1
|
Zhang J, Wang X, Ao N, Zou H, Li J, Shao H, Kageyama K, Feng W. A simple graphene oxide-based DNA purification strategy for plant pathogen detection. PEST MANAGEMENT SCIENCE 2024; 80:3516-3525. [PMID: 38441302 DOI: 10.1002/ps.8056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/16/2024]
Abstract
BACKGROUND The on-site molecular detection of plant pathogens is particularly important for the development of sustainable agriculture. Extracting DNA from plant tissues, microbes or coexisting environments is complex, labor-intensive and time-consuming. To facilitate this process, we propose a DNA purification strategy based on graphene oxide (GO). RESULTS The excellent adsorption ability of GO was verified by visualizing changes in its microscopic surface and macroscopic mixture. To further optimize the DNA purification, we determined the optimal GO concentration and treatment time at 95 °C (2 mg mL-1 and 2 min, respectively). We confirmed that our strategy is effective on plant tissues and various microorganisms, and that the obtained DNA can be directly used for polymerase chain reaction amplification. Combining the proposed GO-based DNA purification method with the loop-mediated isothermal amplification method is superior, in terms of the required steps, time, cost and detection effect, to the cetyltrimethylammonium bromide method and a commercial kit for detecting plant pathogens. CONCLUSION We present a feasible, rapid, simple and low-cost DNA purification method with high practical value for scientific applications in plant pathogen detection. This strategy can also provide important technical support for future research on plant-microbial microenvironments. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Xiaochang Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Ningjing Ao
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Huayan Zou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jingwei Li
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Huijuan Shao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu, Japan
| | - Wenzhuo Feng
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Fang J, Liu J, Cheng N, Kang X, Huang Z, Wang G, Xiong X, Lu T, Gong Z, Huang Z, Che J, Xiang T. Four thermostatic steps: A novel CRISPR-Cas12-based system for the rapid at-home detection of respiratory pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12568-3. [PMID: 37166482 PMCID: PMC10173909 DOI: 10.1007/s00253-023-12568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) in 2019 has severely damaged the world's economy and public health and made people pay more attention to respiratory infectious diseases. However, traditional quantitative real-time polymerase chain reaction (qRT-PCR) nucleic acid detection kits require RNA extraction, reverse transcription, and amplification, as well as the support of large-scale equipment to enrich and purify nucleic acids and precise temperature control. Therefore, novel, fast, convenient, sensitive and specific detection methods are urgently being developed and moving to proof of concept test. In this study, we developed a new nucleic acid detection system, referred to as 4 Thermostatic steps (4TS), which innovatively allows all the detection processes to be completed in a constant temperature device, which performs extraction, amplification, cutting of targets, and detection within 40 min. The assay can specifically and sensitively detect five respiratory pathogens, namely SARS-CoV-2, Mycoplasma felis (MF), Chlamydia felis (CF), Feline calicivirus (FCV), and Feline herpes virus (FHV). In addition, a cost-effective and practical small-scale reaction device was designed and developed to maintain stable reaction conditions. The results of the detection of the five viruses show that the sensitivity of the system is greater than 94%, and specificity is 100%. The 4TS system does not require complex equipment, which makes it convenient and fast to operate, and allows immediate testing for suspected infectious agents at home or in small clinics. Therefore, the assay system has diagnostic value and significant potential for further reducing the cost of early screening of infectious diseases and expanding its application. KEY POINTS: • The 4TS system enables the accurate and specific detection of nucleic acid of pathogens at 37 °C in four simple steps, and the whole process only takes 40 min. •A simple alkali solution can be used to extract nucleic acid. • A small portable device simple to operate is developed for home diagnosis and detection of respiratory pathogens.
Collapse
Affiliation(s)
- Jianhua Fang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Jing Liu
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Na Cheng
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiuhua Kang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhanchao Huang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Guoyu Wang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiaofeng Xiong
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Tian Lu
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhenghua Gong
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhigang Huang
- Emergency Department, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jun Che
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, 518036, China.
| | - Tianxin Xiang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China.
| |
Collapse
|
3
|
Lu M, Lan H, Cai Z, Wu Z, Sun Y, Tu M, Pan D. Rapid solid phase microextraction of DNA using mesoporous metal–organic framework coating for PCR-based identification of meat adulteration. Mikrochim Acta 2022; 189:433. [DOI: 10.1007/s00604-022-05531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022]
|
4
|
Huang Z, Fang J, Zhou M, Gong Z, Xiang T. CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol 2022; 13:1011399. [PMID: 36386639 PMCID: PMC9650447 DOI: 10.3389/fmicb.2022.1011399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 08/03/2023] Open
Abstract
Pathogenic microorganisms have major impacts on human lives. Rapid and sensitive diagnostic tools are urgently needed to facilitate the early treatment of microbial infections and the effective control of microbial transmission. CRISPR-Cas13 employs programmable RNA to produce a sensitive and specific method with high base resolution and thus to provide a novel tool for the rapid detection of microorganisms. The review aims to provide insights to spur further development by summarizing the characteristics of effectors of the CRISPR-Cas13 system and by describing the latest research into its application in the rapid detection of pathogenic microorganisms in combination with nucleic acid extraction, isothermal amplification, and product detection.
