1
|
Farías MA, Diethelm-Varela B, Kalergis AM, González PA. Interplay between lipid metabolism, lipid droplets and RNA virus replication. Crit Rev Microbiol 2024; 50:515-539. [PMID: 37348003 DOI: 10.1080/1040841x.2023.2224424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/20/2022] [Accepted: 01/29/2023] [Indexed: 06/24/2023]
Abstract
Lipids play essential roles in the cell as components of cellular membranes, signaling molecules, and energy storage sources. Lipid droplets are cellular organelles composed of neutral lipids, such as triglycerides and cholesterol esters, and are also considered as cellular energy reserves, yet new functions have been recently associated with these structures, such as regulators of oxidative stress and cellular lipotoxicity, as well as modulators of pathogen infection through immune regulation. Lipid metabolism and lipid droplets participate in the infection process of many RNA viruses and control their replication and assembly, among others. Here, we review and discuss the contribution of lipid metabolism and lipid droplets over the replication cycle of RNA viruses, altogether pointing out potentially new pharmacological antiviral targets associated with lipid metabolism.
Collapse
Affiliation(s)
- Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Mani H, Chang CC, Hsu HJ, Yang CH, Yen JH, Liou JW. Comparison, Analysis, and Molecular Dynamics Simulations of Structures of a Viral Protein Modeled Using Various Computational Tools. Bioengineering (Basel) 2023; 10:1004. [PMID: 37760106 PMCID: PMC10525864 DOI: 10.3390/bioengineering10091004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The structural analysis of proteins is a major domain of biomedical research. Such analysis requires resolved three-dimensional structures of proteins. Advancements in computer technology have led to progress in biomedical research. In silico prediction and modeling approaches have facilitated the construction of protein structures, with or without structural templates. In this study, we used three neural network-based de novo modeling approaches-AlphaFold2 (AF2), Robetta-RoseTTAFold (Robetta), and transform-restrained Rosetta (trRosetta)-and two template-based tools-the Molecular Operating Environment (MOE) and iterative threading assembly refinement (I-TASSER)-to construct the structure of a viral capsid protein, hepatitis C virus core protein (HCVcp), whose structure have not been fully resolved by laboratory techniques. Templates with sufficient sequence identity for the homology modeling of complete HCVcp are currently unavailable. Therefore, we performed domain-based homology modeling for MOE simulations. The templates for each domain were obtained through sequence-based searches on NCBI and the Protein Data Bank. Then, the modeled domains were assembled to construct the complete structure of HCVcp. The full-length structure and two truncated forms modeled using various computational tools were compared. Molecular dynamics (MD) simulations were performed to refine the structures. The root mean square deviation of backbone atoms, root mean square fluctuation of Cα atoms, and radius of gyration were calculated to monitor structural changes and convergence in the simulations. The model quality was evaluated through ERRAT and phi-psi plot analysis. In terms of the initial prediction for protein modeling, Robetta and trRosetta outperformed AF2. Regarding template-based tools, MOE outperformed I-TASSER. MD simulations resulted in compactly folded protein structures, which were of good quality and theoretically accurate. Thus, the predicted structures of certain proteins must be refined to obtain reliable structural models. MD simulation is a promising tool for this purpose.
Collapse
Affiliation(s)
- Hemalatha Mani
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| | - Chin-Hao Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Je-Wen Liou
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
3
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
4
|
Galli A, Ramirez S, Bukh J. Lipid Droplets Accumulation during Hepatitis C Virus Infection in Cell-Culture Varies among Genotype 1-3 Strains and Does Not Correlate with Virus Replication. Viruses 2021; 13:389. [PMID: 33671086 PMCID: PMC7999684 DOI: 10.3390/v13030389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Liver steatosis is a common complication of chronic hepatitis C virus (HCV) infection, which can result in accelerated liver fibrosis development, especially in patients infected with genotype 3a. The precise mechanisms of HCV-induced liver steatosis remain unclear, but it is often posited that increased intracellular lipid accumulation is the underlying cause of steatosis. To study experimentally how HCV infection in human liver derived cells by different genotypes and subtypes might affect lipid accumulation, we performed detailed cytofluorimetric and microscopy analyses of intracellular lipid droplets (LDs) in relation to the viral Core and to cell endoplasmic reticulum proteins. Following culture infection with HCV genotype 1a, 2a, 2b, 2c, and 3a strains, we found variable levels of intracellular LDs accumulation, associated to the infecting strain rather than to the specific genotype. Although two genotype 3a strains showed high levels of lipid accumulation, as previously observed, some strains of other genotypes displayed a similar phenotype. Moreover, the analyses of LDs size, number, and shape indicated that the apparent increase in lipid accumulation is due to an increase in the overall number rather than in the size of droplets. Finally, differences in total lipid content across genotypes did not correlate to differences in Core distribution nor Core levels. In conclusion, our study provides a quantitative in-depth analysis of the effect of HCV infection on LDs accumulation in cell-culture.
