRT-seq technology, we analyzed the methylomes of 31 experimentally evolved clones obtained after serial passages on 5 different plant species during 300 generations. Comparison with the methylome of the ancestral clone revealed a list of 50 differential methylated sites (DMSs) at the GTWWAC motif. Gene expression analysis of the 39 genes targeted by these DMSs revealed limited correlation between differential methylation and differential expression of the corresponding genes. Only 1 gene showed a correlation, the RSp0338 gene encoding the EpsR regulator protein. The MSRE-qPCR technology, used as an alternative approach for DNA methylation analysis, also found the 2 DMSs upstream RSp0338. Using site-directed mutagenesis, we demonstrated the contribution of these 2 DMSs in host adaptation. As these DMSs appeared very early in the experimental evolution, we hypothesize that such fast epigenetic changes can allow rapid adaptation to the plant stem environment. In addition, we found that the change in DNA methylation upstream RSp0338 remains stable at least for 100 generations outside the host and thus can contribute to long-term adaptation to the host plant. To our knowledge, this is the first study showing a direct link between bacterial epigenetic variation and adaptation to a new environment.
Collapse
Affiliation(s)
| | - Aurore Coissac
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Legrand
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Yann Pécrix
- PVBMT, Université de La Réunion, CIRAD, Saint-Pierre, Réunion Island, France
| | | | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRAE, US1426, Castanet-Tolosan, France
| | - Xavier Barlet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Anne Lanois
- DGIMI, Université de Montpellier, INRAE, Montpellier, France
| | - Alain Givaudan
- DGIMI, Université de Montpellier, INRAE, Montpellier, France
| | - Julien Brillard
- DGIMI, Université de Montpellier, INRAE, Montpellier, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Alice Guidot
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
10
|
Altinok OA. Learning from disability studies to introduce the role of the individual to naturalistic accounts of disease. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2024; 27:407-417. [PMID: 38958899 PMCID: PMC11310279 DOI: 10.1007/s11019-024-10216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Disability studies have been successfully focusing on individuals' lived experiences, the personalization of goals, and the constitution of the individual in defining disease and restructuring public understandings of disability. Although they had a strong influence in the policy making and medical modeling of disease, their framework has not been translated to traditional naturalistic accounts of disease. I will argue that, using new developments in evolutionary biology (Extended Evolutionary Synthesis [EES] about questions of proper function) and behavioral ecology (Niche conformance and construction about the questions of reference classes in biostatistics accounts), the main elements of the framework of disability studies can be used to represent life histories at the conceptual level of the two main "non-normative" accounts of disease. I chose these accounts since they are related to medicine in a more descriptive way. The success of the practical aspects of disability studies this way will be communicated without causing injustice to the individual since they will represent the individuality of the patient in two main naturalistic accounts of disease: the biostatistical account and the evolutionary functional account. Although most accounts criticizing the concept of disease as value-laden do not supply a positive element, disability studies can supply a good point for descriptive extension of the concept through inclusion of epistemic agency.
Collapse
Affiliation(s)
- Ozan Altan Altinok
- Center for Ethics and Law in the Life Sciences, Leibniz University of Hannover, Otto - Brener Straße 1, Hannover, Germany.
| |
Collapse
|
11
|
Aycan M, Nahar L, Baslam M, Mitsui T. Transgenerational plasticity in salinity tolerance of rice: unraveling non-genetic phenotypic modifications and environmental influences. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5037-5053. [PMID: 38727615 DOI: 10.1093/jxb/erae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 08/29/2024]
Abstract
Transgenerational plasticity in plants enables rapid adaptation to environmental changes, allowing organisms and their offspring to adapt to the environment without altering their underlying DNA. In this study, we investigated the transgenerational plasticity in salinity tolerance of rice plants using a reciprocal transplant experimental strategy. Our aim was to assess whether non-genetic environment-induced phenotypic modifications and transgenerational salinity affect the salinity tolerance of progeny while excluding nuclear genomic factors for two generations. Using salt-tolerant and salt-sensitive rice genotypes, we observed that the parentally salt-stressed salt-sensitive genotype displayed greater growth performance, photosynthetic activity, yield performance, and transcriptional responses than the parentally non-stressed salt-sensitive plants under salt stress conditions. Surprisingly, salt stress-exposed salt-tolerant progeny did not exhibit as much salinity tolerance as salt stress-exposed salt-sensitive progeny under salt stress. Our findings indicate that the phenotypes of offspring plants differed based on the environment experienced by their ancestors, resulting in heritable transgenerational phenotypic modifications in salt-sensitive genotypes via maternal effects. These results elucidated the mechanisms underlying transgenerational plasticity in salinity tolerance, providing valuable insights into how plants respond to changing environmental conditions.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Lutfun Nahar
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- GrowSmart, Seoul 03129, Republic of Korea
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche labellisée CNRST (Centre AgroBio-tech-URL-CNRST-05), Université Cadi Ayyad, Marrakech, 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Université Cadi Ayyad, Marrakech, 40000, Morocco
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
12
|
Yuan W, Pigliucci M, Richards CL. Rapid phenotypic differentiation in the iconic Japanese knotweed s.l. invading novel habitats. Sci Rep 2024; 14:14640. [PMID: 38918411 PMCID: PMC11199593 DOI: 10.1038/s41598-024-64109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Understanding the mechanisms that underlie plant invasions is critical for management and conservation of biodiversity. At the same time, invasive species also provide a unique opportunity to study rapid adaptation to complex environmental conditions. Using four replicate reciprocal transplant experiments across three habitats, we described patterns of phenotypic response and assessed the degree of local adaptation in knotweed populations. We found plants from beach habitats were generally smaller than plants from marsh and roadside habitats when grown in their home habitat. In the marsh habitat, marsh plants were generally larger than beach plants, but not different from roadside plants. There were no differences among plants grown in the roadside habitat. We found mixed evidence for local adaptation: plants from the marsh habitat had greater biomass in their "home" sites, while plants from beaches and roadsides had greater survival in their "home" sites compared to other plants. In sum, we found phenotypic differentiation and some support for the hypothesis of rapid local adaptation of plants from beach, marsh and roadside habitats. Identifying whether these patterns of differentiation result from genetic or heritable non-genetic mechanisms will require further work.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Massimo Pigliucci
- Department of Philosophy, City College of New York, New York, NY, USA
| | - Christina L Richards
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany.
