1
|
Haarlem CS, O’Connell RG, Mitchell KJ, Jackson AL. The speed of sight: Individual variation in critical flicker fusion thresholds. PLoS One 2024; 19:e0298007. [PMID: 38557652 PMCID: PMC10984398 DOI: 10.1371/journal.pone.0298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
The critical flicker fusion threshold is a psychophysical measure commonly used to quantify visual temporal resolution; the fastest rate at which a visual system can discriminate visual signals. Critical flicker fusion thresholds vary substantially among species, reflecting different ecological niches and demands. However, it is unclear how much variation exists in flicker fusion thresholds between healthy individuals of the same species, or how stable this attribute is over time within individuals. In this study, we assessed both inter- and intra-individual variation in critical flicker fusion thresholds in a cohort of healthy human participants within a specific age range, using two common psychophysical methods and three different measurements during each session. The resulting thresholds for each method were highly correlated. We found a between-participant maximum difference of roughly 30 Hz in flicker fusion thresholds and we estimated a 95% prediction interval of 21 Hz. We used random-effects models to compare between- and within-participant variance and found that approximately 80% of variance was due to between-individual differences, and about 10% of the variance originated from within-individual differences over three sessions. Within-individual thresholds did not differ significantly between the three sessions in males, but did in females (P<0.001 for two methods and P<0.05 for one method), indicating that critical flicker fusion thresholds may be more variable in females than in males.
Collapse
Affiliation(s)
- Clinton S. Haarlem
- Department of Zoology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Redmond G. O’Connell
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kevin J. Mitchell
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
2
|
Lafitte A, Sordello R, Legrand M, Nicolas V, Obein G, Reyjol Y. A flashing light may not be that flashy: A systematic review on critical fusion frequencies. PLoS One 2022; 17:e0279718. [PMID: 36584184 PMCID: PMC9803175 DOI: 10.1371/journal.pone.0279718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Light pollution could represent one of the main drivers behind the current biodiversity erosion. While the effects of many light components on biodiversity have already been studied, the influence of flicker remains poorly understood. The determination of the threshold frequency at which a flickering light is perceived as continuous by a species, usually called the Critical Fusion Frequency (CFF), could thus help further identify the impacts of artificial lighting on animals. OBJECTIVE This review aimed at answering the following questions: what is the distribution of CFF between species? Are there differences in how flicker is perceived between taxonomic classes? Which species are more at risk of being impacted by artificial lighting flicker? METHODS Citations were extracted from three literature databases and were then screened successively on their titles, abstracts and full-texts. Included studies were critically appraised to assess their validity. All relevant data were extracted and analysed to determine the distribution of CFF in the animal kingdom and the influence of experimental designs and species traits on CFF. RESULTS At first, 4881 citations were found. Screening and critical appraisal provided 200 CFF values for 156 species. Reported values of CFF varied from a maximum of between 300 Hz and 500 Hz for the beetle Melanophila acuminata D. to a mean of 0.57 (± 0.08) Hz for the snail Lissachatina fulica B. Insects and birds had higher CFF than all other studied taxa. Irrespective of taxon, nocturnal species had lower CFF than diurnal and crepuscular ones. CONCLUSIONS We identified nine crepuscular and nocturnal species that could be impacted by the potential adverse effects of anthropogenic light flicker. We emphasize that there remains a huge gap in our knowledge of flicker perception by animals, which could potentially be hampering our understanding of its impacts on biodiversity, especially in key taxa like bats, nocturnal birds and insects.