Collapse
Affiliation(s)
- Zhanchao Huang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianhua Fang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhou
- Jiangxi Zhongke Yanyuan Biotechnology Co., Ltd., Nanchang, China
| | - Zhenghua Gong
- Jiangxi Zhongke Yanyuan Biotechnology Co., Ltd., Nanchang, China
| | - Tianxin Xiang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Botella JR. Point-of-Care DNA Amplification for Disease Diagnosis and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:1-20. [PMID: 36027938 DOI: 10.1146/annurev-phyto-021621-115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification-based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.
Collapse
Affiliation(s)
- José R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia;
| |
Collapse
|
6
|
Rogers MJ, McManus DP, Muhi S, Gordon CA. Membrane Technology for Rapid Point-of-Care Diagnostics for Parasitic Neglected Tropical Diseases. Clin Microbiol Rev 2021; 34:e0032920. [PMID: 34378956 PMCID: PMC8404699 DOI: 10.1128/cmr.00329-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Parasitic neglected tropical diseases (NTDs) affect over one billion people worldwide, with individuals from communities in low-socioeconomic areas being most at risk and suffering the most. Disease management programs are hindered by the lack of infrastructure and resources for clinical sample collection, storage, and transport and a dearth of sensitive diagnostic methods that are inexpensive as well as accurate. Many diagnostic tests and tools have been developed for the parasitic NTDs, but the collection and storage of clinical samples for molecular and immunological diagnosis can be expensive due to storage, transport, and reagent costs, making these procedures untenable in most areas of endemicity. The application of membrane technology, which involves the use of specific membranes for either sample collection and storage or diagnostic procedures, can streamline this process, allowing for long-term sample storage at room temperature. Membrane technology can be used in serology-based diagnostic assays and for nucleic acid purification prior to molecular analysis. This facilitates the development of relatively simple and rapid procedures, although some of these methods, mainly due to costs, lack accessibility in low-socioeconomic regions of endemicity. New immunological procedures and nucleic acid storage, purification, and diagnostics protocols that are simple, rapid, accurate, and cost-effective must be developed as countries progress control efforts toward the elimination of the parasitic NTDs.
Collapse
Affiliation(s)
- Madeleine J. Rogers
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen Muhi
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Catherine A. Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Yuan M, Ding R, Chen S, Duan G. Advances in Field Detection Based on CRISPR/Cas System. ACS Synth Biol 2021; 10:2824-2832. [PMID: 34714068 DOI: 10.1021/acssynbio.1c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid and accurate diagnostic methods are essential to interrupt outbreaks of infectious diseases such as COVID-19. However, the most commonly used nucleic acid detection method, qPCR or RT-qPCR, takes several hours to complete and requires highly sophisticated equipment. Recently, an emerging nucleic acid detection method based on the CRISPR/Cas system has reduced the reliance on qPCR. It has several important features that make it suitable for on-site POCT (point-of-care testing), including short detection cycles, low cost, high sensitivity, and the ability to be combined with different readout methods. This review briefly introduces the steps of CRISPR/Cas detection and then summarizes the current advances of CRISPR/Cas-based POCT from four steps: nucleic acid extraction, target amplification, CRISPR/Cas-based signal generation, and signal output. Finally, we discuss the advantages and challenges of CRISPR-based POCT and describe the future research perspectives for CRISPR.
