1
|
Cones AG, Westneat DF. Variation in the thermal plasticity of avian embryos is produced by the developmental environment, not genes. Proc Biol Sci 2024; 291:20241892. [PMID: 39378989 PMCID: PMC11461059 DOI: 10.1098/rspb.2024.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Limited evidence suggests that variation in phenotypic plasticity within populations may arise largely from environmental sources, thereby constraining its evolvability. This is of concern for temperature-sensitive metabolism in the face of climate change. We quantified the relative influence of the developmental environment versus genes on the metabolic plasticity of avian embryos to temperature. We partially cross-fostered 602 house sparrow eggs (Passer domesticus), measured the heart rate plasticity of these embryos to egg temperature and partitioned variance in plasticity. We found that the foster (incubation) environment was the sole meaningful source of variance in embryonic plasticity (not genes, pre-laying effects or ambient conditions). In contrast to heart rate plasticity, offspring growth was influenced by the foster environment, genes/pre-laying parental effects and ambient conditions. Although embryonic plasticity to temperature varied in this population, these results suggest that it is unlikely to evolve quickly. Nevertheless, the expression of this plasticity may be able to shift between generations in response to changes in the developmental environment. Whether the multidimensional plasticity of heart rate to both current temperature and the developmental environment is itself an adaptive, evolved trait allowing avian embryos to optimize their metabolic plasticity to their current environment remains to be tested.
Collapse
Affiliation(s)
- Alexandra G. Cones
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2, Planegg-Martinsried, Bavaria82152, Germany
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| | - David F. Westneat
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| |
Collapse
|
2
|
Bulgarella M, Haywood J, Dowle EJ, Morgan-Richards M, Trewick SA. Standard metabolic rate variation among New Zealand Orthoptera. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100092. [PMID: 39224195 PMCID: PMC11367484 DOI: 10.1016/j.cris.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Standard metabolic rates (SMR) of ectotherms reflect the energetic cost of self-maintenance and thus provide important information about life-history strategies of organisms. We examined variation in SMR among fifteen species of New Zealand orthopteran. These species represent a heterogeneous group with a wide geographic distribution, differing morphologies and life histories. Gathering original data on morphological and physiological traits of individual species is a first step towards understanding existing variability. Individual metabolic rates of ectotherms are one of the first traits to respond to climate change. Baseline SMR datasets are valuable for modeling current species distributions and their responses to a changing climate. At higher latitudes, the average environmental temperature decreases. The pattern that cold-adapted ectotherms display higher SMR at colder temperatures and greater thermal sensitivity to compensate for lower temperatures and the shorter growing and reproductive seasons is predicted from the metabolic cold adaptation (MCA) hypothesis. We predict higher SMR for the orthopteran species found at higher latitudes. We further compared the index of thermal sensitivity Q10 per species. We used closed-system respirometry to measure SMR, at two test temperatures (4 °C and 14 °C), for the fifteen species acclimated to the same conditions. As expected, we found significant differences in SMR among species. The rate of oxygen consumption was positively correlated with body mass. Our findings do not support the MCA hypothesis. In fact, we found evidence of co-gradient variation in SMR, whereby insects from higher elevations and latitudes presented lower SMR. We discuss our findings in relation to life histories and ecology of each species. The novel physiological data presented will aid in understanding potential responses of these unusual species to changing climatic conditions in Aotearoa/New Zealand.
Collapse
Affiliation(s)
- Mariana Bulgarella
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Eddy J. Dowle
- Anatomy Department, Otago University, PO Box 56, Dunedin 9054, New Zealand
| | - Mary Morgan-Richards
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Steven A. Trewick
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Powers SD, Grayson KL, Martinez E, Agosta SJ. Ontogenetic variation in metabolic rate-temperature relationships during larval development. J Exp Biol 2024; 227:jeb247912. [PMID: 38940758 DOI: 10.1242/jeb.247912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Predictive models of ectotherm responses to environmental change often rely on thermal performance data from the literature. For insects, the majority of these data focus on two traits, development rate and thermal tolerance limits. Data are also often limited to the adult stage. Consequently, predictions based on these data generally ignore other measures of thermal performance and do not account for the role of ontogenetic variation in thermal physiology across the complex insect life cycle. Theoretical syntheses for predicting metabolic rate also make similar assumptions despite the strong influence of body size as well as temperature on metabolic rate. The aim of this study was to understand the influence of ontogenetic variation on ectotherm physiology and its potential impact on predictive modeling. To do this, we examined metabolic rate-temperature (MR-T) relationships across the larval stage in a laboratory strain of the spongy moth (Lymantria dispar dispar). Routine metabolic rates (RMRs) of larvae were assayed at eight temperatures across the first five instars of the larval stage. After accounting for differences in body mass, larval instars showed significant variation in MR-T. Both the temperature sensitivity and allometry of RMR increased and peaked during the third instar, then declined in the fourth and fifth instar. Generally, these results show that insect thermal physiology does not remain static during larval ontogeny and suggest that ontogenetic variation should be an important consideration when modeling thermal performance.
Collapse
Affiliation(s)
- Sean D Powers
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA 2328, USA
| | | | - Eloy Martinez
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Salvatore J Agosta
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
4
|
Mirón-Gatón JM, Velasco J, Pallarés S, García-Meseguer AJ, Millán A, Bilton DT. Testing metabolic cold adaptation and the climatic variability hypothesis in two latitudinally distant populations of a supratidal water beetle. J Therm Biol 2024; 123:103934. [PMID: 39111060 DOI: 10.1016/j.jtherbio.2024.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024]
Abstract
Temperature significantly impacts ectotherm physiology, with thermal tolerance and metabolic traits typically varying with latitude across species ranges. The drivers of this variation remain unclear, however, despite obvious consequences for population persistence and conservation in the face of ongoing global change. This study explored local adaptation and phenotypic plasticity of metabolic rates and thermal limits in the supratidal rockpool beetle Ochthebius lejolisii. Using populations from localities at different ends of the species range that experience contrasting thermal variability, we simultaneously tested two of the major paradigms of spatial physiological ecology: metabolic cold adaptation (MCA) and the climatic variability hypothesis (CVH). Reciprocal acclimation was conducted under spring temperature regimes of both localities, incorporating local diurnal variation. Metabolic rates were measured by closed respirometry, and thermal tolerance limits estimated through thermography. In line with MCA, the higher-latitude population (colder climate) showed higher metabolic rates and temperature coefficients (Q10s) at lower temperatures than the lower-latitude population. As predicted by the CVH, the lower-latitude population (more variable climate) showed higher upper thermal tolerance but only the higher-latitude population was able to acclimate upper thermal limits. This result suggests trade-offs between physiological thermal limits and thermal plasticity in this species. A limited acclimation capacity could make populations on Mediterranean coasts especially vulnerable in the face of projected increases in extreme temperatures under ongoing climate change.
Collapse
Affiliation(s)
- J M Mirón-Gatón
- Department of Ecology and Hydrology, University of Murcia, Spain.
| | - J Velasco
- Department of Ecology and Hydrology, University of Murcia, Spain
| | - S Pallarés
- Department of Zoology, University of Seville, Spain
| | | | - A Millán
- Department of Ecology and Hydrology, University of Murcia, Spain
| | - D T Bilton
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
| |
Collapse
|
5
|
Cones AG, Schneider ER, Westneat DF. The incubation environment does not explain significant variation in heart rate plasticity among avian embryos. J Exp Biol 2024; 227:jeb247120. [PMID: 38456553 PMCID: PMC10949066 DOI: 10.1242/jeb.247120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The conditions an organism experiences during development can modify how they plastically respond to short-term changes in their environment later in life. This can be adaptive because the optimal average trait value and the optimal plastic change in trait value in response to the environment may differ across different environments. For example, early developmental temperatures can adaptively modify how reptiles, fish and invertebrates metabolically respond to temperature. However, whether individuals within populations respond differently (a prerequisite to adaptive evolution), and whether this occurs in birds, which are only ectothermic for part of their life cycle, is not known. We experimentally tested these possibilities by artificially incubating the embryos of Pekin ducks (Anas platyrhynchos domesticus) at constant or variable temperatures. We measured their consequent heart rate reaction norms to short-term changes in egg temperature and tracked their growth. Contrary to expectations, the early thermal environment did not modify heart rate reaction norms, but regardless, these reaction norms differed among individuals. Embryos with higher average heart rates were smaller upon hatching, but heart rate reaction norms did not predict subsequent growth. Our data also suggests that the thermal environment may affect both the variance in heart rate reaction norms and their covariance with growth. Thus, individual avian embryos can vary in their plasticity to temperature, and in contrast to fully ectothermic taxa, the early thermal environment does not explain this variance. Because among-individual variation is one precondition to adaptive evolution, the factors that do contribute to such variability may be important.