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Gurguis CI, Kimm TS, Pigott TA. Perspective: the evolution of hormones and person perception-a quantitative genetic framework. Front Psychol 2024; 15:1395974. [PMID: 38952835 PMCID: PMC11215136 DOI: 10.3389/fpsyg.2024.1395974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Evolutionary biology provides a unifying theory for testing hypotheses about the relationship between hormones and person perception. Person perception usually receives attention from the perspective of sexual selection. However, because person perception is one trait in a suite regulated by hormones, univariate approaches are insufficient. In this Perspectives article, quantitative genetics is presented as an important but underutilized framework for testing evolutionary hypotheses within this literature. We note tacit assumptions within the current literature on psychiatric genetics, which imperil the interpretation of findings thus far. As regulators of a diverse manifold of traits, hormones mediate tradeoffs among an array of functions. Hormonal pleiotropy also provides the basis of correlational selection, a process whereby selection on one trait in a hormone-mediated suite generates selection on the others. This architecture provides the basis for conflicts between sexual and natural selection within hormone-mediated suites. Due to its role in person perception, psychiatric disorders, and reproductive physiology, the sex hormone estrogen is highlighted as an exemplar here. The implications of this framework for the evolution of person perception are discussed. Empirical quantification of selection on traits within hormone-mediated suites remains an important gap in this literature with great potential to illuminate the fundamental nature of psychiatric disorders.
Collapse
Affiliation(s)
- Christopher I. Gurguis
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School at UTHealth, Houston, TX, United States
| | | | | |
Collapse
|
14
|
Levin M. Self-Improvising Memory: A Perspective on Memories as Agential, Dynamically Reinterpreting Cognitive Glue. ENTROPY (BASEL, SWITZERLAND) 2024; 26:481. [PMID: 38920491 PMCID: PMC11203334 DOI: 10.3390/e26060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Many studies on memory emphasize the material substrate and mechanisms by which data can be stored and reliably read out. Here, I focus on complementary aspects: the need for agents to dynamically reinterpret and modify memories to suit their ever-changing selves and environment. Using examples from developmental biology, evolution, and synthetic bioengineering, in addition to neuroscience, I propose that a perspective on memory as preserving salience, not fidelity, is applicable to many phenomena on scales from cells to societies. Continuous commitment to creative, adaptive confabulation, from the molecular to the behavioral levels, is the answer to the persistence paradox as it applies to individuals and whole lineages. I also speculate that a substrate-independent, processual view of life and mind suggests that memories, as patterns in the excitable medium of cognitive systems, could be seen as active agents in the sense-making process. I explore a view of life as a diverse set of embodied perspectives-nested agents who interpret each other's and their own past messages and actions as best as they can (polycomputation). This synthesis suggests unifying symmetries across scales and disciplines, which is of relevance to research programs in Diverse Intelligence and the engineering of novel embodied minds.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
15
|
Santana ML, Bignardi AB, Pereira RJ, Sterman Ferraz JB, Eler JP. Transgenerational effects of the maternal gestational environment on the post-natal performance of beef cattle: A reaction norm approach. J Anim Breed Genet 2024. [PMID: 38808373 DOI: 10.1111/jbg.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
In tropical beef cattle production systems, animals are commonly raised on pastures, exposing them to potential stressors. The end of gestation typically overlaps with a dry period characterized by limited food availability. Late gestation is pivotal for fetal development, making it an ideal scenario for inter- and transgenerational effects of the maternal gestational environment. Intergenerational effects occur due to exposure during gestation, impacting the development of the embryo and its future germline. Transgenerational effects, however, extend beyond direct exposure to the subsequent generations. The objective of the present study was to verify these effects on the post-natal performance of zebu beef cattle. We extended the use of a reaction norm model to identify genetic variation in the animals' responses to transgenerational effects. The inter- and transgenerational effects were predominantly positive (-0.09% to 19.74%) for growth and reproductive traits, indicating improved animal performance on the phenotypic scale in more favourable maternal gestational environments. Additionally, these effects were more pronounced in the reproductive performance of females. On average, the ratio of direct additive genetic variances of the slope and intercept of the reaction norm ranged from 1.23% to 3.60% for direct and from 10.17% to 11.42% for maternal effects. Despite its relatively modest magnitude, this variation proved sufficient to prompt modifications in parameter estimates. The average percentage variation of direct heritability estimates ranged from 19.3% for scrotal circumference to 33.2% for yearling weight across the environmental descriptors evaluated. Genetic correlations between distant environments for the studied traits were generally high for direct effects and far from unity for maternal effects. Changes in EBV rankings of sires across different gestational environments were also observed. Due to the multifaceted nature of inter- and transgenerational effects of the maternal gestational environment on various traits of beef cattle raised under tropical pasture conditions, they should not be overlooked by producers and breeders. There were differences in the specific response of beef cattle to variations in the quality of the maternal gestational environment, which can be partially explained by transgenerational epigenetic inheritance. Adopting a reaction norm model to capture a portion of the additive variance induced by inter- or transgenerational effects could be an alternative for future research and animal genetic evaluations.
Collapse
Affiliation(s)
- Mário Luiz Santana
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - Annaiza Braga Bignardi
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - Rodrigo Junqueira Pereira
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - José Bento Sterman Ferraz
- Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
| | - Joanir Pereira Eler
- Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Fernandes KA, Lim AI. Maternal-driven immune education in offspring. Immunol Rev 2024; 323:288-302. [PMID: 38445769 DOI: 10.1111/imr.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.
Collapse
Affiliation(s)
| | - Ai Ing Lim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
17
|
Shahmohamadloo RS, Fryxell JM, Rudman SM. Transgenerational epigenetic inheritance increases trait variation but is not adaptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589575. [PMID: 38659883 PMCID: PMC11042258 DOI: 10.1101/2024.04.15.589575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Understanding processes that can produce adaptive phenotypic shifts in response to rapid environmental change is critical to reducing biodiversity loss. The ubiquity of environmentally induced epigenetic marks has led to speculation that epigenetic inheritance could potentially enhance population persistence in response to environmental change. Yet, the magnitude and fitness consequences of epigenetic marks carried beyond maternal inheritance are largely unknown. Here, we tested how transgenerational epigenetic inheritance (TEI) shapes the phenotypic response of Daphnia clones to the environmental stressor Microcystis. We split individuals from each of eight genotypes into exposure and control treatments (F0 generation) and tracked the fitness of their descendants to the F3 generation. We found transgenerational epigenetic exposure to Microcystis led to reduced rates of survival and individual growth and no consistent effect on offspring production. Increase in trait variance in the F3 relative to F0 generations suggests potential for heritable bet hedging driven by TEI, which could impact population dynamics. Our findings are counter to the working hypothesis that TEI is a generally adaptive mechanism likely to prevent extinction for populations inhabiting rapidly changing environments.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
18
|
van Dijk IK, Nilsson T, Quaranta L. Disease exposure in infancy affects women's reproductive outcomes and offspring health in southern Sweden 1905-2000. Soc Sci Med 2024; 347:116767. [PMID: 38518483 DOI: 10.1016/j.socscimed.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Ample evidence demonstrates that early-life adversity negatively affects morbidity and survival in late life. We show that disease exposure in infancy also has a continuous impact on reproduction and health across the female life course and even affects early-life health of the next generation. Using Swedish administrative data, obstetric records, and local infant mortality rates as a measure of disease exposure, we follow women's reproductive careers and offspring health 1905-2000, examining a comprehensive set of outcomes. Women exposed to disease in infancy give birth to a lower proportion of boys, consistent with notions that male fetuses are more vulnerable to adverse conditions and are more often miscarried. Sons of exposed mothers are also more likely to be born preterm and have higher birthweight suggesting in utero out-selection. Exposed women have a greater risk of miscarriage and of male stillbirth, but their overall likelihood of giving birth is not affected.