Collapse
Affiliation(s)
- Mingzhu Yuan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan Province 450000, China
| | - Ronghua Ding
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan Province 450000, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan Province 450000, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan Province 450000, China
| |
Collapse
|
8
|
Li P, Li M, Yuan Z, Jiang X, Yue D, Ye B, Zhao Z, Jiang J, Fan Q, Zhou Z, Chen H. 3D printed integrated separator with hybrid micro-structures for high throughput and magnetic-free nucleic acid separation from organism samples. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
10
|
Qin Z, Peng R, Baravik IK, Liu X. Fighting COVID-19: Integrated Micro- and Nanosystems for Viral Infection Diagnostics. MATTER 2020; 3:628-651. [PMID: 32838297 PMCID: PMC7346839 DOI: 10.1016/j.matt.2020.06.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) highlights the importance of rapid and sensitive diagnostics of viral infection that enables the efficient tracing of cases and the implementation of public health measures for disease containment. The immediate actions from both academia and industry have led to the development of many COVID-19 diagnostic systems that have secured fast-track regulatory approvals and have been serving our healthcare frontlines since the early stage of the pandemic. On diagnostic technologies, many of these clinically validated systems have significantly benefited from the recent advances in micro- and nanotechnologies in terms of platform design, analytical method, and system integration and miniaturization. The continued development of new diagnostic platforms integrating micro- and nanocomponents will address some of the shortcomings we have witnessed in the existing COVID-19 diagnostic systems. This Perspective reviews the previous and ongoing research efforts on developing integrated micro- and nanosystems for nucleic acid-based virus detection, and highlights promising technologies that could provide better solutions for the diagnosis of COVID-19 and other viral infectious diseases. With the summary and outlook of this rapidly evolving research field, we hope to inspire more research and development activities to better prepare our society for future public health crises.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ran Peng
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ilina Kolker Baravik
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
11
|
Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, Trau M, Botella JR. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol 2017; 15:e2003916. [PMID: 29161268 PMCID: PMC5697807 DOI: 10.1371/journal.pbio.2003916] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022] Open
Abstract
Nucleic acid amplification is a powerful molecular biology tool, although its use outside the modern laboratory environment is limited due to the relatively cumbersome methods required to extract nucleic acids from biological samples. To address this issue, we investigated a variety of materials for their suitability for nucleic acid capture and purification. We report here that untreated cellulose-based paper can rapidly capture nucleic acids within seconds and retain them during a single washing step, while contaminants present in complex biological samples are quickly removed. Building on this knowledge, we have successfully created an equipment-free nucleic acid extraction dipstick methodology that can obtain amplification-ready DNA and RNA from plants, animals, and microbes from difficult biological samples such as blood and leaves from adult trees in less than 30 seconds. The simplicity and speed of this method as well as the low cost and availability of suitable materials (e.g., common paper towelling), means that nucleic acid extraction is now more accessible and affordable for researchers and the broader community. Furthermore, when combined with recent advancements in isothermal amplification and naked eye DNA visualization techniques, the dipstick extraction technology makes performing molecular diagnostic assays achievable in limited resource settings including university and high school classrooms, field-based environments, and developing countries.
Collapse
Affiliation(s)
- Yiping Zou
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St.Lucia, Australia
| | - Michael Glenn Mason
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St.Lucia, Australia
| | - Yuling Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St.Lucia, Australia
| | - Eugene Wee
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St.Lucia, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St.Lucia, Australia
| | - Patrick J. Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St.Lucia, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St.Lucia, Australia
| | - Jose Ramon Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St.Lucia, Australia
| |
Collapse
|
12
|
Peeling RW, Mabey D. Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 2010; 16:1062-9. [PMID: 20670288 DOI: 10.1111/j.1469-0691.2010.03279.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infectious diseases continue to cause an enormous burden of death and disability in developing countries. Increasing access to appropriate treatment for infectious diseases could have a major impact on disease burden. Some common infections can be managed syndromically without the need for diagnostic tests, but this is not appropriate for many infectious diseases, in which a positive diagnostic test is needed before treatment can be given. Since many people in developing countries do not have access to laboratory services, diagnosis depends on the availability of point of care (POC) tests. Historically there has been little investment in POC tests for diseases that are common in developing countries, but that is now changing. Lack of regulation of diagnostic tests in many countries has resulted in the widespread use of sub-standard POC tests, especially for malaria, making it difficult for manufacturers of reliable POC tests to compete. In recent years increased investment, technological advances, and greater awareness about the importance of reliable diagnostic tests has resulted in rapid progress. Rapid, reliable and affordable POC tests, requiring no equipment and minimal training, are now available for HIV infection, syphilis and malaria, but POC tests for other infections are urgently needed. Many countries do not have established criteria for licensing and introducing new diagnostic tests, and many clinicians in developing countries have become disillusioned with diagnostic tests and prefer to rely on clinical judgment. Continuing advocacy and training in the use of POC tests are needed, and systems for quality control of POC tests need to be developed if they are to achieve their maximum potential.
Collapse
Affiliation(s)
- R W Peeling
- Diagnostic Research, London School of Hygiene and Tropical Medicine, London, UK.
| | | |
Collapse
|