Collapse
Affiliation(s)
- Alexandra G. Cones
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| | - Eve R. Schneider
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| | - David F. Westneat
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Glazier DS, Gjoni V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220489. [PMID: 38186280 PMCID: PMC10772614 DOI: 10.1098/rstb.2022.0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolism energizes all biological processes, and its tempo may importantly influence the ecological success and evolutionary fitness of organisms. Therefore, understanding the broad variation in metabolic rate that exists across the living world is a fundamental challenge in biology. To further the development of a more reliable and holistic picture of the causes of this variation, we review several examples of how various intrinsic (biological) and extrinsic (environmental) factors (including body size, cell size, activity level, temperature, predation and other diverse genetic, cellular, morphological, physiological, behavioural and ecological influences) can interactively affect metabolic rate in synergistic or antagonistic ways. Most of the interactive effects that have been documented involve body size, temperature or both, but future research may reveal additional 'hub factors'. Our review highlights the complex, intimate inter-relationships between physiology and ecology, knowledge of which can shed light on various problems in both disciplines, including variation in physiological adaptations, life histories, ecological niches and various organism-environment interactions in ecosystems. We also discuss theoretical and practical implications of interactive effects on metabolic rate and provide suggestions for future research, including holistic system analyses at various hierarchical levels of organization that focus on interactive proximate (functional) and ultimate (evolutionary) causal networks. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
| | - Vojsava Gjoni
- Department of Biology, University of South Dakota, Vermillion, SD 57609, USA
| |
Collapse
|
7
|
Aleuy OA, Peacock SJ, Molnár PK, Ruckstuhl KE, Kutz SJ. Local thermal adaptation and local temperature regimes drive the performance of a parasitic helminth under climate change: The case of Marshallagia marshalli from wild ungulates. GLOBAL CHANGE BIOLOGY 2023; 29:6217-6233. [PMID: 37615247 DOI: 10.1111/gcb.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Across a species' range, populations are exposed to their local thermal environments, which on an evolutionary scale, may cause adaptative differences among populations. Helminths often have broad geographic ranges and temperature-sensitive life stages but little is known about whether and how local thermal adaptation can influence their response to climate change. We studied the thermal responses of the free-living stages of Marshallagia marshalli, a parasitic nematode of wild ungulates, along a latitudinal gradient. We first determine its distribution in wild sheep species in North America. Then we cultured M. marshalli eggs from different locations at temperatures from 5 to 38°C. We fit performance curves based on the metabolic theory of ecology to determine whether development and mortality showed evidence of local thermal adaptation. We used parameter estimates in life-cycle-based host-parasite models to understand how local thermal responses may influence parasite performance under general and location-specific climate-change projections. We found that M. marshalli has a wide latitudinal and host range, infecting wild sheep species from New Mexico to Yukon. Increases in mortality and development time at higher temperatures were most evident for isolates from northern locations. Accounting for location-specific parasite parameters primarily influenced the magnitude of climate change parasite performance, while accounting for location-specific climates primarily influenced the phenology of parasite performance. Despite differences in development and mortality among M. marshalli populations, when using site-specific climate change projections, there was a similar magnitude of impact on the relative performance of M. marshalli among populations. Climate change is predicted to decrease the expected lifetime reproductive output of M. marshalli in all populations while delaying its seasonal peak by approximately 1 month. Our research suggests that accurate projections of the impacts of climate change on broadly distributed species need to consider local adaptations of organisms together with local temperature profiles and climate projections.
Collapse
Affiliation(s)
- O Alejandro Aleuy
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| | - Stephanie J Peacock
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| | - Péter K Molnár
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Toronto, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Ontario, Toronto, Canada
| | - Kathreen E Ruckstuhl
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
| | - Susan J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| |
Collapse
|
8
|
Willot Q, Ørsted M, Malte H, Overgaard J. Cold comfort: metabolic rate and tolerance to low temperatures predict latitudinal distribution in ants. Proc Biol Sci 2023; 290:20230985. [PMID: 37670587 PMCID: PMC10510448 DOI: 10.1098/rspb.2023.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Metabolic compensation has been proposed as a mean for ectotherms to cope with colder climates. For example, under the metabolic cold adaptation and the metabolic homeostasis hypotheses (MCA and MHH), it has been formulated that cold-adapted ectotherms should display both higher (MCA) and more thermally sensitive (MHH) metabolic rates (MRs) at lower temperatures. However, whether such compensation can truly be associated with distribution, and whether it interplays with cold tolerance to predict species' climatic niches, remains largely unclear despite broad ecological implications thereof. Here, we teased apart the relationship between MRs, cold tolerance and distribution, to test the MCA/MHH among 13 European ant species. We report clear metabolic compensation effects, consistent with the MCA and MHH, where MR parameters strongly correlated with latitude and climatic factors across species' distributions. The combination of both cold tolerance and MRs further upheld the best predictions of species' environmental temperatures and limits of northernmost distribution. To our knowledge, this is the first study showing that the association of metabolic data with cold tolerance supports better predictive models of species' climate and distribution in social insects than models including cold tolerance alone. These results also highlight that adaptation to higher latitudes in ants involved adjustments of both cold tolerance and MRs, to allow this extremely successful group of insects to thrive under colder climates.
Collapse
Affiliation(s)
- Quentin Willot
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Ørsted
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg E, Denmark
| | - Hans Malte
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
9
|
Huisamen E, Bosua HJ, Karsten M, Terblanche JS. Sub-lethal effects of spinetoram application interacts with temperature in complex ways to influence respiratory metabolism, life history and macronutrient composition in false codling moth (Thaumatotibia leucotreta). JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104490. [PMID: 36773842 DOI: 10.1016/j.jinsphys.2023.104490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In many pests, insecticide efficacy is dependent on environmental conditions, including ambient temperature. However, it remains unknown if thermal history alters sub-lethal effects to potentially enhance or reduce pesticide resistance in the false codling moth (FCM), Thaumatotibia leucotreta. Here, using FCM, a pest of economic importance in South Africa infesting several commercial food crops, we report results of sub-lethal exposure to spinetoram, an insecticide that disrupts the nervous system. We investigate whether insecticide efficacy is temperature dependent or perhaps interacts with thermal history by testing the effect of a combination of a sub-lethal dose of spinetoram (4 mg/100 ml) and developmental temperature acclimation (22˚C and 28˚C, i.e., a few degrees above or below optimal development temperatures) on the metabolic rate, life history traits and body composition of FCM in the laboratory. A sub-lethal dose of spinetoram reduced metabolic rate of FCM pupae significantly, led to smaller pupal mass and decreased emergence rates. Additionally, males acclimated at 28 °C had a significantly higher emergence rate compared to males acclimated at 22 °C. Body water, body lipids and body protein reserves of adult FCM tended to be higher in the insecticide treatment compared to the control in the 22 °C acclimation group. In the 28 °C acclimation group, body water, lipids and proteins were lower in the insecticide treatment versus the control. Furthermore, sex influenced both emergence rate and body composition with the direction of change depending on insecticide and temperature treatments. Overall, a sub-lethal dose of spinetoram negatively affects body composition and life history traits but interacts with temperature in complex ways. Therefore, both lethal and sub-lethal effects of spinetoram on FCM, in combination with information on the thermal environment experienced by the pest, should be taken into consideration when pest control decisions are made.