Collapse
Affiliation(s)
- Ingrid K van Dijk
- Centre for Economic Demography, Department of Economic History, Lund University, Sweden.
| | - Therese Nilsson
- Centre for Economic Demography, Department of Economic History, Lund University, Sweden; Research Institute of Industrial Economics (IFN), Stockholm, Sweden; Department of Economics, Lund University, Sweden.
| | - Luciana Quaranta
- Centre for Economic Demography, Department of Economic History, Lund University, Sweden.
| |
Collapse
|
19
|
Costa DL. Grandchildren's Longevity and Their Grandfathers' POW Trauma in the U.S. Civil War. Demography 2024; 61:337-361. [PMID: 38393987 DOI: 10.1215/00703370-11191183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
I document the transmission of a grandfather's net nutritional deprivation and psychosocial stress in young adulthood across multiple generations using the grandfather's ex-prisoner of war (ex-POW) status in the U.S. Civil War (1861-1865). Using a newly created dataset, I uncover an association between a grandfather's ex-POW status and the longevity after age 45 of his sons and male-line grandsons but not of his daughters, granddaughters, female-line grandsons, children-in-law, or grandchildren-in-law. Male-line grandsons lost roughly a year of life at age 45 (4% of remaining life expectancy) if descended from ex-POWs who suffered severe captivity conditions than if descended from non-POWs. If their grandfathers faced a less harsh captivity, male-line grandsons lost less than a year of life compared with those descended from non-POWs. I find that the grandfather's age at exposure and the grandson's education, as well as the son's and the grandson's poor late gestational conditions (proxied by season of birth), mediate this relationship. I rule out socioeconomic status, marriage and mortality selection, and cultural or psychological transmission from grandfathers to grandsons as explanations. I cannot rule out an epigenetic explanation.
Collapse
Affiliation(s)
- Dora L Costa
- Department of Economics, University of California, Los Angeles, Los Angeles, CA, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| |
Collapse
|
20
|
Langford N, Fargeot L, Blanchet S. Spatial covariation between genetic and epigenetic diversity in wild plant and animal populations: a meta-analysis. J Exp Biol 2024; 227:jeb246009. [PMID: 38449323 DOI: 10.1242/jeb.246009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Epigenetic variation may be crucial in understanding the structure of wild populations, thereby aiding in their management and conservation. However, the relationship between epigenetic and genetic variation remains poorly understood, especially in wild populations. To address this, we conducted a meta-analysis of studies that examined the genetic and epigenetic structures of wild plant and animal populations. We aimed to determine whether epigenetic variation is spatially independent of genetic variation in the wild and to highlight the conditions under which epigenetic variation might be informative. We show a significant positive correlation between genetic and epigenetic pairwise differentiation, indicating that in wild populations, epigenetic diversity is closely linked to genetic differentiation. The correlation was weaker for population pairs that were weakly differentiated genetically, suggesting that in such cases, epigenetic marks might be independent of genetic marks. Additionally, we found that global levels of genetic and epigenetic differentiation were similar across plant and animal populations, except when populations were weakly differentiated genetically. In such cases, epigenetic differentiation was either higher or lower than genetic differentiation. Our results suggest that epigenetic information is particularly relevant in populations that have recently diverged genetically or are connected by gene flow. Future studies should consider the genetic structure of populations when inferring the role of epigenetic diversity in local adaptation in wild populations. Furthermore, there is a need to identify the factors that sustain the links between genetic and epigenetic diversity to improve our understanding of the interplay between these two forms of variation in wild populations.
Collapse
Affiliation(s)
- Nadia Langford
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| | - Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| |
Collapse
|
21
|
Pavelka J, Poláková S, Pavelková V, Galeta P. An epigenetic change in a moth is generated by temperature and transmitted to many subsequent generations mediated by RNA. PLoS One 2024; 19:e0292179. [PMID: 38451888 PMCID: PMC10919628 DOI: 10.1371/journal.pone.0292179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 09/14/2023] [Indexed: 03/09/2024] Open
Abstract
Epigenetic changes in sexually reproducing animals may be transmitted usually only through a few generations. Here we discovered a case where epigenetic change lasts 40 generations. This epigenetic phenomenon occurs in the short antennae (sa) mutation of the flour moth (Ephestia kuehniella). We demonstrate that is probably determined by a small RNA (e.g., piRNA, miRNA, tsRNA) and transmitted in this way to subsequent generations through the male and female gametes. The observed epigenetic change cancels sa mutation and creates a wild phenotype (a moth that appears to have no mutation). It persists for many generations (40 recorded). This epigenetic transgenerational effect (suppression homozygous mutation for short antennae) in the flour moth is induced by changes during ontogenetic development, such as increased temperature on pupae development, food, different salts in food, or injection of RNA from the sperm of already affected individuals into the eggs. The epigenetic effect may occasionally disappear in some individuals and/or progeny of a pair in the generation chain in which the effect transfers. We consider that the survival of RNA over many generations has adaptive consequences. It is mainly a response to environmental change that is transmitted to offspring via RNA. In this study, we test an interesting epigenetic effect with an unexpected length after 40 generations and test what is its cause. Such transfer of RNA to subsequent generations may have a greater evolutionary significance than previously thought. Based on some analogies, we also discuss of the connection with the SIR2 gene.
Collapse
Affiliation(s)
- Jaroslav Pavelka
- University of West Bohemia, Centre of Biology, Pilsen, Czech Republic
| | - Simona Poláková
- Ministry of the Environment of the Czech Republic, Praha, Czech Republic
| | - Věra Pavelková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Patrik Galeta
- Department of Anthropology, University of West Bohemia, Pilsen, Czech Republic
| |
Collapse
|
22
|
Walsh MR, Christian A, Feder M, Korte M, Tran K. Are parental condition transfer effects more widespread than is currently appreciated? J Exp Biol 2024; 227:jeb246094. [PMID: 38449326 DOI: 10.1242/jeb.246094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
It has long been recognized that the environment experienced by parents can influence the traits of offspring (i.e. 'parental effects'). Much research has explored whether mothers respond to predictable shifts in environmental signals by modifying offspring phenotypes to best match future conditions. Many organisms experience conditions that theory predicts should favor the evolution of such 'anticipatory parental effects', but such predictions have received limited empirical support. 'Condition transfer effects' are an alternative to anticipatory effects that occur when the environment experienced by parents during development influences offspring fitness. Condition transfer effects occur when parents that experience high-quality conditions produce offspring that exhibit higher fitness irrespective of the environmental conditions in the offspring generation. Condition transfer effects are not driven by external signals but are instead a byproduct of past environmental quality. They are also likely adaptive but have received far less attention than anticipatory effects. Here, we review the generality of condition transfer effects and show that they are much more widespread than is currently appreciated. Condition transfer effects are observed across taxa and are commonly associated with experimental manipulations of resource conditions experienced by parents. Our Review calls for increased research into condition transfer effects when considering the role of parental effects in ecology and evolution.