Collapse
Affiliation(s)
- Alix Lafitte
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
- Association Française de l’Eclairage (AFE), Paris, France
- * E-mail:
| | - Romain Sordello
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
| | - Marc Legrand
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
- Association Française de l’Eclairage (AFE), Paris, France
- Université Jean Monnet, Saint-Etienne, France
| | - Virginie Nicolas
- Association des Concepteurs lumière et Eclairagistes (ACE), Paris, France
- Concepto, Arcueil, France
| | - Gaël Obein
- Association Française de l’Eclairage (AFE), Paris, France
- Laboratoire National de métrologie et d’Essais—Conservatoire National des Arts et Métiers (LNE-CNAM), Saint-Denis, France
| | - Yorick Reyjol
- PatriNat (Office Français de la Biodiversité (OFB), Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS)), Paris, France
| |
Collapse
|
3
|
The Colours of Octopus: Using Spectral Data to Measure Octopus Camouflage. Vision (Basel) 2022; 6:vision6040059. [PMID: 36278671 PMCID: PMC9590006 DOI: 10.3390/vision6040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
No animal can so effectively camouflage in such a wide range of environments as the octopus. Thanks to their highly malleable skin, they are capable of adapting their body patterns to the brightness and texture of their immediate environment, and they often seemingly match the colour of background objects. However, octopuses are colour-blind as their eyes have only one type of visual pigment. Therefore, chromatophores in their skin are likely to respond to changes in brightness, not chromaticity. To determine whether octopuses actually match background colours, we used a SpectraScan® PR-655 spectroradiometer to measure the reflectance spectra of Octopus tetricus skin in captivity. The spectra were compared with those of green algae, brown algae, and sponges—all of these being colourful objects commonly found in the octopus’s natural environment. Even though we show that octopuses change both lightness and chromaticity, allowing them to potentially camouflage in a wide range of backgrounds in an effective manner, the overall octopus colours did not reach the same level of saturation compared to some background objects. Spectra were then modelled under the visual systems of four potential octopus predators: one dichromatic fish (Heller’s barracuda), two trichromatic fish (blue-spotted stingray and two-spotted red snapper), and one tetrachromatic bird (wedge-tailed shearwater). We show that octopuses are able to match certain background colours for some visual systems. How a colour-blind animal is capable of colour-matching is still unknown.
Collapse
|
4
|
Gao X, Lin S, Zhang M, Lyu M, Liu Y, Luo X, You W, Ke C. Review: Use of Electrophysiological Techniques to Study Visual Functions of Aquatic Organisms. Front Physiol 2022; 13:798382. [PMID: 35153830 PMCID: PMC8829447 DOI: 10.3389/fphys.2022.798382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The light environments of natural water sources have specific characteristics. For the majority of aquatic organisms, vision is crucial for predation, hiding from predators, communicating information, and reproduction. Electroretinography (ERG) is a diagnostic method used for assessing visual function. An electroretinogram records the comprehensive potential response of retinal cells under light stimuli and divides it into several components. Unique wave components are derived from different retinal cells, thus retinal function can be determined by analyzing these components. This review provides an overview of the milestones of ERG technology, describing how ERG is used to study visual sensitivity (e.g., spectral sensitivity, luminous sensitivity, and temporal resolution) of fish, crustaceans, mollusks, and other aquatic organisms (seals, sea lions, sea turtles, horseshoe crabs, and jellyfish). In addition, it describes the correlations between visual sensitivity and habitat, the variation of visual sensitivity as a function of individual growth, and the diel cycle changes of visual sensitivity. Efforts to identify the visual sensitivity of different aquatic organisms are vital to understanding the environmental plasticity of biological evolution and for directing aquaculture, marine fishery, and ecosystem management.
Collapse
Affiliation(s)
- Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Yafeng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Ryan LA, Slip DJ, Chapuis L, Collin SP, Gennari E, Hemmi JM, How MJ, Huveneers C, Peddemors VM, Tosetto L, Hart NS. A shark's eye view: testing the 'mistaken identity theory' behind shark bites on humans. J R Soc Interface 2021; 18:20210533. [PMID: 34699727 PMCID: PMC8548079 DOI: 10.1098/rsif.2021.0533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.g. on surfers, is that of mistaken identity, whereby sharks mistake humans for their typical prey (pinnipeds in the case of white sharks). This study tests the mistaken identity theory by comparing video footage of pinnipeds, humans swimming and humans paddling surfboards, from the perspective of a white shark viewing these objects from below. Videos were processed to reflect how a shark's retina would detect the visual motion and shape cues. Motion cues of humans swimming, humans paddling surfboards and pinnipeds swimming did not differ significantly. The shape of paddled surfboards and human swimmers was also similar to that of pinnipeds with their flippers abducted. The difference in shape between pinnipeds with abducted versus adducted flippers was bigger than between pinnipeds with flippers abducted and surfboards or human swimmers. From the perspective of a white shark, therefore, neither visual motion nor shape cues allow an unequivocal visual distinction between pinnipeds and humans, supporting the mistaken identity theory behind some bites.