Collapse
Affiliation(s)
- Elizabeth Huisamen
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Henrika J Bosua
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| |
Collapse
|
10
|
City comfort: weaker metabolic response to changes in ambient temperature in urban red squirrels. Sci Rep 2023; 13:1393. [PMID: 36697502 PMCID: PMC9876937 DOI: 10.1038/s41598-023-28624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The ecophysiological responses of species to urbanisation reveal important information regarding the processes of successful urban colonization and biodiversity patterns in urban landscapes. Investigating these responses will also help uncover whether synurban species are indeed urban 'winners'. Yet we still lack basic knowledge about the physiological costs and overall energy budgets of most species living in urban habitats, especially for mammals. Within this context, we compared the energetic demands of Eurasian red squirrels (Sciurus vulgaris) from the core of an urban environment with those from a nearby forest. We measured oxygen consumption as a proxy for resting metabolic rate (RMR) of 20 wild individuals (13 urban, 7 forest), at naturally varying ambient temperature (Ta) in an outdoor-enclosure experiment. We found that the variation in RMR was best explained by the interaction between Ta and habitat, with a significant difference between populations. Urban squirrels showed a shallower response of metabolic rate to decreasing Ta than woodland squirrels. We suggest that this is likely a consequence of urban heat island effects, as well as widespread supplemental food abundance. Our results indicate energy savings for urban squirrels at cooler temperatures, yet with possible increased costs at higher temperatures compared to their woodland conspecifics. Thus, the changed patterns of metabolic regulation in urban individuals might not necessarily represent an overall advantage for urban squirrels, especially in view of increasing temperatures globally.
Collapse
|
11
|
Giacometti D, Bars-Closel M, Kohlsdorf T, de Carvalho JE, Cury de Barros F. Environmental temperature predicts resting metabolic rates in tropidurinae lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1039-1052. [PMID: 36127811 DOI: 10.1002/jez.2656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Interspecific variation in metabolic rates may be associated with climate, habitat structure, and resource availability. Despite a strong link between ecology and physiology, there is a dearth in the understanding of how the costs of body maintenance change during ecological transitions. We focused on an ecologically diverse group of neotropical lizards (Tropidurinae) to investigate whether and how resting metabolic rate (RMR) evolved under divergent micro- and macrohabitat conditions. Using a phylogenetic framework, we tested whether species from hot and dry habitats had lower RMRs in relation to those from cooler and mesic habitats, and investigated whether microhabitat usage had an effect over body mass-adjusted RMRs. Our results suggest that RMRs are not phylogenetically structured in Tropidurinae. We found no correlation between metabolism, precipitation, and microhabitat usage. Species from warmer habitats had lower RMR compared to those from cooler habitats, supporting a mechanism of negative compensation in metabolic responses to temperature. Ectotherms from warmer habitats can limit energetic demand and expenditure through reduced RMR, whereas those from cooler habitats may sustain activity despite thermal constraints via increased RMR. Our work highlights the role of temperature in shaping metabolic responses in lizards, giving additional support to the notion that physiology and ecological contexts are intertwined.
Collapse
Affiliation(s)
- Danilo Giacometti
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
| | - Melissa Bars-Closel
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - José Eduardo de Carvalho
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
| | - Fábio Cury de Barros
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
- Departamento de Biociências, Universidade do Estado de Minas Gerais, Passos, Minas Gerais, Brasil
| |
Collapse
|
12
|
Shokri M, Cozzoli F, Vignes F, Bertoli M, Pizzul E, Basset A. Metabolic rate and climate change across latitudes: evidence of mass-dependent responses in aquatic amphipods. J Exp Biol 2022; 225:280993. [PMID: 36337048 PMCID: PMC9720750 DOI: 10.1242/jeb.244842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Research Institute on Terrestrial Ecosystems (IRET–URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Marco Bertoli
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
13
|
Menéndez J, Ruperto EF, Taraborelli PA, Sassi PL. Phenotypic plasticity in the energy metabolism of a small Andean rodent: Effect of short-term thermal acclimation and developmental conditions. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:303-315. [PMID: 34914858 DOI: 10.1002/jez.2567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The study of phenotypic variation within species in response to different environments is a central issue in evolutionary and ecological physiology. Particularly, ambient temperature is one of the most important factors modulating interactions between animals and their environment. Phyllotis xanthopygus, a small Andean rodent, exhibits intraspecific differences along an altitudinal gradient in traits relevant to energy balance that persist after acclimation to common experimental temperatures. Therefore, we aim to explore geographic variations in energetic traits of P. xanthopygus and to assess the contribution of phenotypic plasticity to population differences. We compared metabolic rate and thermal conductance in response to different acclimation temperatures in animals collected at distinct altitudes (F0 generation) and in their offspring, born and raised under common-garden conditions (F1 generation). We found intraspecific differences in resting metabolic rate (RMR) of animals collected at different altitudes that were no longer evident in the F1 generation. Furthermore, although both generations showed the same pattern of RMR flexibility in response to acclimation temperature, its magnitude was lower for the F1 individuals. This suggests that developmental conditions affect the short-term acclimation capacity of this trait during adulthood. On the other hand, thermal conductance (C) showed irreversible plasticity, as animals raised in the laboratory at stable warm conditions had a relatively higher C than the animals from the field, showing no adjustments to thermal acclimation during adulthood in either group. In sum, our results support the hypothesis that the developmental environment shapes energetic traits, emphasizing the relevance of incorporating ontogeny in physiological studies.
Collapse
Affiliation(s)
- Josefina Menéndez
- Grupo de Investigaciones de la Biodiversidad, Instituto Argentino de Investigaciones de Zonas Áridas, CCT-Mendoza, CONICET, Mendoza, Argentina
| | - Emmanuel F Ruperto
- Grupo de Investigaciones de la Biodiversidad, Instituto Argentino de Investigaciones de Zonas Áridas, CCT-Mendoza, CONICET, Mendoza, Argentina
| | - Paula A Taraborelli
- EEA BARROW, Centro Regional Buenos Aires Sur, INTA and CONICET, Buenos Aires, Argentina
| | - Paola L Sassi
- Grupo de Investigaciones de la Biodiversidad, Instituto Argentino de Investigaciones de Zonas Áridas, CCT-Mendoza, CONICET, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
14
|
Deluen M, Blanchet S, Aubret F, Trochet A, Gangloff EJ, Guillaume O, Le Chevalier H, Calvez O, Carle C, Genty L, Arrondeau G, Cazale L, Kouyoumdjian L, Ribéron A, Bertrand R. Impacts of temperature on O 2 consumption of the Pyrenean brook newt (Calotriton asper) from populations along an elevational gradient. J Therm Biol 2022; 103:103166. [PMID: 35027206 DOI: 10.1016/j.jtherbio.2021.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Global warming impacts biodiversity worldwide, leading to species' adaptation, migration, or extinction. The population's persistence depends on the maintenance of essential activities, which is notably driven by phenotypic adaptation to local environments. Metabolic rate - that increases with temperature in ectotherms - is a key physiological proxy for the energy available to fuel individuals' activities. Cold-adapted ectotherms can exhibit a higher resting metabolism than warm-adapted ones to maintain functionality at higher elevations or latitudes, known as the metabolic cold-adaptation hypothesis. How climate change will affect metabolism in species inhabiting contrasting climates (cold or warm) is still a debate. Therefore, it is of high interest to assess the pace of metabolic responses to global warming among populations adapted to highly different baseline climatic conditions. Here, we conducted a physiological experiment in the endemic Pyrenean brook newt (Calotriton asper). We measured a proxy of standard metabolic rate (SMR) along a temperature gradient in individuals sampled among 6 populations located from 550 to 2189 m a.s.l. We demonstrated that SMR increased with temperature, but significantly diverged depending on populations' origins. The baseline and the slope of the relationship between SMR and temperature were both higher for high-elevation populations than for low-elevation populations. We discussed the stronger metabolic response observed in high-elevation populations suggesting a drop of performance in essential life activities for these individuals under current climate change. With the increase of metabolism as the climate warms, the metabolic-cold adaptation strategy selected in the past could compromise the sustainability of cold-adapted populations if short-term evolutionary responses do not allow to offset this evolutionary legacy.