Collapse
Affiliation(s)
- Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Anne Christian
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mikaela Feder
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Meghan Korte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kevin Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
23
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
Webster AK, Phillips PC. Heritable epigenetic variation facilitates long-term maintenance of epigenetic and genetic variation. G3 (BETHESDA, MD.) 2024; 14:jkad287. [PMID: 38113034 PMCID: PMC10849368 DOI: 10.1093/g3journal/jkad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/03/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
How genetic and phenotypic variation are maintained has long been one of the fundamental questions in population and quantitative genetics. A variety of factors have been implicated to explain the maintenance of genetic variation in some contexts (e.g. balancing selection), but the potential role of epigenetic regulation to influence population dynamics has been understudied. It is well recognized that epigenetic regulation, including histone methylation, small RNA expression, and DNA methylation, helps to define differences between cell types and facilitate phenotypic plasticity. In recent years, empirical studies have shown the potential for epigenetic regulation to also be heritable for at least a few generations without selection, raising the possibility that differences in epigenetic regulation can act alongside genetic variation to shape evolutionary trajectories. Heritable differences in epigenetic regulation that arise spontaneously are termed "epimutations." Epimutations differ from genetic mutations in 2 key ways-they occur at a higher rate and the loci at which they occur often revert back to their original state within a few generations. Here, we present an extension of the standard population genetic model with selection to incorporate epigenetic variation arising via epimutation. Our model assumes a diploid, sexually reproducing population with random mating. In addition to spontaneous genetic mutation, we included parameters for spontaneous epimutation and back-epimutation, allowing for 4 potential epialleles at a single locus (2 genetic alleles, each with 2 epigenetic states), each of which affect fitness. We then analyzed the conditions under which stable epialleles were maintained. Our results show that highly reversible epialleles can be maintained in long-term equilibrium under neutral conditions in a manner that depends on the epimutation and back-epimutation rates, which we term epimutation-back-epimutation equilibrium. On the other hand, epialleles that compensate for deleterious mutations cause deviations from the expectations of mutation-selection balance by a simple factor that depends on the epimutation and back-epimutation rates. We also numerically analyze several sets of fitness parameters for which large deviations from mutation-selection balance occur. Together, these results demonstrate that transient epigenetic regulation may be an important factor in the maintenance of both epigenetic and genetic variation in populations.
Collapse
Affiliation(s)
- Amy K Webster
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
25
|
Valverde J, Medrano M, Herrera CM, Alonso C. Comparative epigenetic and genetic spatial structure in Mediterranean mountain plants: a multispecies study. Heredity (Edinb) 2024; 132:106-116. [PMID: 38233486 PMCID: PMC10844209 DOI: 10.1038/s41437-024-00668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Changes in epigenetic states can allow individuals to cope with environmental changes. If such changes are heritable, this may lead to epigenetic adaptation. Thus, it is likely that in sessile organisms such as plants, part of the spatial epigenetic variation found across individuals will reflect the environmental heterogeneity within populations. The departure of the spatial epigenetic structure from the baseline genetic variation can help in understanding the value of epigenetic regulation in species with different breadth of optimal environmental requirements. Here, we hypothesise that in plants with narrow environmental requirements, epigenetic variability should be less structured in space given the lower variability in suitable environmental conditions. We performed a multispecies study that considered seven pairs of congeneric plant species, each encompassing a narrow endemic with habitat specialisation and a widespread species. In three populations per species we used AFLP and methylation-sensitive AFLP markers to characterise the spatial genetic and epigenetic structures. Narrow endemics showed a significantly lower epigenetic than genetic differentiation between populations. Within populations, epigenetic variation was less spatially structured than genetic variation, mainly in narrow endemics. In these species, structural equation models revealed that such pattern was associated to a lack of correlation between epigenetic and genetic information. Altogether, these results show a greater decoupling of the spatial epigenetic variation from the baseline spatial genetic pattern in endemic species. These findings highlight the value of studying genetic and epigenetic spatial variation to better understand habitat specialisation in plants.
Collapse
Affiliation(s)
- Javier Valverde
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
| |
Collapse
|
26
|
Peterson CR, Scott CB, Ghaffari R, Dixon G, Matz MV. Mixed Patterns of Intergenerational DNA Methylation Inheritance in Acropora. Mol Biol Evol 2024; 41:msae008. [PMID: 38243377 PMCID: PMC11079325 DOI: 10.1093/molbev/msae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.
Collapse
Affiliation(s)
| | - Carly B Scott
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Rashin Ghaffari
- Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mikhail V Matz
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
27
|
Sammarco I, Díez Rodríguez B, Galanti D, Nunn A, Becker C, Bossdorf O, Münzbergová Z, Latzel V. DNA methylation in the wild: epigenetic transgenerational inheritance can mediate adaptation in clones of wild strawberry (Fragaria vesca). THE NEW PHYTOLOGIST 2024; 241:1621-1635. [PMID: 38058250 DOI: 10.1111/nph.19464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Bárbara Díez Rodríguez
- Natural Resources and Climate Area, CARTIF Technology Centre, Parque Tecnológico de Boecillo, parc. 205, 47151, Boecillo, Valladolid, Spain
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043, Marburg, Germany
- Department of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098, Freiburg i. Br., Germany
| | - Dario Galanti
- Royal Botanic Gardens, Kew, Richmond, UK
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Adam Nunn
- ecSeq Bioinformatics GmbH, Sternwartenstraße 29, 04103, Saxony, Germany
- Department of Computer Science, University of Leipzig, Härtelstraße 16-18, Leipzig, 04107, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr Bohr-Gasse 3, 1030, Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| |
Collapse
|
28
|
Tanghe KB. Thomas S. Kuhn: key to a better understanding of the extended evolutionary synthesis. Theory Biosci 2024; 143:27-44. [PMID: 37978156 DOI: 10.1007/s12064-023-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
In recent years, some scholars have explicitly questioned the desirability or utility of applying the classical and "old-fashioned" theories of scientific change by the likes of Karl Popper and Thomas S. Kuhn to the question of the precise nature and significance of the extended evolutionary synthesis (EES). Supposedly, these twentieth-century philosophers are completely irrelevant for a better understanding of this new theoretical framework for the study of evolution. Here, it will be argued that the EES can be fruitfully interpreted in terms of, as yet, insufficiently considered or even overlooked elements from Kuhn's theory. First, in his original, historical philosophy of science, Kuhn not only distinguished between small and big scientific revolutions, he also pointed out that paradigms can be extended and reformulated. In contrast with what its name suggests, the mainstream EES can be interpreted as a Kuhnian reformulation of modern evolutionary theory. Second, it has, as yet, also been overlooked that the EES can be interpreted in terms of Kuhn's later, tentative evolutionary philosophy of science. With the EES, an old dichotomy in evolutionary biology is maybe being formalized and institutionalized.