Collapse
Affiliation(s)
- Laura A Ryan
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - David J Slip
- Taronga Conservation Society Australia, Bradley's Head Road, Mosman, New South Wales 2088, Australia
| | - Lucille Chapuis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay 6500, South Africa.,South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa.,Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown 6140, South Africa
| | - Jan M Hemmi
- School of Biological Sciences and The UWA Oceans Institute, M092, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Victor M Peddemors
- New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Louise Tosetto
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
6
|
Automated methods for efficient and accurate electroretinography. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:381-391. [PMID: 33759001 DOI: 10.1007/s00359-021-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Electroretinography (ERG) is a foundational method for assessing visual system physiology, but accurate ERG can be time- and labor-intensive, often involving manual adjustment of the wavelength and intensity of light stimuli and real-time comparison of physiological responses to inform those adjustments. Furthermore, current approaches to ERG often require expertise beyond that necessary for the electrophysiological preparation itself. To improve both the efficiency and accessibility of ERG, we designed an automated system for stimulus presentation and data acquisition. Here, we test this novel system's ability to accurately assess spectral sensitivity in the well-characterized visual system of the crayfish Procambarus clarkii using three approaches: the first, based on response magnitude, maximizes efficiency; the second is a well-established method we use to further validate our efficient approach's accuracy. Third, we explore the potential benefits of extensible automation using a method assessing the interplay between temporal acuity and spectral sensitivity. Using our system, we are able to acquire accurate results in ERG experiments quickly (testing the entire visible spectrum in 8 min, 30 s using our response magnitude approach). Moreover, data collected via all three methods yielded results consistent with each other and previous work on P. clarkii.
Collapse
|
7
|
Borshagovski AM, Saari P, Lehtonen TK, Kaitala A. When night never falls: female sexual signalling in a nocturnal insect along a latitudinal gradient. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02927-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe environment can play an important role in animal communication by affecting signal transmission and detection. Variation in the signalling environment is expected to be especially pronounced in widely distributed species, potentially affecting how their signals are detected. Such environmental variability is presumably relevant for sedentary females of a nocturnal capital breeder, the European common glow-worm (Lampyris noctiluca), which produce green light during the night to attract flying males to mate. Being widely distributed in Europe, glow-worm populations are exposed to both rapidly descending, darker summer nights in the south, and slowly dimming, brighter summer nights further north, with the latter potentially posing challenges to the visibility of the female glow. To test how female signalling is affected by latitude, we sampled glowing females during summer nights along a latitudinal gradient in Finland, Northern Europe, and used a novel apparatus to measure the intensity and peak wavelength (hue/colour) of their glow. Surprisingly, females at higher latitudes, similar to those at lower latitudes, were commonly glowing during the brightest (and hence the shortest) nights of the year. Females also glowed brighter in more northern areas, partly due to their larger body size, whereas the colour of their glow was not associated with latitude. Since females glow even during midsummer, independent of latitude, the increase in glow intensity at higher latitudes presumably serves to maintain signal visibility in brighter signalling conditions. Overall, these findings highlight the influence of environmental conditions on the evolution of sexual signals, especially in the context of species distribution range.Significance statementWhen environmental conditions impact signal transmission and perception, local conditions can have a crucial role in shaping animal communication and signal evolution. To analyse how dark-dependant common glow-worm females cope with variable nocturnal light environments, we used a novel apparatus, presumably not applied to living animals before, to measure female glow intensity at various latitudes along a latitudinal gradient. Interestingly, females did not avoid signalling during the brightest summer nights, but instead, their glow intensity and body size both increased with latitude. These findings suggest that females can ensure visibility to mate-searching males over a range of local conditions. Our study therefore shows how females can adapt to environmental constraints on signal visibility, and how the expression of sexual signals is shaped not only by social interactions but also by the signalling environment.