Collapse
Affiliation(s)
- Marine Deluen
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France.
| | - Simon Blanchet
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, CP41, 57 rue Cuvier, 75005, Paris
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Clémentine Carle
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Léa Genty
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Gaëtan Arrondeau
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Lucas Cazale
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Alexandre Ribéron
- Laboratoire Évolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| |
Collapse
|
15
|
Chick LD, Waters JS, Diamond SE. Pedal to the metal: Cities power evolutionary divergence by accelerating metabolic rate and locomotor performance. Evol Appl 2021; 14:36-52. [PMID: 33519955 PMCID: PMC7819567 DOI: 10.1111/eva.13083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic rates of ectotherms are expected to increase with global trends of climatic warming. But the potential for rapid, compensatory evolution of lower metabolic rate in response to rising temperatures is only starting to be explored. Here, we explored rapid evolution of metabolic rate and locomotor performance in acorn-dwelling ants (Temnothorax curvispinosus) in response to urban heat island effects. We reared ant colonies within a laboratory common garden (25°C) to generate a laboratory-born cohort of workers and tested their acute plastic responses to temperature. Contrary to expectations, urban ants exhibited a higher metabolic rate compared with rural ants when tested at 25°C, suggesting a potentially maladaptive evolutionary response to urbanization. Urban and rural ants had similar metabolic rates when tested at 38°C, as a consequence of a diminished plastic response of the urban ants. Locomotor performance also evolved such that the running speed of urban ants was faster than rural ants under warmer test temperatures (32°C and 42°C) but slower under a cooler test temperature (22°C). The resulting specialist-generalist trade-off and higher thermal optimum for locomotor performance might compensate for evolved increases in metabolic rate by allowing workers to more quickly scout and retrieve resources.
Collapse
Affiliation(s)
- Lacy D. Chick
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
- Hawken SchoolGates MillsOHUSA
| | | | - Sarah E. Diamond
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
16
|
Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet 2020; 21:135. [PMID: 33339509 PMCID: PMC7747409 DOI: 10.1186/s12863-020-00935-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a “common garden” approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. Results Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. Conclusions Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication.
Collapse
|
17
|
Kovac H, Kundegraber B, Käfer H, Petrocelli I, Stabentheiner A. Relation between activity, endothermic performance and respiratory metabolism in two paper wasps: Polistes dominula and Polistes gallicus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110804. [PMID: 32920209 DOI: 10.1016/j.cbpa.2020.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Climate change is expected to produce shifts in species distributions as well as behavioural and physiological adaptations to find suitable conditions or to cope with the altered environment. The paper wasps Polistes dominula and Polistes gallicus are closely related species, native in the European Mediterranean region and North Africa. P. dominula has expanded its range to the relatively cooler climates of Northern and Eastern Europe, but P. gallicus remained in its original distribution area. In order to reveal their metabolic adaptation to the current climate conditions, and the impact on energy demand at future climate conditions, we investigated the respiratory metabolic rate (CO2 production) of P. dominula from Austria and P. gallicus from Italy. In contrast to the metabolic cold adaptation hypothesis their standard metabolic rate was nearly the same and increased in a typical exponential course with increasing ambient temperature. The metabolic rate of active wasps was higher than the standard metabolic rate and increased with the wasps' activity. There was no obvious difference in the active metabolism between the two species, with the exception that some P. gallicus individuals showed some extraordinary high values. A simultaneous measurement of metabolic rate and body temperature revealed that increased CO2 production was accompanied by endothermic activity. The two investigated populations of paper wasps are quite similar in their metabolic response to temperature, although they live in different climate regions. The spread of P. dominula into cooler regions did not have significant influence on their active and standard metabolic rate.
Collapse
Affiliation(s)
- Helmut Kovac
- Institute of Biology, University of Graz, Austria.
| | | | - Helmut Käfer
- Institute of Biology, University of Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
18
|
Pinek L, Mansour I, Lakovic M, Ryo M, Rillig MC. Rate of environmental change across scales in ecology. Biol Rev Camb Philos Soc 2020; 95:1798-1811. [PMID: 32761787 DOI: 10.1111/brv.12639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
The rate of change (RoC) of environmental drivers matters: biotic and abiotic components respond differently when faced with a fast or slow change in their environment. This phenomenon occurs across spatial scales and thus levels of ecological organization. We investigated the RoC of environmental drivers in the ecological literature and examined publication trends across ecological levels, including prevalent types of evidence and drivers. Research interest in environmental driver RoC has increased over time (particularly in the last decade), however, the amount of research and type of studies were not equally distributed across levels of organization and different subfields of ecology use temporal terminology (e.g. 'abrupt' and 'gradual') differently, making it difficult to compare studies. At the level of individual organisms, evidence indicates that responses and underlying mechanisms are different when environmental driver treatments are applied at different rates, thus we propose including a time dimension into reaction norms. There is much less experimental evidence at higher levels of ecological organization (i.e. population, community, ecosystem), although theoretical work at the population level indicates the importance of RoC for evolutionary responses. We identified very few studies at the community and ecosystem levels, although existing evidence indicates that driver RoC is important at these scales and potentially could be particularly important for some processes, such as community stability and cascade effects. We recommend shifting from a categorical (e.g. abrupt versus gradual) to a quantitative and continuous (e.g. °C/h) RoC framework and explicit reporting of RoC parameters, including magnitude, duration and start and end points to ease cross-scale synthesis and alleviate ambiguity. Understanding how driver RoC affects individuals, populations, communities and ecosystems, and furthermore how these effects can feed back between levels is critical to making improved predictions about ecological responses to global change drivers. The application of a unified quantitative RoC framework for ecological studies investigating environmental driver RoC will both allow cross-scale synthesis to be accomplished more easily and has the potential for the generation of novel hypotheses.
Collapse
Affiliation(s)
- Liliana Pinek
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - India Mansour
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Milica Lakovic
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Masahiro Ryo
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
19
|
Rank NE, Mardulyn P, Heidl SJ, Roberts KT, Zavala NA, Smiley JT, Dahlhoff EP. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Evolution 2020; 74:1724-1740. [PMID: 32246837 DOI: 10.1111/evo.13962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Coordination between nuclear and mitochondrial genomes is critical to metabolic processes underlying animals' ability to adapt to local environments, yet consequences of mitonuclear interactions have rarely been investigated in populations where individuals with divergent mitochondrial and nuclear genomes naturally interbreed. Genetic variation in the leaf beetle Chrysomela aeneicollis was assessed along a latitudinal thermal gradient in California's Sierra Nevada. Variation at mitochondrial cytochrome oxidase II (COII) and the nuclear gene phosphoglucose isomerase (PGI) shows concordance and was significantly greater along a 65 km transect than 10 other loci. STRUCTURE analyses using neutral loci identified a southern and northern subpopulation, which interbreed in the central drainage Bishop Creek. COII and PGI were used as indicators of mitochondrial and nuclear genetic variation in field and laboratory experiments conducted on beetles from this admixed population. Fecundity, larval development rate, running speed and male mating frequency were higher for beetles with geographically "matched" than "mismatched" mitonuclear genotypes. Effects of mitonuclear mismatch were largest for individuals with northern nuclear genotypes possessing southern mitochondria and were most pronounced after heat treatment or at high elevation. These findings suggest that mitonuclear incompatibility diminishes performance and reproductive success in nature, effects that could intensify at environmental extremes.