Collapse
Affiliation(s)
- Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.G.); (S.R.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.G.); (S.R.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.G.); (S.R.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Role of Capsid Anchor in the Morphogenesis of Zika Virus. J Virol 2018; 92:JVI.01174-18. [PMID: 30158295 DOI: 10.1128/jvi.01174-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/22/2018] [Indexed: 01/24/2023] Open
Abstract
The flavivirus capsid protein (C) is separated from the downstream premembrane (PrM) protein by a hydrophobic sequence named capsid anchor (Ca). During polyprotein processing, Ca is sequentially cleaved by the viral NS2B/NS3 protease on the cytosolic side and by signal peptidase on the luminal side of the endoplasmic reticulum (ER). To date, Ca is considered important mostly for directing translocation of PrM into the ER lumen. In this study, the role of Ca in the assembly and secretion of Zika virus was investigated using a pseudovirus-based approach. Our results show that, while Ca-mediated anchoring of C to the ER membrane is not needed for the production of infective particles, Ca expression in cis with respect to PrM is strictly required to allow proper assembly of infectious particles. Finally, we show that the presence of heterologous, but not homologous, Ca induces degradation of E through the autophagy/lysosomal pathway.IMPORTANCE The capsid anchor (Ca) is a single-pass transmembrane domain at the C terminus of the capsid protein (C) known to function as a signal for the translocation of PrM into the ER lumen. The objective of this study was to further examine the role of Ca in Zika virus life cycle, whether involved in the formation of nucleocapsid through association with C or in the formation of viral envelope. In this study, we show that Ca has a function beyond the one of translocation signal, controlling protein E stability and therefore its availability for assembly of infectious particles.
Collapse
|
6
|
Hegarty R, Deheragoda M, Fitzpatrick E, Dhawan A. Paediatric fatty liver disease (PeFLD): All is not NAFLD - Pathophysiological insights and approach to management. J Hepatol 2018; 68:1286-1299. [PMID: 29471012 DOI: 10.1016/j.jhep.2018.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The recognition of a pattern of steatotic liver injury where histology mimicked alcoholic liver disease, but alcohol consumption was denied, led to the identification of non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease has since become the most common chronic liver disease in adults owing to the global epidemic of obesity. However, in paediatrics, the term NAFLD seems incongruous: alcohol consumption is largely not a factor and inherited metabolic disorders can mimic or co-exist with a diagnosis of NAFLD. The term paediatric fatty liver disease may be more appropriate. In this article, we summarise the known causes of steatosis in children according to their typical, clinical presentation: i) acute liver failure; ii) neonatal or infantile jaundice; iii) hepatomegaly, splenomegaly or hepatosplenomegaly; iv) developmental delay/psychomotor retardation and perhaps most commonly; v) the asymptomatic child with incidental discovery of abnormal liver enzymes. We offer this model as a means to provide pathophysiological insights and an approach to management of the ever more complex subject of fatty liver.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, United Kingdom
| | - Maesha Deheragoda
- Liver Histopathology, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, United Kingdom.
| |
Collapse
|
7
|
Kim S, Date T, Yokokawa H, Kono T, Aizaki H, Maurel P, Gondeau C, Wakita T. Development of hepatitis C virus genotype 3a cell culture system. Hepatology 2014; 60:1838-50. [PMID: 24797787 DOI: 10.1002/hep.27197] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/29/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) genotype 3a infection poses a serious health problem worldwide. A significant association has been reported between HCV genotype 3a infections and hepatic steatosis. Nevertheless, virological characterization of genotype 3a HCV is delayed due to the lack of appropriate virus cell culture systems. In the present study, we established the first infectious genotype 3a HCV system by introducing adaptive mutations into the S310 strain. HCV core proteins had different locations in JFH-1 and S310 virus-infected cells. Furthermore, the lipid content in S310 virus-infected cells was higher than Huh7.5.1 cells and JFH-1 virus-infected cells as determined by the lipid droplet staining area. CONCLUSION This genotype 3a infectious cell culture system may be a useful experimental model for studying genotype 3a viral life cycles, molecular mechanisms of pathogenesis, and genotype 3a-specific antiviral drug development.