Collapse
|
8
|
Collin SP. Scene through the eyes of an apex predator: a comparative analysis of the shark visual system. Clin Exp Optom 2018; 101:624-640. [PMID: 30066959 DOI: 10.1111/cxo.12823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The eyes of apex predators, such as the shark, have fascinated comparative visual neuroscientists for hundreds of years with respect to how they perceive the dark depths of their ocean realm or the visual scene in search of prey. As the earliest representatives of the first stage in the evolution of jawed vertebrates, sharks have an important role to play in our understanding of the evolution of the vertebrate eye, including that of humans. This comprehensive review covers the structure and function of all the major ocular components in sharks and how they are adapted to a range of underwater light environments. A comparative approach is used to identify: species-specific diversity in the perception of clear optical images; photoreception for various visual behaviours; the trade-off between image resolution and sensitivity; and visual processing under a range of levels of illumination. The application of this knowledge is also discussed with respect to the conservation of this important group of cartilaginous fishes.
Collapse
Affiliation(s)
- Shaun P Collin
- The Oceans Institute and the Oceans Graduate School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Schweikert LE, Grace MS. Spectral Sensitivity Change May Precede Habitat Shift in the Developing Retina of the Atlantic Tarpon (Megalops atlanticus). Physiol Biochem Zool 2017; 90:553-563. [PMID: 28665184 DOI: 10.1086/692993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish that undergo ontogenetic migrations between habitats often encounter new light environments that require changes in the spectral sensitivity of the retina. For many fish, sensitivity of the retina changes to match the environmental spectrum, but the timing of retinal change relative to habitat shift remains unknown. Does retinal change in fish precede habitat shift, or is it a response to encountered changes in environmental light? Spectral sensitivity changes were examined over the development of the Atlantic tarpon (Megalops atlanticus) retina relative to ontogenetic shifts in habitat light. Opsin gene isoform expression and inferred chromophore use of visual pigments were examined over the course of M. atlanticus development. Spectral sensitivity of the retina was then determined by electroretinography and compared to the spectroradiometric measurements of habitat light encountered by M. atlanticus from juveniles to adults. These data, along with previously known microspectrophotometric measurements of sensitivity in M. atlanticus, indicate retinal spectral sensitivity that matches the dominant wavelengths of environmental light for juvenile and adult fish. For the intervening subadult stage, however, spectral sensitivity does not match the dominant wavelength of light it occupies but better matches the dominant wavelengths of light in the habitat of its forthcoming migration. These results first indicate that the relationship between environmental light spectrum and spectral sensitivity of the retina changes during M. atlanticus development and then suggest that such changes may be programmed to support visual anticipation of new photic environments.
Collapse
|
10
|
Warrington RE, Hart NS, Potter IC, Collin SP, Hemmi JM. Retinal temporal resolution and contrast sensitivity in the parasitic lamprey Mordacia mordax and its non-parasitic derivative Mordacia praecox. J Exp Biol 2017; 220:1245-1255. [PMID: 28108670 DOI: 10.1242/jeb.150383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
Abstract
Lampreys and hagfishes are the sole extant representatives of the early agnathan (jawless) vertebrates. We compared retinal function of fully metamorphosed, immature Mordacia mordax (which are about to commence parasitic feeding) with those of sexually mature individuals of its non-parasitic derivative Mpraecox We focused on elucidating the retinal adaptations to dim-light environments in these nocturnally active lampreys, using electroretinography to determine the temporal resolution (flicker fusion frequency, FFF) and temporal contrast sensitivity of enucleated eyecups at different temperatures and light intensities. FFF was significantly affected by temperature and light intensity. Critical flicker fusion frequency (cFFF, the highest FFF recorded) of M. praecox and M. mordax increased from 15.1 and 21.8 Hz at 9°C to 31.1 and 36.9 Hz at 24°C, respectively. Contrast sensitivity of both species increased by an order of magnitude between 9 and 24°C, but remained comparatively constant across all light intensities. Although FFF values for Mordacia spp. are relatively low, retinal responses showed a particularly high contrast sensitivity of 625 in M. praecox and 710 in M. mordax at 24°C. This suggests selective pressures favour low temporal resolution and high contrast sensitivity in both species, thereby enhancing the capture of photons and increasing sensitivity in their light-limited environments. FFF indicated all retinal photoreceptors exhibit the same temporal response. Although the slow response kinetics (i.e. low FFF) and saturation of the response at bright light intensities characterise the photoreceptors of both species as rod-like, it is unusual for such a photoreceptor to be functional under scotopic and photopic conditions.