Collapse
Affiliation(s)
- Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Sarah J Heidl
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Kevin T Roberts
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| | - Nicolas A Zavala
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| | - John T Smiley
- White Mountain Research Center, University of California, Bishop, California, 93514
| | - Elizabeth P Dahlhoff
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| |
Collapse
|
20
|
The Respiratory Metabolism of Polistes biglumis, a Paper Wasp from Mountainous Regions. INSECTS 2020; 11:insects11030165. [PMID: 32143398 PMCID: PMC7142496 DOI: 10.3390/insects11030165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/03/2022]
Abstract
European Polistine wasps inhabit mainly temperate and warm climate regions. However, the paper wasp Polistes biglumis represents an exception; it resides in mountainous areas, e.g., in the Alps and in the Apennines. In these habitats, the wasps are exposed to a broad temperature range during their lifetime. We investigated whether they developed adaptations in their metabolism to their special climate conditions by measuring their CO2 production. The standard or resting metabolic rate and the metabolism of active wasps was measured in the temperature range which they are exposed to in their habitat in summer. The standard metabolic rate increased in a typical exponential progression with ambient temperature, like in other wasps. The active metabolism also increased with temperature, but not in a simple exponential course. Some exceptionally high values were presumed to originate from endothermy. The simultaneous measurement of body temperature and metabolic rate revealed a strong correlation between these two parameters. The comparison of the standard metabolic rate of Polistes biglumis with that of Polistes dominula revealed a significantly lower metabolism of the alpine wasps. This energy saving metabolic strategy could be an adaptation to the harsh climate conditions, which restricts foraging flights and energy recruitment.
Collapse
|
21
|
Wang W, Liu GM, Zhang DX. Intraspecific variation in metabolic rate and its correlation with local environment in the Chinese scorpion Mesobuthus martensii. Biol Open 2019; 8:bio.041533. [PMID: 31164338 PMCID: PMC6602336 DOI: 10.1242/bio.041533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scorpions are well known for their reduced resting metabolic rate (RMR) in comparison to typical arthropods. Since RMR is a key physiological trait linked with evolutionary fitness, it is expected that there may exist intraspecific RMR variation given the ecological and geographical heterogeneities across the distributional range of a species. Nevertheless, it is unclear whether RMR variation exists among scorpion populations. Here, we compared the RMR (VCO2) of 21 populations of the Chinese scorpion Mesobuthus martensii (Scorpiones: Buthidae) at 25°C after at least 3 months of laboratory acclimation. The following results were obtained. First, there was significant difference in RMR between sexes when body-weight effects were factored out. Second, significant local variation in RMR was detected by analyses of both variance and covariance, with one population showing significantly reduced RMR and another significantly increased RMR. Third, regression analysis indicated that the local mean temperature and mean annual days of rainfall were the two significant factors associated with the aforementioned inter-population difference in RMR. The implication of such an association was discussed. Summary: Metabolic rate variation is observed between the two sexes and among populations in the Chinese scorpion, with the latter being correlated negatively with local mean temperature and positively with annual days of rainfall.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Gao-Ming Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China .,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.,Beijing Institute of Genomics, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China
| |
Collapse
|
22
|
Shik JZ, Arnan X, Oms CS, Cerdá X, Boulay R. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient. J Anim Ecol 2019; 88:1240-1249. [DOI: 10.1111/1365-2656.13007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology University of Copenhagen Copenhagen Denmark
| | | | | | - Xim Cerdá
- Estación Biológica Doñana (CSIC) Sevilla Spain
| | - Raphaël Boulay
- Institute of Insect Biology Tours University Tours France
| |
Collapse
|
23
|
Jensen K, Michaelsen JV, Larsen MT, Kristensen TN, Holmstrup M, Overgaard J. Increased lipid accumulation but not reduced metabolism explains improved starvation tolerance in cold-acclimated arthropod predators. Naturwissenschaften 2018; 105:65. [DOI: 10.1007/s00114-018-1593-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
|
24
|
Dupoué A, Brischoux F, Lourdais O. Climate and foraging mode explain interspecific variation in snake metabolic rates. Proc Biol Sci 2018; 284:rspb.2017.2108. [PMID: 29142118 DOI: 10.1098/rspb.2017.2108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 11/12/2022] Open
Abstract
The energy cost of self-maintenance is a critical facet of life-history strategies. Clarifying the determinant of interspecific variation in metabolic rate (MR) at rest is important to understand and predict ecological patterns such as species distributions or responses to climatic changes. We examined variation of MR in snakes, a group characterized by a remarkable diversity of activity rates and a wide distribution. We collated previously published MR data (n = 491 observations) measured in 90 snake species at different trial temperatures. We tested for the effects of metabolic state (standard MR (SMR) versus resting MR (RMR)), foraging mode (active versus ambush foragers) and climate (temperature and precipitation) while accounting for non-independence owing to phylogeny, body mass and thermal dependence. We found that RMR was 40% higher than SMR, and that active foragers have higher MR than species that ambush their prey. We found that MR was higher in cold environments, supporting the metabolic cold adaptation hypothesis. We also found an additive and positive effect of precipitation on MR suggesting that lower MR in arid environments may decrease dehydration and energetic costs. Altogether, our findings underline the complex influences of climate and foraging mode on MR and emphasize the relevance of these facets to understand the physiological impact of climate change.
Collapse
Affiliation(s)
- Andréaz Dupoué
- CNRS UPMC, UMR 7618, iEES Paris, Université Pierre et Marie Curie, Tours 44-45, 4 Place Jussieu, 75005 Paris, France
| | | | - Olivier Lourdais
- CEBC-CNRS, UMR 7372, 79360, Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
25
|
Rolandi C, Schilman PE. The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus. J Therm Biol 2018; 74:92-99. [PMID: 29801656 DOI: 10.1016/j.jtherbio.2018.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/21/2018] [Accepted: 03/18/2018] [Indexed: 11/25/2022]
Abstract
Environmental temperature is an abiotic factor with great influence on biological processes of living beings. Jensen's inequality states that for non-lineal processes, such as most biological phenomena, the effects of thermal fluctuations cannot be predicted from mean constant temperatures. We studied the effect of daily temperature fluctuation (DTF) on Rhodnius prolixus, a model organism in insect physiology, and an important vector of Chagas disease. We measured development time from egg to adult, fecundity, fertility, body mass reduction rate (indirect measurement of nutrient consumption rates) and survival after a single blood meal. Insects were reared at constant temperature (24 °C), or with a DTF (17-32 °C; mean = 24 °C). Taking into account Jensen's inequality as well as the species tropical distribution, we predict that living in a variable thermal environment will have higher costs than inhabiting a stable one. Development time and fertility were not affected by DTF. However, fecundity was lower in females reared at DTF than at constant temperature, and males had higher body mass reduction rate and lower survival in the DTF regime, suggesting higher costs associated to fluctuating thermal environments. At a population and epidemiological level, higher energetic costs would imply an increase in nutrient consumption rate, biting frequency, and, consequently increasing disease transmission from infected insects. On the contrary, lower fecundity could be associated with a decrease in population growth. This knowledge will not only provide basic information to the field of insect ecophysiology, but also could be a useful background to develop population and disease transmission models.