Collapse
Affiliation(s)
- Koen B Tanghe
- UGent, Philosophy and Moral Sciences, Blandijnberg 2, Ghent, Belgium.
| |
Collapse
|
29
|
Hellmann JK, Keagy J, Carlson ER, Kempfer S, Bell AM. Predator-induced transgenerational plasticity of parental care behaviour in male three-spined stickleback fish across two generations. Proc Biol Sci 2024; 291:20232582. [PMID: 38196352 PMCID: PMC10777160 DOI: 10.1098/rspb.2023.2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
Parental care is a critical determinant of offspring fitness, and parents adjust their care in response to ecological challenges, including predation risk. The experiences of both mothers and fathers can influence phenotypes of future generations (transgenerational plasticity). If it is adaptive for parents to alter parental care in response to predation risk, then we expect F1 and F2 offspring who receive transgenerational cues of predation risk to shift their parental care behaviour if these ancestral cues reliably predict a similarly risky environment as their F0 parents. Here, we used three-spined sticklebacks (Gasterosteus aculeatus) to understand how paternal exposure to predation risk prior to mating alters reproductive traits and parental care behaviour in unexposed F1 sons and F2 grandsons. Sons of predator-exposed fathers took more attempts to mate than sons of control fathers. F1 sons and F2 grandsons with two (maternal and paternal) predator-exposed grandfathers shifted their paternal care (fanning) behaviour in strikingly similar ways: they fanned less initially, but fanned more near egg hatching. This shift in fanning behaviour matches shifts observed in response to direct exposure to predation risk, suggesting a highly conserved response to pre-fertilization predator exposure that persists from the F0 to the F1 and F2 generations.
Collapse
Affiliation(s)
- Jennifer K. Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Keagy
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Erika R. Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Shayne Kempfer
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Gowri V, Monteiro A. Acquired preferences for a novel food odor do not become stronger or stable after multiple generations of odor feeding in Bicyclus anynana butterfly larvae. Ann N Y Acad Sci 2024; 1531:84-94. [PMID: 38113288 DOI: 10.1111/nyas.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Many herbivorous insects have specific host-plant preferences, and it is unclear how these preferences evolved. Previously, we found that Bicyclus anynana larvae can learn to prefer novel food odors from eating leaves with those odors and transmit those learned preferences to the next generation. It is uncertain whether such acquired odor preferences can increase across generations of repeated odor feeding and be maintained even in the absence of odor. In this study, we fed larvae with novel banana odor-coated leaves (odor-fed larvae) for five consecutive generations, without selection on behavioral choices, and measured how larval innate preferences changed over time. Then, we removed the odor stimulus from a larval subgroup, while the other group continued to be odor-fed. Our results show that larvae learned to prefer the novel odor within a generation of odor feeding and transmitted the learned preference to the next generation, as previously found. Odor-fed larvae preferred odor significantly more compared to control larvae across five generations of repeated odor or control feeding. However, this led neither to increased odor preference, nor its stabilization. This suggests that when butterfly larvae feed on a new host, a preference for that novel food plant may develop and be transmitted to the next generation, but this preference lasts for a single generation and disappears once the odor stimulus is removed.
Collapse
Affiliation(s)
- V Gowri
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Cohen D. Family Constellation therapy: A nascent approach for working with non-local consciousness in a therapeutic container. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:33-38. [PMID: 38052327 DOI: 10.1016/j.pbiomolbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Family Constellations are an emerging therapeutic approach for working with local and non-local consciousness. First developed by German psychoanalyst Bert Hellinger, and now practiced by thousands of licensed and un-licensed facilitators globally, Family Constellations are a transpersonal and systemically oriented therapeutic process. Their aim is to address a focus client's emotional, behavioral, relational, or somatic issues by uncovering and resolving transgenerational entanglements within their family system. The author expands on the proposal of symbiogenesis as a mediator of local and non-local consciousness to query whether applying the Observer Effect to inherited trauma may influence epigenetic marks. An expanded perspective on consciousness, life, death, and quantum fields may provide a more comprehensive framework to address therapeutic interventions for common emotional and behavioral disorders. Innovative features of Family Constellations are its phenomenological orientation, reference to family system entanglements, and potential for symptom relief through cellular mediation of ancestral memory. Family Constellations utilize techniques called representative perception and tuning-in to identify and release ancestral traumas. These are akin to remote viewing and mediumship. While the scientific basis for Family Constellations is speculative, the text references research on the quantum theory of consciousness, mediumship and remote viewing as potential supporting evidence. Four case studies are presented.
Collapse
Affiliation(s)
- Dan Cohen
- Seeing with Your Heart, http:seeingwithyourheart.com 14 Rhode Island Avenue, Providence, RI, 02906, USA.
| |
Collapse
|
32
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
33
|
Rodrigues MGF, Nakanishi ES, Soutello RVG, Diniz FONH. Global methylation in 'Valencia' orange seedlings associated with rootstocks and Huanglongbing. BRAZ J BIOL 2023; 83:e277679. [PMID: 38126644 DOI: 10.1590/1519-6984.277679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Citrus farming is one of the main activities that contributed to the Brazilian trade balance, with citrus seedling being the most important input in the formation of orchards to guarantee high productivity and fruit quality, which fundamentally depends on the chosen genetics. The present study aimed to analyze the existence of epigenetic variability in 'Valencia' orange plants on rootstocks, associated or not with HLB, through the quantification of the global methylation of its genome, in order to support works on genetic improvement and crop production. For this purpose, this work was carried out in greenhouse in a completely randomized experimental design, with 5 treatments and 6 replicates per treatment, each seedling being considered a replicate, namely: T1 = "Valencia" orange grafted onto "Rangpur" lemon, inoculated with HLB; T2 = "Valencia" orange grafted onto "Swingle" citrumelo, inoculated with HLB; T3 = "Valencia" orange grafted onto "Rangpur" lemon, without HLB inoculation ; T4 = "Valencia" orange grafted onto "Swingle" citrumelo, without HLB inoculation ; T5 = "Valencia" orange in free standing. The DNA was extracted from leaves and the ELISA test (Enzyme-Linked Immunosorbent Assay) was carried out, based on the use of receptors sensitive to 5-mC., to measure the relative quantification of global methylation between genomic orange DNAs . Since the control treatment (T5) consists of "Valencia" orange in free standing, it could be inferred that both the normal grafting technique in the seedling formation process and the inoculation of buds infected with HLB are external factors capable of changing the methylation pattern in the evaluated plants, including the DNA demethylation process, causing an adaptive response in association with the expression of genes previously silenced by genome methylation.