Collapse
Affiliation(s)
- Rachael E Warrington
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia .,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ian C Potter
- Centre for Fish, Fisheries and Aquatic Ecosystems Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Shaun P Collin
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia.,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia.,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Electrophysiological measures of temporal resolution, contrast sensitivity and spatial resolving power in sharks. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:197-210. [DOI: 10.1007/s00359-017-1154-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
|
12
|
Ryan LA, Hart NS, Collin SP, Hemmi JM. Visual resolution and contrast sensitivity in two benthic sharks. ACTA ACUST UNITED AC 2016; 219:3971-3980. [PMID: 27802139 DOI: 10.1242/jeb.132100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
Abstract
Sharks have long been described as having 'poor' vision. They are cone monochromats and anatomical estimates suggest they have low spatial resolution. However, there are no direct behavioural measurements of spatial resolution or contrast sensitivity. This study estimates contrast sensitivity and spatial resolution of two species of benthic sharks, the Port Jackson shark, Heterodontus portusjacksoni, and the brown-banded bamboo shark, Chiloscyllium punctatum, by recording eye movements in response to optokinetic stimuli. Both species tracked moving low spatial frequency gratings with weak but consistent eye movements. Eye movements ceased at 0.38 cycles per degree, even for high contrasts, suggesting low spatial resolution. However, at lower spatial frequencies, eye movements were elicited by low contrast gratings, 1.3% and 2.9% contrast in H portusjacksoni and C. punctatum, respectively. Contrast sensitivity was higher than in other vertebrates with a similar spatial resolving power, which may reflect an adaptation to the relatively low contrast encountered in aquatic environments. Optokinetic gain was consistently low and neither species stabilised the gratings on their retina. To check whether restraining the animals affected their optokinetic responses, we also analysed eye movements in free-swimming C. punctatum We found no eye movements that could compensate for body rotations, suggesting that vision may pass through phases of stabilisation and blur during swimming. As C. punctatum is a sedentary benthic species, gaze stabilisation during swimming may not be essential. Our results suggest that vision in sharks is not 'poor' as previously suggested, but optimised for contrast detection rather than spatial resolution.
Collapse
Affiliation(s)
- Laura A Ryan
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia .,The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Nathan S Hart
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Shaun P Collin
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jan M Hemmi
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
13
|
Gardiner JM, Whitney NM, Hueter RE. Smells Like Home: The Role of Olfactory Cues in the Homing Behavior of Blacktip Sharks, Carcharhinus limbatus. Integr Comp Biol 2015; 55:495-506. [PMID: 26173711 DOI: 10.1093/icb/icv087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal navigation in the marine environment is believed to be guided by different sensory cues over different spatial scales. Geomagnetic cues are thought to guide long-range navigation, while visual or olfactory cues allow animals to pinpoint precise locations, but the complete behavioral sequence is not yet understood. Terra Ceia Bay is a primary nursery area for blacktip sharks, Carcharhinus limbatus, on southwestern Florida's Gulf of Mexico coast. Young-of-the-year animals show strong fidelity to a specific home range in the northeastern end of the bay and rapidly return when displaced. Older juveniles demonstrate annual philopatry for the first few years, migrating as far south as the Florida Keys each fall, then returning to Terra Ceia Bay each spring. To examine the sensory cues used in homing, we captured neonate (<3 weeks old) blacktip sharks from within their home range, fitted them with acoustic tags, and translocated them to sites 8 km away in adjacent Tampa Bay and released them. Intact animals returned to their home range, within 34 h on average, and remained there. With olfaction blocked, fewer animals returned to their home range and they took longer to do so, 130 h on average. However, they did not remain there but instead moved throughout Terra Ceia Bay and in and out of Tampa Bay. Since sharks from both treatments returned at night in tannic and turbid water, vision is likely not playing a major role in navigation by these animals. The animals in this study also returned on incoming or slack tides, suggesting that sharks, like many other fish, may use selective tidal stream transport to conserve energy and aid navigation during migration. Collectively, these results suggest that while other cues, possibly geomagnetic and/or tidal information, might guide sharks over long distances, olfactory cues are required for recognizing their specific home range.