Collapse
Affiliation(s)
- Carmen Rolandi
- Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Argentina
| | - Pablo E Schilman
- Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Argentina.
| |
Collapse
|
26
|
Gudowska A, Schramm BW, Czarnoleski M, Kozłowski J, Bauchinger U. Physical mechanism or evolutionary trade-off? Factors dictating the relationship between metabolic rate and ambient temperature in carabid beetles. J Therm Biol 2017; 68:89-95. [DOI: 10.1016/j.jtherbio.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/05/2016] [Accepted: 11/11/2016] [Indexed: 12/01/2022]
|
27
|
Rooke AC, Burness G, Fox MG. Thermal physiology of native cool-climate, and non-native warm-climate Pumpkinseed sunfish raised in a common environment. J Therm Biol 2017; 64:48-57. [DOI: 10.1016/j.jtherbio.2016.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 11/25/2022]
|
28
|
Bodlah MA, Zhu AX, Liu XD. Host choice, settling and folding leaf behaviors of the larval rice leaf folder under heat stress. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:809-817. [PMID: 27443747 DOI: 10.1017/s0007485316000584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extreme high-temperature events are the key factor to determine population dynamics of the rice leaf folder, Cnaphalocrocis medinalis (Guenée), in summer. Although we know that adult of this insect can migrate to avoid heat stress, the behavioral response of larva to high temperature is still unclear. Therefore, impacts of high temperature on behavioral traits of C. medinalis including host choice, settling and folding leaf were observed. The results revealed that these behavioral traits were clearly influenced by high temperature. The larvae preferred maize leaves rather than rice and wheat at normal temperature of 27°C, but larvae experienced a higher temperature of 37 or 40°C for 4 h preferred rice leaves rather than maize and wheat. Capacity of young larvae to find host leaves or settle on the upper surface of leaves significantly reduced when they were treated by high temperature. High temperature of 40°C reduced the leaf-folding capacity of the third instar larvae, but no effects were observed on the fourth and fifth instar larvae. Short-term heat acclimation could not improve the capacity of the third instar larvae to make leaf fold under 40°C.
Collapse
Affiliation(s)
- M A Bodlah
- Key Laboratory of Integrated Management of Crop Diseases and Pests,Ministry of Education,Department of Entomology,Nanjing Agricultural University,Nanjing 210095,China
| | - A-X Zhu
- Key Laboratory of Integrated Management of Crop Diseases and Pests,Ministry of Education,Department of Entomology,Nanjing Agricultural University,Nanjing 210095,China
| | - X-D Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests,Ministry of Education,Department of Entomology,Nanjing Agricultural University,Nanjing 210095,China
| |
Collapse
|
29
|
Boratyński JS, Jefimow M, Wojciechowski MS. Individual Differences in the Phenotypic Flexibility of Basal Metabolic Rate in Siberian Hamsters Are Consistent on Short- and Long-Term Timescales. Physiol Biochem Zool 2016; 90:139-152. [PMID: 28277958 DOI: 10.1086/689870] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Basal metabolic rate (BMR) correlates with the cost of life in endothermic animals. It usually differs consistently among individuals in a population, but it may be adjusted in response to predictable or unpredictable changes in the environment. The phenotypic flexibility of BMR is considered an adaptation to living in a stochastic environment; however, whether it is also repeatable it is still unexplored. Assuming that variations in phenotypic flexibility are evolutionarily important, we hypothesized that they are consistently different among individuals. We predicted that not only BMR but also its flexibility in response to changes in ambient temperature (Ta) are repeatable on short- and long-term timescales. To examine this, we acclimated Siberian hamsters (Phodopus sungorus) for 100 d to winterlike and then to summerlike conditions, and after each acclimation we exposed them interchangeably to 10° and 28°C for 14 d. The difference in BMR measured after each exposure defined an individual's phenotypic flexibility (ΔBMR). BMR was repeatable within and among seasons. It was also flexible in both seasons, but in winter this flexibility was lower in individuals responding to seasonal changes than in nonresponding ones. When we accounted for individual responsiveness, the repeatability of ΔBMR was significant in winter (τ = 0.48, P = 0.01) and in summer (τ = 0.55, P = 0.005). Finally, the flexibility of BMR in response to changes in Ta was also repeatable on a long-term timescale, that is, among seasons (τ = 0.31, P = 0.008). Our results indicate the evolutionary importance of the phenotypic flexibility of energy metabolism and suggest that it may be subject to selection.
Collapse
|
30
|
Kovac H, Käfer H, Petrocelli I, Stabentheiner A. Comparison of thermal traits of Polistes dominula and Polistes gallicus, two European paper wasps with strongly differing distribution ranges. J Comp Physiol B 2016; 187:277-290. [PMID: 27744515 PMCID: PMC5253161 DOI: 10.1007/s00360-016-1041-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022]
Abstract
The two paper wasps, Polistes dominula and Polistes gallicus, are related species with strongly differing distribution ranges. We investigated thermal tolerance traits (critical thermal limits and metabolic response to temperature) to gain knowledge about physiological adaptations to their local climate conditions and to get evidence for the reasons of P. dominula’s successful dispersion. Body and ambient temperature measurements at the nests revealed behavioural adaptations to microclimate. The species differed clearly in critical thermal minimum (P. dominula −1.4 °C, P. gallicus −0.4 °C), but not significantly in critical thermal maximum of activity (P. dominula 47.1 °C, P. gallicus 47.6 °C). The metabolic response did not reveal clear adaptations to climate conditions. At low and high temperatures, the metabolic rate of P. dominula was higher, and at intermediate temperatures, we determined higher values in P. gallicus. However, the species exhibited remarkably differing thermoregulatory behaviour at the nest. On average, P. gallicus tolerated a thoracic temperature up to ~41 °C, whereas P. dominula already tried at ~37 °C to keep the thorax below ambient temperature. We suggest this to be an adaptation to the higher mean ambient temperature we measured at the nest during a breeding season. Although we determined for P. dominula a 0.5 °C larger thermal tolerance range, we do not presume this parameter to be solely responsible for the successful distribution of P. dominula. Additional factors, such as the thermal tolerance of the queens could limit the overwintering success of P. gallicus in a harsher climate.
Collapse
Affiliation(s)
- Helmut Kovac
- Institut für Zoologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Helmut Käfer
- Institut für Zoologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Anton Stabentheiner
- Institut für Zoologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
31
|
Williams CM, Szejner-Sigal A, Morgan TJ, Edison AS, Allison DB, Hahn DA. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates. Integr Comp Biol 2016; 56:62-72. [PMID: 27103615 PMCID: PMC4930064 DOI: 10.1093/icb/icw009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving "Beyond the Mean".
Collapse
Affiliation(s)
- Caroline M Williams
- *Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building No. 3140, Berkeley, CA 94720-3140, USA
| | - Andre Szejner-Sigal
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32601, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Arthur S Edison
- Departments of Genetics and Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
32
|
McCue MD, Boardman L, Clusella-Trullas S, Kleynhans E, Terblanche JS. The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector. ACTA ACUST UNITED AC 2016; 219:1893-902. [PMID: 27059066 DOI: 10.1242/jeb.138669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/27/2016] [Indexed: 11/20/2022]
Abstract
The energetics of processing a meal is crucial for understanding energy budgets of animals in the wild. Given that digestion and its associated costs may be dependent on environmental conditions, it is necessary to obtain a better understanding of these costs under diverse conditions and identify resulting behavioural or physiological trade-offs. This study examines the speed and metabolic costs - in cumulative, absolute and relative energetic terms - of processing a bloodmeal for a major zoonotic disease vector, the tsetse fly Glossina brevipalpis, across a range of ecologically relevant temperatures (25, 30 and 35°C). Respirometry showed that flies used less energy digesting meals faster at higher temperatures but that their starvation tolerance was reduced, supporting the prediction that warmer temperatures are optimal for bloodmeal digestion while cooler temperatures should be preferred for unfed or post-absorptive flies. (13)C-Breath testing revealed that the flies oxidized dietary glucose and amino acids within the first couple of hours of feeding and overall oxidized more dietary nutrients at the cooler temperatures, supporting the premise that warmer digestion temperatures are preferred because they maximize speed and minimize costs. An independent test of these predictions using a thermal gradient confirmed that recently fed flies selected warmer temperatures and then selected cooler temperatures as they became post-absorptive, presumably to maximize starvation resistance. Collectively these results suggest there are at least two thermal optima in a given population at any time and flies switch dynamically between optima throughout feeding cycles.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Leigh Boardman
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elsje Kleynhans
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
33
|
Chown SL, Haupt TM, Sinclair BJ. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:10-16. [PMID: 26592773 DOI: 10.1016/j.jinsphys.2015.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate - temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0-10 °C, 5-15 °C, and 10-20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3-14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5-15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia.
| | - Tanya M Haupt
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
34
|
Auer SK, Bassar RD, Salin K, Metcalfe NB. Repeatability of metabolic rate is lower for animals living under field versus laboratory conditions. J Exp Biol 2016; 219:631-4. [DOI: 10.1242/jeb.133678] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Metabolic rate has been linked to multiple components of fitness and is both heritable and repeatable to a certain extent. However, its repeatability can differ among studies, even after controlling for the time interval between measurements. Some of this variation in repeatability may be due to the relative stability of the environmental conditions in which the animals are living between measurements. We compared published repeatability estimates for basal, resting, and maximum metabolic rate from studies of endotherms living in the laboratory versus those living in the wild during the interval between measurements. We found that repeatability declines over time, as demonstrated previously, but show for the first time that estimates from free-living animals are also considerably lower than those from animals living under more stable laboratory conditions.