Collapse
Affiliation(s)
- M G F Rodrigues
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Departamento de Produção Vegetal, Dracena, SP, Brasil
| | - E S Nakanishi
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Dracena, SP, Brasil
| | - R V G Soutello
- Universidade Estadual Paulista - UNESP, Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Dracena, SP, Brasil
| | - F O N H Diniz
- Universidade Estadual Paulista - UNESP, Faculdade de Engenharia de Ilha Solteira - FEIS, Ilha Solteira, SP, Brasil
| |
Collapse
|
34
|
Borodko DD, Zhenilo SV, Sharko FS. Search for differentially methylated regions in ancient and modern genomes. Vavilovskii Zhurnal Genet Selektsii 2023; 27:820-828. [PMID: 38213708 PMCID: PMC10777292 DOI: 10.18699/vjgb-23-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 01/13/2024] Open
Abstract
Currently, active research is focused on investigating the mechanisms that regulate the development of various pathologies and their evolutionary dynamics. Epigenetic mechanisms, such as DNA methylation, play a significant role in evolutionary processes, as their changes have a faster impact on the phenotype compared to mutagenesis. In this study, we attempted to develop an algorithm for identifying differentially methylated regions associated with metabolic syndrome, which have undergone methylation changes in humans during the transition from a hunter-gatherer to a sedentary lifestyle. The application of existing whole-genome bisulfite sequencing methods is limited for ancient samples due to their low quality and fragmentation, and the approach to obtaining DNA methylation profiles differs significantly between ancient hunter-gatherer samples and modern tissues. In this study, we validated DamMet, an algorithm for reconstructing ancient methylomes. Application of DamMet to Neanderthal and Denisovan genomes showed a moderate level of correlation with previously published methylation profiles and demonstrated an underestimation of methylation levels in the reconstructed profiles by an average of 15-20 %. Additionally, we developed a new Python-based algorithm that allows for the comparison of methylomes in ancient and modern samples, despite the absence of methylation profiles in modern bone tissue within the context of obesity. This analysis involves a two-step data processing approach, where the first step involves the identification and filtration of tissue-specific methylation regions, and the second step focuses on the direct search for differentially methylated regions in specific areas associated with the researcher's target condition. By applying this algorithm to test data, we identified 38 differentially methylated regions associated with obesity, the majority of which were located in promoter regions. The pipeline demonstrated sufficient efficiency in detecting these regions. These results confirm the feasibility of reconstructing DNA methylation profiles in ancient samples and comparing them with modern methylomes. Furthermore, possibilities for further methodological development and the implementation of a new step for studying differentially methylated positions associated with evolutionary processes are discussed.
Collapse
Affiliation(s)
- D D Borodko
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - S V Zhenilo
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - F S Sharko
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
35
|
Fresnedo-Ramírez J, Anderson ES, D'Amico-Willman K, Gradziel TM. A review of plant epigenetics through the lens of almond. THE PLANT GENOME 2023; 16:e20367. [PMID: 37434488 DOI: 10.1002/tpg2.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
While genomes were originally seen as static entities that stably held and organized genetic information, recent advances in sequencing have uncovered the dynamic nature of the genome. New conceptualizations of the genome include complex relationships between the environment and gene expression that must be maintained, regulated, and sometimes even transmitted over generations. The discovery of epigenetic mechanisms has allowed researchers to understand how traits like phenology, plasticity, and fitness can be altered without changing the underlying deoxyribonucleic acid sequence. While many discoveries were first made in animal systems, plants provide a particularly complex set of epigenetic mechanisms due to unique aspects of their biology and interactions with human selective breeding and cultivation. In the plant kingdom, annual plants have received the most attention; however, perennial plants endure and respond to their environment and human management in distinct ways. Perennials include crops such as almond, for which epigenetic effects have long been linked to phenomena and even considered relevant for breeding. Recent discoveries have elucidated epigenetic phenomena that influence traits such as dormancy and self-compatibility, as well as disorders like noninfectious bud failure, which are known to be triggered by the environment and influenced by inherent aspects of the plant. Thus, epigenetics represents fertile ground to further understand almond biology and production and optimize its breeding. Here, we provide our current understanding of epigenetic regulation in plants and use almond as an example of how advances in epigenetics research can be used to understand biological fitness and agricultural performance in crop plants.
Collapse
Affiliation(s)
| | - Elizabeth S Anderson
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | | | - Thomas M Gradziel
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
36
|
Venney CJ, Anastasiadi D, Wellenreuther M, Bernatchez L. The Evolutionary Complexities of DNA Methylation in Animals: From Plasticity to Genetic Evolution. Genome Biol Evol 2023; 15:evad216. [PMID: 38015807 PMCID: PMC10701099 DOI: 10.1093/gbe/evad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
The importance of DNA methylation in plastic responses to environmental change and evolutionary dynamics is increasingly recognized. Here, we provide a Perspective piece on the diverse roles of DNA methylation on broad evolutionary timescales, including (i) short-term transient acclimation, (ii) stable phenotypic evolution, and (iii) genomic evolution. We show that epigenetic responses vary along a continuum, ranging from short-term acclimatory responses in variable environments within a generation to long-term modifications in populations and species. DNA methylation thus unlocks additional potential for organisms to rapidly acclimate to their environment over short timeframes. If these changes affect fitness, they can circumvent the need for adaptive changes at the genome level. However, methylation has a complex reciprocal relationship with genetic variation as it can be genetically controlled, yet it can also induce point mutations and contribute to genomic evolution. When habitats remain constant over many generations, or populations are separated across habitats, initially plastic phenotypes can become hardwired through epigenetically facilitated mutagenesis. It remains unclear under what circumstances plasticity contributes to evolutionary outcomes, and when plastic changes will become permanently encoded into genotype. We highlight how studies investigating the evolution of epigenetic plasticity need to carefully consider how plasticity in methylation state could evolve among different evolutionary scenarios, the possible phenotypic outcomes, its effects on genomic evolution, and the proximate energetic and ultimate fitness costs of methylation. We argue that accumulating evidence suggests that DNA methylation can contribute toward evolution on various timescales, spanning a continuum from acclimatory plasticity to genomic evolution.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| | - Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, Nelson, New Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, Nelson, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
37
|
Rodrigues AMM, Gardner A. Transmission of social status drives cooperation and offspring philopatry. Proc Biol Sci 2023; 290:20231314. [PMID: 38018113 PMCID: PMC10685119 DOI: 10.1098/rspb.2023.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023] Open
Abstract
The evolution of cooperation depends on two crucial overarching factors: relatedness, which describes the extent to which the recipient shares genes in common with the actor; and quality, which describes the recipient's basic capacity to transmit genes into the future. While most research has focused on relatedness, there is a growing interest in understanding how quality modulates the evolution of cooperation. However, the impact of inheritance of quality on the evolution of cooperation remains largely unexplored, especially in spatially structured populations. Here, we develop a mathematical model to understand how inheritance of quality, in the form of social status, influences the evolution of helping and harming within social groups in a viscous-population setting. We find that: (1) status-reversal transmission, whereby parental and offspring status are negatively correlated, strongly inhibits the evolution of cooperation, with low-status individuals investing less in cooperation and high-status individuals being more prone to harm; (2) transmission of high status promotes offspring philopatry, with more cooperation being directed towards the higher-dispersal social class; and (3) fertility inequality and inter-generational status inheritance reduce within-group conflict. Overall, our study highlights the importance of considering different mechanisms of phenotypic inheritance, including social support, and their potential interactions in shaping animal societies.