Collapse
Affiliation(s)
- Jayne M Gardiner
- *Sensory Biology and Behavior Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA; New College of Florida, Division of Natural Sciences, 5800 Bayshore Rd, Sarasota, FL 34243, USA;
| | - Nicholas M Whitney
- Behavioral Ecology and Physiology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Robert E Hueter
- Center for Shark Research, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| |
Collapse
|
14
|
Mara KR, Motta PJ, Martin AP, Hueter RE. Constructional morphology within the head of hammerhead sharks (sphyrnidae). J Morphol 2015; 276:526-39. [PMID: 25684106 DOI: 10.1002/jmor.20362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
The study of functional trade-offs is important if a structure, such as the cranium, serves multiple biological roles, and is, therefore, shaped by multiple selective pressures. The sphyrnid cephalofoil presents an excellent model for investigating potential trade-offs among sensory, neural, and feeding structures. In this study, hammerhead shark species were chosen to represent differences in head form through phylogeny. A combination of surface-based geometric morphometrics, computed tomography (CT) volumetric analysis, and phylogenetic analyses were utilized to investigate potential trade-offs within the head. Hammerhead sharks display a diversity of cranial morphologies where the position of the eyes and nares vary among species, with only minor changes in shape, position, and volume of the feeding apparatus through phylogeny. The basal winghead shark, Eusphyra blochii, has small anteriorly positioned eyes. Through phylogeny, the relative size and position of the eyes change, such that derived species have larger, more medially positioned eyes. The lateral position of the external nares is highly variable, showing no phylogenetic trend. Mouth size and position are conserved, remaining relatively unchanged. Volumetric CT analyses reveal no trade-offs between the feeding apparatus and the remaining cranial structures. The few trade-offs were isolated to the nasal capsule volume's inverse correlation with braincase, chondrocranial, and total cephalofoil volume. Eye volume also decreased as cephalofoil width increased. These data indicate that despite considerable changes in head shape, much of the head is morphologically conserved through sphyrnid phylogeny, particularly the jaw cartilages and their associated feeding muscles, with shape change and morphological trade-offs being primarily confined to the lateral wings of the cephalofoil and their associated sensory structures.
Collapse
Affiliation(s)
- Kyle R Mara
- Department of Integrative Biology, University of South Florida, Tampa, Florida, 33620
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Nathan S. HART
- School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Perth Australia
| | - Shaun P. COLLIN
- School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Perth Australia
| |
Collapse
|
16
|
Spectral sensitivity, luminous sensitivity, and temporal resolution of the visual systems in three sympatric temperate coastal shark species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:997-1013. [DOI: 10.1007/s00359-014-0950-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/04/2023]
|
17
|
Inger R, Bennie J, Davies TW, Gaston KJ. Potential biological and ecological effects of flickering artificial light. PLoS One 2014; 9:e98631. [PMID: 24874801 PMCID: PMC4038456 DOI: 10.1371/journal.pone.0098631] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/05/2014] [Indexed: 11/24/2022] Open
Abstract
Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.