Collapse
Affiliation(s)
- Sonya K. Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ United Kingdom
| | - Ronald D. Bassar
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ United Kingdom
| | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ United Kingdom
| |
Collapse
|
35
|
Staikou A, Tachtatzis G, Feidantsis K, Michaelidis B. Field studies on the annual activity and the metabolic responses of a land snail population living in high altitude. Comp Biochem Physiol A Mol Integr Physiol 2015; 191:1-8. [PMID: 26408810 DOI: 10.1016/j.cbpa.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
In the context of the metabolic cold adaptation hypothesis (MCA), we investigated a) the life and activity cycle characteristics and b) the metabolic responses of the endemic land snail species Cattania trizona olympica living at 1100m altitude in Olympus mountain (Greece). Field observations on the annual activity cycle of C. trizona olympica revealed that snails' activity was restricted mainly between the end of May and September, when the higher temperatures were recorded, while first matings were recorded in July and the last ones in mid September indicating a restricted favorable time period for reproduction. The activities of enzymes of intermediate metabolism showed a periodic seasonal pattern of change which seems to be closely related to the pattern of annual changes of air temperature and most of them exhibited higher activities during the coldest and warmest periods of the year. Moreover the data indicate a distinct differentiation of fuel oxidation during arousal and reproductive periods with lipid oxidation, apart from carbohydrates, contributing significantly to ATP turnover during reproductive activity. The higher enzymatic activities, determined in the tissues of C. trizona olympica than the corresponding ones determined in the tissues of the land snail species living at low altitudes, might indicate higher sensitivity of the intermediate metabolism and ATP turnover in C. trizona olympica to changes in environmental factors. Although the latter seems to be in line with the MCA hypothesis, it needs further investigation on metabolic rates to support it.
Collapse
Affiliation(s)
- Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Tachtatzis
- Laboratory of Zoology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
36
|
Slotsbo S, Sørensen JG, Holmstrup M, Kostal V, Kellermann V, Overgaard J. Tropical to subpolar gradient in phospholipid composition suggests adaptive tuning of biological membrane function in drosophilids. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Stine Slotsbo
- Department of Bioscience Aarhus University Aarhus Denmark
- Department of Bioscience Aarhus University Silkeborg Denmark
| | | | | | - Vladimir Kostal
- Institute of Entomology Biology Centre of the Academy of Science of the Czech Republic České Budějovice Czech Republic
| | | | | |
Collapse
|
37
|
Bulgarella M, Trewick SA, Godfrey AJR, Sinclair BJ, Morgan-Richards M. Elevational variation in adult body size and growth rate but not in metabolic rate in the tree weta Hemideina crassidens. JOURNAL OF INSECT PHYSIOLOGY 2015; 75:30-38. [PMID: 25753546 DOI: 10.1016/j.jinsphys.2015.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
Populations of the same species inhabiting distinct localities experience different ecological and climatic pressures that might result in differentiation in traits, particularly those related to temperature. We compared metabolic rate (and its thermal sensitivity), growth rate, and body size among nine high- and low-elevation populations of the Wellington tree weta, Hemideina crassidens, distributed from 9 to 1171 m a.s.l across New Zealand. Our results did not indicate elevational compensation in metabolic rates (metabolic cold adaptation). Cold acclimation decreased metabolic rate compared to warm-acclimated individuals from both high- and low-elevation populations. However, we did find countergradient variation in growth rates, with individuals from high-elevation populations growing faster and to a larger final size than individuals from low-elevation populations. Females grew faster to a larger size than males, although as adults their metabolic rates did not differ significantly. The combined physiological and morphological data suggest that high-elevation individuals grow quickly and achieve larger size while maintaining metabolic rates at levels not significantly different from low-elevation individuals. Thus, morphological differentiation among tree weta populations, in concert with genetic variation, might provide the material required for adaptation to changing conditions.
Collapse
Affiliation(s)
- Mariana Bulgarella
- Ecology Group, Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - Steven A Trewick
- Ecology Group, Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - A Jonathan R Godfrey
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - Mary Morgan-Richards
- Ecology Group, Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| |
Collapse
|
38
|
Williams CM, Chick WD, Sinclair BJ. A cross‐seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal‐generalist moth. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline M. Williams
- Department of Integrative Biology University of California 3040 Valley Life Sciences Building #3140 Berkeley CA 94720‐3140 USA
| | - Wesley D. Chick
- Department of Biology, Biological and Geological Sciences Building University of Western Ontario 1151 Richmond St London ON N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology, Biological and Geological Sciences Building University of Western Ontario 1151 Richmond St London ON N6A 5B7 Canada
| |
Collapse
|
39
|
Esterhuizen N, Clusella-Trullas S, van Daalen CE, Schoombie RE, Boardman L, Terblanche JS. Effects of within-generation thermal history on the flight performance of Ceratitis capitata: colder is better. ACTA ACUST UNITED AC 2014; 217:3545-56. [PMID: 25104754 DOI: 10.1242/jeb.106526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The influence of thermal history on temperature-dependent flight performance was investigated in an invasive agricultural pest insect, Ceratitis capitata (Diptera: Tephritidae). Flies were exposed to one of four developmental acclimation temperatures (Tacc: 15, 20, 25, 30°C) during their pupal stage and tested at these temperatures (Ttest) as adults using a full-factorial study design. Major factors influencing flight performance included sex, body mass, Ttest and the interaction between Ttest and Tacc. Successful flight performance increased with increasing Ttest across all acclimation groups (from 10% at 15°C to 77% at 30°C). Although Tacc did not affect flight performance independently, it did have a significant interaction effect with Ttest. Multiple comparisons showed that flies which had been acclimated to 15°C and 20°C performed better than those acclimated to 25°C and 30°C when tested at cold temperatures, but warm-acclimated flies did not outperform cold-acclimated flies at warmer temperatures. This provides partial support for the 'colder is better' hypothesis. To explain these results, several flight-related traits were examined to determine whether Tacc influenced flight performance as a consequence of changes in body or wing morphology, whole-animal metabolic rate or cytochrome c oxidase enzyme activity. Although significant effects of Tacc could be detected in several of the traits examined, with an emphasis on sex-related differences, increased flight performance could not be explained solely on the basis of changes in any of these traits. Overall, these results are important for understanding dispersal physiology despite the fact that the mechanisms of acclimation-related changes in flight performance remain unresolved.