Collapse
Affiliation(s)
- Sulyi Kim
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jaspe RC, Sulbarán YF, Sulbarán MZ, Loureiro CL, Rangel HR, Pujol FH. Prevalence of amino acid mutations in hepatitis C virus core and NS5B regions among Venezuelan viral isolates and comparison with worldwide isolates. Virol J 2012; 9:214. [PMID: 22995142 PMCID: PMC3511240 DOI: 10.1186/1743-422x-9-214] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent reports show that R70Q and L/C91M amino acid substitutions in the core from different hepatitis C virus (HCV) genotypes have been associated with variable responses to interferon (IFN) and ribavirin (RBV) therapy, as well to an increase of hepatocellular carcinoma (HCC) risk, liver steatosis and insulin resistance (IR). Mutations in NS5B have also been associated to IFN, RBV, nucleoside and non-nucleoside inhibitors drug resistance. The prevalence of these mutations was studied in HCV RNA samples from chronically HCV-infected drug-naïve patients. METHODS After amplification of core and NS5B region by nested-PCR, 12 substitutions were analyzed in 266 Venezuelan HCV isolates subtype 1a, 1b, 2a, 2c, 2b, 2j (a subtype frequently found in Venezuela) and 3a (n = 127 and n = 228 for core and NS5B respectively), and compared to isolates from other countries (n = 355 and n = 646 for core and NS5B respectively). RESULTS R70Q and L/C91M core substitutions were present exclusively in HCV G1b. Both substitutions were more frequent in American isolates compared to Asian ones (69% versus 26%, p < 0.001 and 75% versus 45%, p < 0.001 respectively). In Venezuelan isolates NS5B D310N substitution was detected mainly in G3a (100%) and G1a (13%), this later with a significantly higher prevalence than in Brazilian isolates (p = 0.03). The NS5B mutations related to IFN/RBV treatment D244N was mainly found in G3a, and Q309R was present in all genotypes, except G2. Resistance to new NS5B inhibitors (C316N) was only detected in 18% of G1b, with a significantly lower prevalence than in Asian isolates, where this polymorphism was surprisingly frequent (p < 0.001). CONCLUSIONS Genotypical, geographical and regional differences were found in the prevalence of substitutions in HCV core and NS5B proteins. The substitutions found in the Venezuelan G2j type were similar to that found in G2a and G2c isolates. Our results suggest a high prevalence of the R70Q and L/C91M mutations of core protein for G1b and D310N substitution of NS5B protein for the G3a. C316N polymorphism related with resistance to new NS5B inhibitors was only found in G1b. Some of these mutations could be associated with a worse prognosis of the disease in HCV infected patients.
Collapse
Affiliation(s)
- Rossana C Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apdo 20632, Caracas 1020-A, Venezuela
| | | | | | | | | | | |
Collapse
|
9
|
Qiang G, Jhaveri R. Lipid droplet binding of hepatitis C virus core protein genotype 3. ISRN GASTROENTEROLOGY 2012; 2012:176728. [PMID: 22844606 PMCID: PMC3401521 DOI: 10.5402/2012/176728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/27/2012] [Indexed: 12/28/2022]
Abstract
Background. Hepatitis C virus (HCV) genotype 3 is known to cause steatosis (fatty liver) that is more frequent and severe than other genotypes. We previously identified sequence elements within genotype 3 HCV Core domain 3 that were sufficient for lipid accumulation. Aims. We examined various genotype 3 Core domains for lipid droplet localization and compared the lipid droplet binding regions of domain 2 with a genotype 1 isolate. Methods. We generated HCV Core domain constructs fused with green fluorescent protein and performed immunofluorescence to visualize lipid droplets. Results. Constructs containing HCV Core domain 2 are appropriately localized to lipid droplets with varying degrees of efficiency. When compared to genotype 1, there are polymorphisms within domain 2 that do not appear to alter lipid droplet localization. Conclusions. In summary, the differences in a steatosis-associated HCV Core genotype 3 isolate do not appear to involve altered lipid droplet localization.