Collapse
Affiliation(s)
- Richard Inger
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
- * E-mail:
| | - Jonathan Bennie
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Thomas W. Davies
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| |
Collapse
|
18
|
Landgren E, Fritsches K, Brill R, Warrant E. The visual ecology of a deep-sea fish, the escolar Lepidocybium flavobrunneum (Smith, 1843). Philos Trans R Soc Lond B Biol Sci 2014; 369:20130039. [PMID: 24395966 DOI: 10.1098/rstb.2013.0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escolar (Lepidocybium flavobrunneum, family Gempylidae) are large and darkly coloured deep-sea predatory fish found in the cold depths (more than 200 m) during the day and in warm surface waters at night. They have large eyes and an overall low density of retinal ganglion cells that endow them with a very high optical sensitivity. Escolar have banked retinae comprising six to eight layers of rods to increase the optical path length for maximal absorption of the incoming light. Their retinae possess two main areae of higher ganglion cell density, one in the ventral retina viewing the dorsal world above (with a moderate acuity of 4.6 cycles deg(-1)), and the second in the temporal retina viewing the frontal world ahead. Electrophysiological recordings of the flicker fusion frequency (FFF) in isolated retinas indicate that escolar have slow vision, with maximal FFF at the highest light levels and temperatures (around 9 Hz at 23°C) which fall to 1-2 Hz in dim light or cooler temperatures. Our results suggest that escolar are slowly moving sit-and-wait predators. In dim, warm surface waters at night, their slow vision, moderate dorsal resolution and highly sensitive eyes may allow them to surprise prey from below that are silhouetted in the downwelling light.
Collapse
Affiliation(s)
- Eva Landgren
- Lund Vision Group, Department of Biology, University of Lund, , Sölvegatan 35, 22362 Lund, Sweden
| | | | | | | |
Collapse
|
19
|
Horodysky AZ, Brill RW, Crawford KC, Seagroves ES, Johnson AK. Comparative visual ecophysiology of mid-Atlantic temperate reef fishes. Biol Open 2013; 2:1371-81. [PMID: 24285711 PMCID: PMC3863422 DOI: 10.1242/bio.20136825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The absolute light sensitivities, temporal properties, and spectral sensitivities of the visual systems of three mid-Atlantic temperate reef fishes (Atlantic spadefish [Ephippidae: Chaetodipterus faber], tautog [Labridae: Tautoga onitis], and black sea bass [Serranidae: Centropristis striata]) were studied via electroretinography (ERG). Pelagic Atlantic spadefish exhibited higher temporal resolution but a narrower dynamic range than the two more demersal foragers. The higher luminous sensitivities of tautog and black sea bass were similar to other benthic and demersal coastal mid-Atlantic fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of the three species spanned 400-610 nm, with high likelihood of cone dichromacy providing the basis for color and contrast discrimination. Significant day-night differences in spectral responses were evident in spadefish and black sea bass but not tautog, a labrid with characteristic structure-associated nocturnal torpor. Atlantic spadefish responded to a wider range of wavelengths than did deeper-dwelling tautog or black sea bass. Collectively, these results suggest that temperate reef-associated fishes are well-adapted to their gradient of brighter to dimmer photoclimates, representative of their unique ecologies and life histories. Continuing anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may however impede visual foraging and reproductive signaling in temperate reef fishes.
Collapse
Affiliation(s)
- Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23664, USA
| | | | | | | | | |
Collapse
|
20
|
Healy K, McNally L, Ruxton GD, Cooper N, Jackson AL. Metabolic rate and body size are linked with perception of temporal information. Anim Behav 2013; 86:685-696. [PMID: 24109147 PMCID: PMC3791410 DOI: 10.1016/j.anbehav.2013.06.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/11/2013] [Accepted: 06/10/2013] [Indexed: 11/09/2022]
Abstract
Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator–prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation. Animals vary in their ability to perceive changes in their environment visually. Temporal perception can be quantified using critical flicker fusion (CFF). High CFF indicates an ability to perceive rapid changes in the visual field. We show that high metabolism and small body size are associated with high CFF. We argue that these findings have both ecological and evolutionary implications.