Collapse
Affiliation(s)
- Nanike Esterhuizen
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Corne E van Daalen
- Department of Electrical and Electronic Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Ruben E Schoombie
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Leigh Boardman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| |
Collapse
|
40
|
Minards NA, Trewick SA, Godfrey AJR, Morgan-Richards M. Convergent local adaptation in size and growth rate but not metabolic rate in a pair of parapatric Orthoptera species. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Niki A. Minards
- Phoenix lab, Ecology Group; IAE; Massey University; Palmerston North New Zealand
| | - Steven A. Trewick
- Phoenix lab, Ecology Group; IAE; Massey University; Palmerston North New Zealand
| | | | - Mary Morgan-Richards
- Phoenix lab, Ecology Group; IAE; Massey University; Palmerston North New Zealand
| |
Collapse
|
41
|
Glazier DS. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol Rev Camb Philos Soc 2014; 90:377-407. [DOI: 10.1111/brv.12115] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
|
42
|
Careau V, Gifford ME, Biro PA. Individual (co)variation in thermal reaction norms of standard and maximal metabolic rates in wild-caught slimy salamanders. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vincent Careau
- Centre for Integrative Ecology; Deakin University; Waurn Ponds Victoria Australia
| | - Matthew E. Gifford
- Department of Biology; University of Arkansas at Little Rock; Little Rock Arkansas USA
| | - Peter A. Biro
- Centre for Integrative Ecology; Deakin University; Waurn Ponds Victoria Australia
| |
Collapse
|
43
|
Sternberg ED, Thomas MB. Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol 2014; 30:115-22. [DOI: 10.1016/j.pt.2013.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 12/29/2022]
|
44
|
Gray EM. Thermal acclimation in a complex life cycle: the effects of larval and adult thermal conditions on metabolic rate and heat resistance in Culex pipiens (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1001-1007. [PMID: 23932965 DOI: 10.1016/j.jinsphys.2013.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
It has now been well established that insects can respond to variation in their environment via acclimation, yet the extent of the response varies among populations and environmental characteristics. One under-investigated theme which may contribute to this variation concerns acclimation effects across the life cycle. The present study explores how acclimation in the larval stage of Culex pipiens affects thermal relations in the adult stage. Mosquitoes were reared in a full factorial design at 18 or 26 °C as larvae and adults, then critical thermal maxima (CTmax) and metabolic rate-temperature relationships (MR-T) were determined for all 4 treatments. CTmax was positively affected by both larval and adult acclimation treatments. MR-T slope was significantly affected only by adult treatment: warm acclimated adults had on average shallower slopes and higher y-intercepts than cool acclimated ones. These results demonstrate that larval acclimation effects can alter adult phenotypes in a species whose life cycle includes two drastically different environments, an aquatic and a terrestrial stage. Studying insects with complex life cycles, especially those with aquatic or subterranean larval stages, can provide valuable information on the effects of thermal variability and predictability on phenotypic plasticity.
Collapse
Affiliation(s)
- Emilie M Gray
- Colorado College, 14 E Cache la Poudre Street, Colorado Springs, CO 80903, United States.
| |
Collapse
|
45
|
Vorhees AS, Gray EM, Bradley TJ. Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Physiol Biochem Zool 2012; 86:73-81. [PMID: 23303322 DOI: 10.1086/668851] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The abundance and success of widely distributed species across variable environments make them suitable models for exploring which traits will be important for resilience to climate change. Using a widespread mosquito species, Culex tarsalis, we have investigated population-level variation in the critical thermal maximum (CT(max)) and the metabolic response to temperature (MR-T). Adult female C. tarsalis were sampled from three sites representing thermally distinct habitats in California, and flow-through respirometry was used to determine CT(max) and MR-T relationships. CT(max) differed significantly among the three populations and correlated positively with maximum temperatures at each site but not with mean temperatures. Culex tarsalis from our cool-temperature, high-altitude site had significantly higher metabolic rates at each test temperature compared with the two populations from warmer sites, consistent with previous examples of thermal compensation in ectothermic animals inhabiting cold climates. The MR-T slope was steepest in mosquitoes inhabiting the site with the lowest temperature variability, while shallower slopes were exhibited by mosquitoes from the two sites with higher thermal variability. Our results show the extent to which local populations may differentiate within their respective environments and suggest that plasticity in thermal tolerance traits may play a role in mediating resilience to climate change. Furthermore, our study highlights the importance of thermal variability and extremes rather than average temperatures for the evolution of thermal traits.
Collapse
Affiliation(s)
- Ashley S Vorhees
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
46
|
Haun T, Salinger M, Pachzelt A, Pfenninger M. On the Processes Shaping Small-Scale Population Structure inRadix balthica(Linnaeus 1758). MALACOLOGIA 2012. [DOI: 10.4002/040.055.0204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Sinclair BJ, Williams CM, Terblanche JS. Variation in Thermal Performance among Insect Populations. Physiol Biochem Zool 2012; 85:594-606. [DOI: 10.1086/665388] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Metabolic and water loss rates of two cryptic species in the African velvet worm genus Opisthopatus (Onychophora). J Comp Physiol B 2012; 183:323-32. [PMID: 23080220 DOI: 10.1007/s00360-012-0715-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/04/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Velvet worms (Onychophora) are characterised by a dearth of mechanisms to retain water, yet recently identified cryptic species are located in areas with seemingly different climates. Using flow-through respirometry, this study determined the metabolic, water loss and cuticular water loss rates of two cryptic species of Opisthopatus cinctipes s.l. from locations that differ in their current climate. When controlling for trial temperature and body mass, velvet worms from the drier and warmer site had significantly lower water loss rates than the wetter and cooler site. Mass-corrected metabolic rate and cuticular water loss did not differ significantly between the two sites. The scaling exponent for the relationship between log metabolic rate and log body mass for O. cinctipes s.l. declined with an increase in temperature from 5 to 15 °C. Females in the two cryptic Opisthopatus species had higher metabolic, water loss and cuticular water loss rates than males, which may represent the increased energetic demands of embryonic growth and development in these viviparous taxa.
Collapse
|
49
|
Ehnes RB, Rall BC, Brose U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol Lett 2011; 14:993-1000. [DOI: 10.1111/j.1461-0248.2011.01660.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Basson CH, Terblanche JS. Metabolic responses of Glossina pallidipes (Diptera: Glossinidae) puparia exposed to oxygen and temperature variation: implications for population dynamics and subterranean life. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1789-1797. [PMID: 20673831 DOI: 10.1016/j.jinsphys.2010.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 05/29/2023]
Abstract
Understanding the factors affecting insect gas exchange in subterranean environments is critical to understanding energy budgets and predicting mortality under field conditions. Here, we examine the metabolic rate (MR) responses of tsetse puparia, which remain underground for ca. 1 month in this life-stage, to varying oxygen and temperature. First, the effects of temperature and oxygen on puparial MR were investigated by ramping temperature from 15 to 35°C under 10, 21 or 40% O(2). Overall, temperature was the dominant effect on puparial MR although O(2) had small but significant impacts. Second, critical O(2) concentration (P(CRIT)) for MR of puparia was examined across a range of oxygen concentrations (0-40%). P(CRIT) was 6% O(2) which is similar to P(CRIT) in other basal arthropods but relatively high for inactive or subterranean insects. Third, we asked if puparia exposed to anoxia might experience oxygen debt, potentially indicative of anaerobic metabolism or cellular repair. Metabolic responses to anoxia were limited or insignificant, but MR was marginally elevated (∼ 15%) in anoxia-exposed (4h) puparia by 12h post-anoxia. Finally, we examined the ability of puparia to withstand water submersion, thus simulating flooding conditions frequently experienced in tropical soil habitats. Puparia were unable to survive submersion for >24h suggesting limited flooding tolerance. These novel results suggest that soil conditions experienced by puparia should not be limiting for MR, except possibly under high temperature-low O(2) conditions. Due to a large safety margin between P(CRIT) and soil oxygen levels and limited effects of oxygen on metabolism during temperature ramping experiments, we suggest that Glossina pallidipes puparia are not particularly susceptible to oxygen availability in their natural environment. However, soil flooding associated with tropical rainfall likely imposes strong selection on tsetse populations and may have had important effects for tsetse energy budgets and evolution.
Collapse
Affiliation(s)
- C Helene Basson
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | |
Collapse
|