Collapse
Affiliation(s)
- Guan Qiang
- Division of Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
10
|
Rodgers MA, Villareal VA, Schaefer EA, Peng LF, Corey KE, Chung RT, Yang PL. Lipid metabolite profiling identifies desmosterol metabolism as a new antiviral target for hepatitis C virus. J Am Chem Soc 2012; 134:6896-9. [PMID: 22480142 PMCID: PMC3375380 DOI: 10.1021/ja207391q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection has been clinically associated with serum lipid abnormalities, yet our understanding of the effects of HCV on host lipid metabolism and conversely the function of individual lipids in HCV replication remains incomplete. Using liquid chromatography-mass spectrometry metabolite profiling of the HCV JFH1 cell culture infection model, we identified a significant steady-state accumulation of desmosterol, an immediate precursor to cholesterol. Pharmacological inhibition or RNAi-mediated depletion of DHCR7 significantly reduced steady-state HCV protein expression and viral genomic RNA. Moreover, this effect was reversed when cultures were supplemented with exogenous desmosterol. Together, these observations suggest an intimate connection between HCV replication and desmosterol homeostasis and that the enzymes responsible for synthesis of desmosterol may be novel targets for antiviral design.
Collapse
Affiliation(s)
- Mary A Rodgers
- Department of Microbiology and Immunobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - Valerie A Villareal
- Department of Microbiology and Immunobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - Esperance A Schaefer
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee F Peng
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathleen E Corey
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Priscilla L Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
11
|
Depla M, d'Alteroche L, Le Gouge A, Moreau A, Hourioux C, Meunier JC, Gaillard J, de Muret A, Bacq Y, Kazemi F, Avargues A, Roch E, Piver E, Gaudy-Graffin C, Giraudeau B, Roingeard P. Viral sequence variation in chronic carriers of hepatitis C virus has a low impact on liver steatosis. PLoS One 2012; 7:e33749. [PMID: 22479436 PMCID: PMC3315576 DOI: 10.1371/journal.pone.0033749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
Most clinical studies suggest that the prevalence and severity of liver steatosis are higher in patients infected with hepatitis C virus (HCV) genotype 3 than in patients infected with other genotypes. This may reflect the diversity and specific intrinsic properties of genotype 3 virus proteins. We analyzed the possible association of particular residues of the HCV core and NS5A proteins known to dysregulate lipid metabolism with steatosis severity in the livers of patients chronically infected with HCV. We used transmission electron microscopy to quantify liver steatosis precisely in a group of 27 patients, 12 of whom were infected with a genotype 3 virus, the other 15 being infected with viruses of other genotypes. We determined the area covered by lipid droplets in liver tissues and analyzed the diversity of the core and NS5A regions encoded by the viral variants circulating in these patients. The area covered by lipid droplets did not differ significantly between patients infected with genotype 3 viruses and those infected with other genotypes. The core and NS5A protein sequences of the viral variants circulating in patients with mild or severe steatosis were evenly distributed throughout the phylogenic trees established from all the collected sequences. Thus, individual host factors seem to play a much greater role than viral factors in the development of severe steatosis in patients chronically infected with HCV, including those infected with genotype 3 viruses.