Collapse
Affiliation(s)
- Kevin Healy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland ; Trinity Centre for Biodiversity Research, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
21
|
Bedore CN, Loew ER, Frank TM, Hueter RE, McComb DM, Kajiura SM. A physiological analysis of color vision in batoid elasmobranchs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1129-41. [DOI: 10.1007/s00359-013-0855-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/18/2013] [Accepted: 09/11/2013] [Indexed: 11/30/2022]
|
22
|
Michelle McComb D, Kajiura SM, Horodysky AZ, Frank TM. Comparative Visual Function in Predatory Fishes from the Indian River Lagoon. Physiol Biochem Zool 2013; 86:285-97. [DOI: 10.1086/670260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Jordan LK, Mandelman JW, McComb DM, Fordham SV, Carlson JK, Werner TB. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research. CONSERVATION PHYSIOLOGY 2013; 1:cot002. [PMID: 27293586 PMCID: PMC4732448 DOI: 10.1093/conphys/cot002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
Incidental capture, or bycatch, in fisheries represents a substantial threat to the sustainability of elasmobranch populations worldwide. Consequently, researchers are increasingly investigating elasmobranch bycatch reduction methods, including some focused on these species' sensory capabilities, particularly their electrosensory systems. To guide this research, we review current knowledge of elasmobranch sensory biology and feeding ecology with respect to fishing gear interactions and include examples of bycatch reduction methods used for elasmobranchs as well as other taxonomic groups. We discuss potential elasmobranch bycatch reduction strategies for various fishing gear types based on the morphological, physiological, and behavioural characteristics of species within this diverse group. In select examples, we indicate how an understanding of the physiology and sensory biology of vulnerable, bycatch-prone, non-target elasmobranch species can help in the identification of promising options for bycatch reduction. We encourage collaboration among researchers studying bycatch reduction across taxa to provide better understanding of the broad effects of bycatch reduction methods.
Collapse
Affiliation(s)
- Laura K. Jordan
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author: Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA. Tel: +1 909 240 9703.
| | - John W. Mandelman
- John H. Prescott Marine Laboratory, New England Aquarium, Boston, MA 02110, USA
| | | | - Sonja V. Fordham
- Shark Advocates International, a project of The Ocean Foundation, Washington, DC 20036, USA
| | - John K. Carlson
- Southeast Fisheries Science Center, NOAA Fisheries Service, Panama City, FL 32408, USA
| | - Timothy B. Werner
- Consortium for Wildlife Bycatch Reduction, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|
24
|
Lisney TJ, Theiss SM, Collin SP, Hart NS. Vision in elasmobranchs and their relatives: 21st century advances. JOURNAL OF FISH BIOLOGY 2012; 80:2024-54. [PMID: 22497415 DOI: 10.1111/j.1095-8649.2012.03253.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review identifies a number of exciting new developments in the understanding of vision in cartilaginous fishes that have been made since the turn of the century. These include the results of studies on various aspects of the visual system including eye size, visual fields, eye design and the optical system, retinal topography and spatial resolving power, visual pigments, spectral sensitivity and the potential for colour vision. A number of these studies have covered a broad range of species, thereby providing valuable information on how the visual systems of these fishes are adapted to different environmental conditions. For example, oceanic and deep-sea sharks have the largest eyes amongst elasmobranchs and presumably rely more heavily on vision than coastal and benthic species, while interspecific variation in the ratio of rod and cone photoreceptors, the topographic distribution of the photoreceptors and retinal ganglion cells in the retina and the spatial resolving power of the eye all appear to be closely related to differences in habitat and lifestyle. Multiple, spectrally distinct cone photoreceptor visual pigments have been found in some batoid species, raising the possibility that at least some elasmobranchs are capable of seeing colour, and there is some evidence that multiple cone visual pigments may also be present in holocephalans. In contrast, sharks appear to have only one cone visual pigment. There is evidence that ontogenetic changes in the visual system, such as changes in the spectral transmission properties of the lens, lens shape, focal ratio, visual pigments and spatial resolving power, allow elasmobranchs to adapt to environmental changes imposed by habitat shifts and niche expansion. There are, however, many aspects of vision in these fishes that are not well understood, particularly in the holocephalans. Therefore, this review also serves to highlight and stimulate new research in areas that still require significant attention.
Collapse
Affiliation(s)
- T J Lisney
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | |
Collapse
|