Collapse
Affiliation(s)
- António M. M. Rodrigues
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
38
|
Moore DS. On the evolution of epigenetics via exaptation: A developmental systems perspective. Ann N Y Acad Sci 2023; 1529:21-32. [PMID: 37750405 DOI: 10.1111/nyas.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Evolution and development are interrelated processes influenced by genomic, epigenetic, and environmental factors. Epigenetic processes serve critical roles in development and operate as intermediaries that connect the genome to the rest of the world. Therefore, it is of interest to consider the evolution of epigenetic processes. The developmental systems perspective offers a distinctive, coherent, integrative way to understand the relationships between evolution, epigenetics, development, and the effects of experienced contexts. By adopting this perspective, this paper draws attention to the role of exaptation in the evolution of epigenetics in the RNA world and addresses the role of epigenetics in the later evolution of developmental processes such as cellular differentiation, learning, and memory. In so doing, the paper considers the appearance and functions of epigenetics in evolutionary history-sketching a pathway by which epigenetic processes might have evolved via exaptation and then contributed to the later development and evolution of phenotypes.
Collapse
Affiliation(s)
- David S Moore
- Psychology Field Group, Pitzer College, Claremont, California, USA
- Division of Behavioral & Organizational Sciences, Claremont Graduate University, Claremont, California, USA
| |
Collapse
|
39
|
Levin M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim Cogn 2023; 26:1865-1891. [PMID: 37204591 PMCID: PMC10770221 DOI: 10.1007/s10071-023-01780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte ("just chemistry and physics"), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and not to its parts. Basal cognition is the quest to understand how Mind scales-how large numbers of competent subunits can work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
40
|
Anastasiadi D, Wellenreuther M. A conserved genomic code underpins animal DNA methylation patterns. Trends Ecol Evol 2023; 38:1016-1018. [PMID: 37620218 DOI: 10.1016/j.tree.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Evidence is mounting that non-genetic inheritance impacts evolution, however, how conserved the underlying processes are remains unexplored. Klughammer et al. investigated DNA methylation across the animal kingdom, one important mechanism of non-genetic inheritance. Using a dataset encompassing 580 species, the authors identified conserved associations between sequence and DNA methylation.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand.
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
41
|
Yin J, Ren W, Fry EL, Sun S, Han H, Guo F. DNA methylation mediates overgrazing-induced clonal transgenerational plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165338. [PMID: 37414175 DOI: 10.1016/j.scitotenv.2023.165338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Overgrazing generally induces dwarfism in grassland plants, and these phenotypic traits could be transmitted to clonal offspring even when overgrazing is excluded. However, the dwarfism-transmitted mechanism remains largely unknown, despite generally thought to be enabled by epigenetic modification. To clarify the potential role of DNA methylation on clonal transgenerational effects, we conducted a greenhouse experiment with Leymus chinensis clonal offspring from different cattle/sheep overgrazing histories via the demethylating agent 5-azacytidine. The results showed that clonal offspring from overgrazed (by cattle or sheep) parents were dwarfed and the auxin content of leaves significantly decreased compared to offspring from no-grazed parents'. The 5-azaC application generally increased the auxin content and promoted the growth of overgrazed offspring while inhibited no-grazed offspring growth. Meanwhile, there were similar trends in the expression level of genes related to auxin-responsive target genes (ARF7, ARF19), and signal transduction gene (AZF2). These results suggest that DNA methylation leads to overgrazing-induced plant transgenerational dwarfism via inhibiting auxin signal pathway.
Collapse
Affiliation(s)
- Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China; Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot 010016, China.
| | - Ellen L Fry
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Siyuan Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Huijie Han
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fenghui Guo
- Industrial Crop Institute, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
42
|
Rieger I, Weintraub G, Lev I, Goldstein K, Bar-Zvi D, Anava S, Gingold H, Shaham S, Rechavi O. Nucleus-independent transgenerational small RNA inheritance in Caenorhabditis elegans. SCIENCE ADVANCES 2023; 9:eadj8618. [PMID: 37878696 PMCID: PMC10599617 DOI: 10.1126/sciadv.adj8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
In Caenorhabditis elegans worms, epigenetic information transmits transgenerationally. Still, it is unknown whether the effects transfer to the next generation inside or outside of the nucleus. Here, we use the tractability of gene-specific double-stranded RNA-induced silencing to demonstrate that RNA interference can be inherited independently of any nuclear factors via mothers that are genetically engineered to transmit only their ooplasm but not the oocytes' nuclei to the next generation. We characterize the mechanisms and, using RNA sequencing, chimeric worms, and sequence polymorphism between different isolates, identify endogenous small RNAs which, similarly to exogenous siRNAs, are inherited in a nucleus-independent manner. From a historical perspective, these results might be regarded as partial vindication of discredited cytoplasmic inheritance theories from the 19th century, such as Darwin's "pangenesis" theory.