Collapse
Affiliation(s)
- Marion Depla
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Louis d'Alteroche
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Amélie Le Gouge
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Alain Moreau
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | | | - Julien Gaillard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | - Anne de Muret
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Yannick Bacq
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Farhad Kazemi
- Service d'Hépatogastroentérologie, Centre Hospitalier de Blois, Blois, France
| | - Aurélie Avargues
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Emmanuelle Roch
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Eric Piver
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Biochmie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Bruno Giraudeau
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
- * E-mail:
| |
Collapse
|
12
|
Lao XQ, Thompson A, McHutchison JG, McCarthy JJ. Sex and age differences in lipid response to chronic infection with the hepatitis C virus in the United States National Health and Nutrition Examination Surveys. J Viral Hepat 2011; 18:571-9. [PMID: 20642483 DOI: 10.1111/j.1365-2893.2010.01347.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Low levels of serum lipids were reported in subjects chronically infected with the hepatitis C virus (HCV) and correlated with poorer clinical outcomes. Whether HCV 'hypo-lipidemia' is constant across age, sex and race has not been systematically explored. We therefore investigated the association between HCV infection and serum lipid levels in two independent National Health and Nutrition Examination Survey (NHANES) cohorts. HCV antibody status and serum lipid levels were obtained from 14 369 adults from NHANES 1999-2006 and 12 261 from NHANES III (enrolled in 1988-1994). In multivariable models, the prevalence of HCV-associated hypo-low density lipoprotein-cholesterol was highest among women >50 years of age in both NHANES 1999-2006 (OR: 10.51, 95% CI: 2.86, 38.62) and III (OR: 24.21, 95% CI: 6.17, 94.92), but among women <50 years of age, the odds ratios were 3.01 (95% CI: 1.00, 9.04) for NHANES 1999-2006 and 0.52 (95% CI: 0.14, 1.88) for III, respectively. HCV by age interaction among women was significant in both cohorts (P < 0.001 and P = 0.004, respectively). Among men, the odds ratios of HCV-associated hypo-LDL-cholesterol were 2.74 (95% CI: 1.55, 4.85) in NHANES 1999-2006 and 3.84 (95% CI: 1.66, 8.88) in III, respectively, with no significant age effects. Similar patterns were observed for total-cholesterol, but no significantly discernable patterns for high density lipoprotein-cholesterol and triglycerides. Results show that HCV infection is associated with lower total- and LDL-cholesterol in two US population-based cohorts, and this relationship varies significantly by age and sex, suggesting a possible influence of sex hormones on host lipid response to HCV infection.
Collapse
Affiliation(s)
- X Q Lao
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
13
|
Congiu M, Ryan MC, Desmond PV. No increase in the expression of key unfolded protein response genes in HCV genotype 3 patients with severe steatosis. Virus Res 2011; 160:420-3. [PMID: 21741418 DOI: 10.1016/j.virusres.2011.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/06/2023]
Abstract
Although hepatic steatosis is common in patients infected with HCV, the mechanisms leading to cellular triglyceride retention are obscure. A role for the Unfolded Protein Response (UPR) has been postulated, either through its activation or dysfunction. In this study we set out to investigate the expression of key UPR genes in HCV genotype 3 patients with moderate to severe steatosis. RNA was extracted from liver obtained by percutaneous biopsy and key genes from the UPR were semi quantified using real-time PCR. We compared values in patients with minimal steatosis to those with high steatosis. Patients with high steatosis were younger (44.6 ± 2.4 vs. 37.4 ± 2.1, p<0.05) and had higher hepatic viral RNA loads (1.00 ± 0.21 vs. 3.98 ± 0.22, p<0.05). We found no significant difference in the expression of UPR genes, except for a small increase in EDEM1 in the high steatosis group (1.00 ± 0.13 vs. 1.38 ± 0.09, p<0.05). In conclusion, despite a four-fold greater concentration of HCV RNA in tissue with a high level of steatosis, we found no change in the expression of key UPR related genes, except for a only a modest up-regulation of EDEM1. Our data does not support a sustained change in expression of UPR genes in the steatogenesis of HCVGT3 infected human liver.
Collapse
Affiliation(s)
- Mario Congiu
- Department of Gastroenterology, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
14
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|
15
|
Pattullo V, Douglas MW, George J. Organelle dysfunction in hepatitis C virus-associated steatosis: anything to learn from nonalcoholic steatohepatitis? Expert Rev Gastroenterol Hepatol 2011; 5:265-77. [PMID: 21476921 DOI: 10.1586/egh.11.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) spans a pathological spectrum from nonalcoholic steatosis to steatohepatitis. The pathophysiology of this disorder is complex, but includes insulin resistance and disrupted lipid and carbohydrate homeostasis, which at a subcellular level results in oxidative stress, free fatty acid-mediated lipotoxicity, defects in mitochondrial function, endoplasmic reticulum stress and cytokine-mediated toxicity. In chronic hepatitis C (CHC), systemic metabolic derangements similar to NAFLD may be operative, but in addition, virus-specific factors contribute to steatosis. The mechanisms for steatosis in CHC appear to share common pathways with those observed in NAFLD. This article outlines our current understanding of the subcellular mechanisms of steatosis in NAFLD and CHC, including their similarities and differences.
Collapse
Affiliation(s)
- Venessa Pattullo
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | | | | |
Collapse
|