Collapse
Affiliation(s)
- Itai Rieger
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Guy Weintraub
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kesem Goldstein
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dana Bar-Zvi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Su Y, Liu L, Deng Q, Lü Z, Wang Z, He Z, Wang T. Epigenetic architecture of Pseudotaxus chienii: Revealing the synergistic effects of climate and soil variables. Ecol Evol 2023; 13:e10511. [PMID: 37701023 PMCID: PMC10493196 DOI: 10.1002/ece3.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Whether conifers can withstand environmental changes especially temperature fluctuations has been controversial. Epigenetic analysis may provide new perspectives for solving the issue. Pseudotaxus chienii is an endangered gymnosperm species endemic to China. In this study, we have examined the genetic and epigenetic variations in its natural populations aiming to disentangle the synergistic effects of climate and soil on its population (epi)genetic differentiation by using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP) techniques. We identified 23 AFLP and 26, 7, and 5 MSAP outliers in P. chienii. Twenty-one of the putative adaptive AFLP loci were found associated with climate and/or soil variables including precipitation, temperature, K, Fe, Zn, and Cu, whereas 21, 7, and 4 MSAP outliers were significantly related to precipitation of wettest month (Bio13), precipitation driest of month (Bio14), percent tree cover (PTC), and soil Fe, Mn, and Cu compositions. Total precipitation and precipitation in the driest seasons were the most influential factors for genetic and epigenetic variation, respectively. In addition, a high full-methylation level and a strong correlation between genetic and epigenetic variation were detected in P. chienii. Climate is found of greater importance than soil in shaping adaptive (epi)genetic differentiation, and the synergistic effects of climate and climate-soil variables were also observed. The identified climate and soil variables should be considered when applying ex situ conservation.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Li Liu
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Qi Deng
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- School of MedicineGuangxi University of Science and TechnologyLiuzhouChina
| | - Zhuyan Lü
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ziqing He
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
44
|
Vogt G. Phenotypic plasticity in the monoclonal marbled crayfish is associated with very low genetic diversity but pronounced epigenetic diversity. Curr Zool 2023; 69:426-441. [PMID: 37614917 PMCID: PMC10443617 DOI: 10.1093/cz/zoac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/19/2022] [Indexed: 08/25/2023] Open
Abstract
Clonal organisms are particularly useful to investigate the contribution of epigenetics to phenotypic plasticity, because confounding effects of genetic variation are negligible. In the last decade, the apomictic parthenogenetic marbled crayfish, Procambarus virginalis, has been developed as a model to investigate the relationships between phenotypic plasticity and genetic and epigenetic diversity in detail. This crayfish originated about 30 years ago by autotriploidy from a single slough crayfish Procambarus fallax. As the result of human releases and active spreading, marbled crayfish has established numerous populations in very diverse habitats in 22 countries from the tropics to cold temperate regions. Studies in the laboratory and field revealed considerable plasticity in coloration, spination, morphometric parameters, growth, food preference, population structure, trophic position, and niche width. Illumina and PacBio whole-genome sequencing of marbled crayfish from representatives of 19 populations in Europe and Madagascar demonstrated extremely low genetic diversity within and among populations, indicating that the observed phenotypic diversity and ability to live in strikingly different environments are not due to adaptation by selection on genetic variation. In contrast, considerable differences were found between populations in the DNA methylation patterns of hundreds of genes, suggesting that the environmentally induced phenotypic plasticity is mediated by epigenetic mechanisms and corresponding changes in gene expression. Specific DNA methylation fingerprints persisted in local populations over successive years indicating the existence of epigenetic ecotypes, but there is presently no information as to whether these epigenetic signatures are transgenerationally inherited or established anew in each generation and whether the recorded phenotypic plasticity is adaptive or nonadaptive.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Mandrioli M. From Environmental Epigenetics to the Inheritance of Acquired Traits: A Historian and Molecular Perspective on an Unnecessary Lamarckian Explanation. Biomolecules 2023; 13:1077. [PMID: 37509113 PMCID: PMC10377537 DOI: 10.3390/biom13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, it has been suggested that epigenetics may enhance the adaptive possibilities of animals and plants to novel environments and/or habitats and that such epigenetic changes may be inherited from parents to offspring, favoring their adaptation. As a consequence, several Authors called for a shift in the Darwinian paradigm, asking for a neo-Lamarckian view of evolution. Regardless of what will be discovered about the mechanisms of rapid adaptation to environmental changes, the description of epigenetic inheritance as a Lamarckian process is incorrect from a historical point of view and useless at a scientific level. At the same time, even if some examples support the presence of adaptation without the involvement of changes in DNA sequences, in the current scenario no revolution is actually occurring, so we are simply working on a stimulating research program that needs to be developed but that is, at present, completely Darwinian.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
46
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
47
|
van Oers K, van den Heuvel K, Sepers B. The Epigenetics of Animal Personality. Neurosci Biobehav Rev 2023; 150:105194. [PMID: 37094740 DOI: 10.1016/j.neubiorev.2023.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Animal personality, consistent individual differences in behaviour, is an important concept for understanding how individuals vary in how they cope with environmental challenges. In order to understand the evolutionary significance of animal personality, it is crucial to understand the underlying regulatory mechanisms. Epigenetic marks such as DNA methylation are hypothesised to play a major role in explaining variation in phenotypic changes in response to environmental alterations. Several characteristics of DNA methylation also align well with the concept of animal personality. In this review paper, we summarise the current literature on the role that molecular epigenetic mechanisms may have in explaining personality variation. We elaborate on the potential for epigenetic mechanisms to explain behavioural variation, behavioural development and temporal consistency in behaviour. We then suggest future routes for this emerging field and point to potential pitfalls that may be encountered. We conclude that a more inclusive approach is needed for studying the epigenetics of animal personality and that epigenetic mechanisms cannot be studied without considering the genetic background.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands.
| | - Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
48
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
49
|
Šrut M, Sabolić I, Erdelez A, Grbin D, Furdek Turk M, Bakarić R, Peharda M, Štambuk A. Marine Pollutant Tributyltin Affects DNA Methylation and Fitness of Banded Murex ( Hexaplex trunculus) Populations. TOXICS 2023; 11:276. [PMID: 36977041 PMCID: PMC10051066 DOI: 10.3390/toxics11030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Banded murex, Hexaplex trunculus, is a marine gastropod whose reproductive fitness can be severely affected by very low concentrations of antifouling compound tributyltin (TBT). TBT has strong xenoandrogen impacts on snails, causing the development of imposex (e.g., the superimposition of male sexual characteristic in females), thereby affecting the fitness of entire populations. TBT is also known as a DNA-demethylating agent and an obesogenic factor. The aim of this study was to unravel the interactions between TBT bioaccumulation, phenotypic responses, and epigenetic and genetic endpoints in native populations of H. trunculus. Seven populations inhabiting environments along the pollution gradient were sampled in the coastal eastern Adriatic. These included sites of intense marine traffic and boat maintenance activity and sites with low anthropogenic impact. Populations inhabiting intermediately and highly polluted sites exhibited higher TBT burdens, higher incidences of imposex, and higher wet masses of snails than populations in lowly polluted sites. Other morphometric traits and cellular biomarker responses did not show clear differentiation among populations in relation to marine traffic/pollution intensity. An analysis of methylation sensitive amplification polymorphism (MSAP) revealed environmentally driven population differentiation and higher epigenetics than genetic within-population diversity. Moreover, decreases in genome-wide DNA methylation coincided with the imposex level and snail mass, suggesting an epigenetic background of the animal phenotypic response.
Collapse
Affiliation(s)
- Maja Šrut
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria;
| | - Iva Sabolić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| | - Anita Erdelez
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia; (A.E.); (M.P.)
| | - Dorotea Grbin
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| | - Martina Furdek Turk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Robert Bakarić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| | - Melita Peharda
- Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia; (A.E.); (M.P.)
| | - Anamaria Štambuk
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (I.S.); (D.G.); (R.B.)
| |
Collapse
|
50
|
Epigenetic Changes Occurring in Plant Inbreeding. Int J Mol Sci 2023; 24:ijms24065407. [PMID: 36982483 PMCID: PMC10048984 DOI: 10.3390/ijms24065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.
Collapse
|